Structural Changes of Sodium Warfarin in Tablets Affecting the Dissolution Profiles and Potential Safety of Generic Substitution
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LTAUSA18011
Ministry of Education, Youth and Sports of the Czech Republic
MUNI/A/1574/2020
Masarykova Univerzita
PubMed
34575440
PubMed Central
PMC8470675
DOI
10.3390/pharmaceutics13091364
PII: pharmaceutics13091364
Knihovny.cz E-zdroje
- Klíčová slova
- bioavailability, generic substitution, particle size, polymorphism, solid-state NMR, stability, warfarin,
- Publikační typ
- časopisecké články MeSH
At present, the risk of generic substitutions in warfarin tablets is still being discussed. The aim of this study was to assess whether API interactions with commonly used excipients may affect the safety of generic replacement of warfarin sodium tablets. These interactions were observed during an accelerated stability study, and the effect of the warfarin solid phase (crystalline/amorphous form) as well as the API particle size distribution was studied. Commercial tablets and prepared tablets containing crystalline warfarin or amorphous warfarin were used. In addition, binary mixtures of warfarin with various excipients were prepared. The structural changes before and after the stability study were monitored by dissolution test in different media, solid-state NMR spectroscopy and Raman microscopy. During the stability study, the conversion of the sodium in warfarin to its acid form was demonstrated by some excipients (e.g., calcium phosphate). This change in the solid phase of warfarin leads to significant changes in dissolution, especially with the different particle sizes of the APIs in the tablet. Thus, the choice of suitable excipients and particle sizes are critical factors influencing the safety of generic warfarin sodium tablets.
Zobrazit více v PubMed
Erener S. Diabetes, infection risk and COVID-19. Mol. Metab. 2020;39:101044. doi: 10.1016/j.molmet.2020.101044. PubMed DOI PMC
Bultas J., Karetová D. New oral anticoagulants—Aspects surrounded by silence. Remedia. 2015;25:127–134.
Harper P., Young L., Merriman E. Bleeding risk with dabigatran in the frail elderly. N. Engl. J. Med. 2012;366:864–866. doi: 10.1056/NEJMc1112874. PubMed DOI
Hernandez I., Baik S.H., Piñera A., Zhang Y. Risk of bleeding with dabigatran in atrial fibrillation. JAMA Intern. Med. 2015;175:18–24. doi: 10.1001/jamainternmed.2014.5398. PubMed DOI PMC
Ringleb P.A. Thrombolytics, anticoagulants, and antiplatelet agents. Stroke. 2006;37:312–313. doi: 10.1161/01.STR.0000200560.01068.65. PubMed DOI
Godman B., Malmström R.E., Diogene E., Jayathissa S., McTaggart S., Cars T., Alvarez-Madrazo S., Baumgärtel C., Brzezinska A., Bucsics A., et al. Dabigatran-a continuing exemplar case history demonstrating the need for comprehensive models to optimize the utilization of new drugs. Front. Pharmacol. 2014;5:109. doi: 10.3389/fphar.2014.00109. PubMed DOI PMC
Kow C.S., Sunter W., Bain A., Zaidi S.T.R., Hasan S.S. Management of outpatient warfarin therapy amid COVID-19 pandemic: A practical guide. Am. J. Cardiovasc. Drugs. 2020;20:301–309. doi: 10.1007/s40256-020-00415-z. PubMed DOI PMC
Hohnloser S.H., Oldgren J., Yang S., Wallentin L., Ezekowitz M., Reilly P., Eikelboom J., Brueckmann M., Yusuf S., Connolly S.J. Myocardial ischemic events in patients with atrial fibrillation treated with dabigatran or warfarin in the RE-LY (Randomized evaluation of long-term anticoagulation therapy) trial. Circulation. 2012;125:669–676. doi: 10.1161/CIRCULATIONAHA.111.055970. PubMed DOI
Douxfils J., Buckinx F., Mullier F., Minet V., Rabenda V., Reginster J.Y., Hainaut P., Bruyère O., Dogné J.M. Dabigatran etexilate and risk of myocardial infarction, other cardiovascular events, major bleeding, and all-cause mortality: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2014;3:e000515. doi: 10.1161/JAHA.113.000515. PubMed DOI PMC
Zeeshan M., Jehan F., O’Keeffe T., Khan M., Zakaria E.R., Hamidi M., Gries L., Kulvatunyou N., Joseph B. The novel oral anticoagulants (NOACs) have worse outcomes compared with warfarin in patients with intracranial hemorrhage after TBI. J. Trauma Acute Care Surg. 2018;85:915–920. doi: 10.1097/TA.0000000000001995. PubMed DOI
Chokesuwattanaskul R., Thongprayoon C., Tanawuttiwat T., Kaewput W., Pachariyanon P., Cheungpasitporn W. Safety and efficacy of apixaban versus warfarin in patients with end-stage renal disease: Meta-analysis. Pacing Clin. Electrophysiol. 2018;41:627–634. doi: 10.1111/pace.13331. PubMed DOI
Russo-Alvarez G., Martinez K.A., Valente M., Bena J., Hu B., Luxenburg J., Chaitoff A., Ituarte C., Brateanu A., Rothberg M.B. Thromboembolic and major bleeding events with rivaroxaban versus warfarin use in a real-world setting. Ann. Pharmacother. 2018;52:19–25. doi: 10.1177/1060028017727290. PubMed DOI
You J.H. Novel oral anticoagulants versus warfarin therapy at various levels of anticoagulation control in atrial fibrillation—A cost-effectiveness analysis. J. Gen. Intern. Med. 2014;29:438–446. doi: 10.1007/s11606-013-2639-2. PubMed DOI PMC
Zhu J., Alexander G.C., Nazarian S., Segal J.B., Wu A.W. Trends and variation in oral anticoagulant choice in patients with atrial fibrillation, 2010–2017. Pharmacotherapy. 2018;38:907–920. doi: 10.1002/phar.2158. PubMed DOI PMC
Siguret V., Pautas E., Gouin-Thibault I. Warfarin therapy: Influence of pharmacogenetic and environmental factors on the anticoagulant response to warfarin. Vitam. Horm. 2008;78:247–264. doi: 10.1016/s0083-6729(07)00012-x. PubMed DOI
Ghate S.R., Biskupiak J.E., Ye X., Hagan M., Kwong W.J., Fox E.S., Brixner D.I. Hemorrhagic and thrombotic events associated with generic substitution of warfarin in patients with atrial fibrillation: A retrospective analysis. Ann. Pharmacother. 2011;45:701–712. doi: 10.1345/aph.1P593. PubMed DOI
Bird S.T., Flowers N., Zhao Y., McKean S., Izem R., Wernecke M., Kozlowski S., MaCurdy T.E., Kelman J.A., Graham D.J. Healthy user bias in comparative safety studies for brand-name vs. generic products: The example of warfarin. Clin. Pharmacol. Ther. 2019;106:1037–1045. doi: 10.1002/cpt.1498. PubMed DOI
Hellfritzsch M., Rathe J., Stage T.B., Thirstrup S., Grove E.L., Damkier P., Pottegård A. Generic switching of warfarin and risk of excessive anticoagulation: A Danish nationwide cohort study. Pharmacoepidemiol. Drug Saf. 2016;25:336–343. doi: 10.1002/pds.3942. PubMed DOI
Hope K.A., Havrda D.E. Subtherapeutic INR values associated with a switch to generic warfarin. Ann. Pharmacother. 2001;35:183–187. doi: 10.1345/aph.10207. PubMed DOI
Bongiorno R.A., Nutescu E.A. Generic warfarin: Implications for clinical practice and perceptions of anticoagulation providers. Semin. Thromb. Hemost. 2004;30:619–626. doi: 10.1055/s-2004-861503. PubMed DOI
Nguyenpho A., Ciavarella A.B., Siddiqui A., Rahman Z., Akhtar S., Hunt R., Korang-Yeboah M., Khan M.A. Evaluation of in-use stability of anticoagulant drug products: Warfarin sodium. J. Pharm. Sci. 2015;104:4232–4240. doi: 10.1002/jps.24657. PubMed DOI
Rahman Z., Korang-Yeboah M., Siddiqui A., Mohammad A., Khan M.A. Understanding effect of formulation and manufacturing variables on the critical quality attributes of warfarin sodium product. Int. J. Pharm. 2015;495:19–30. doi: 10.1016/j.ijpharm.2015.08.065. PubMed DOI
Kasim N.A., Whitehouse M., Ramachandran C., Bermejo M., Lennernas H., Hussain A.S., Junginger H.E., Stavchansky S.A., Midha K.K., Shah V.P., et al. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharm. 2004;1:85–96. doi: 10.1021/mp034006h. PubMed DOI
Gao D., Maurin M.B. Physical chemical stability of warfarin sodium. AAPS PharmSci. 2001;3:E3. doi: 10.1208/ps030103. PubMed DOI PMC
Haines S.T. Substituting warfarin products: What’s the source of the problem? Ann. Pharmacother. 2011;45:807–809. doi: 10.1345/aph.1Q063. PubMed DOI
Zhang X., Wen H., Fan J., Vince B., Li T., Gao W., Kinjo M., Brown J., Sun W., Jia-ng W., et al. Integrating In vitro, modeling, and In vivo approaches to investigate warfarin bioequivalence. CPT Pharmacomet. Syst. Pharmacol. 2017;6:523–531. doi: 10.1002/psp4.12198. PubMed DOI PMC
Franc A., Muselík J., Zeman J., Lukášová I., Kurhajec S., Bartoníčková E., Galvánková L., Mika F., Dominik M., Vetchý D. The effect of amorphous and crystal sodium warfarin and its content uniformity on bioequivalence of tablets. Eur. J. Pharm. Sci. 2018;125:120–129. doi: 10.1016/j.ejps.2018.09.022. PubMed DOI
Muselík J., Franc A., Doležel P., Goněc R., Krondlová A., Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharm. 2014;64:355–367. doi: 10.2478/acph-2014-0022. PubMed DOI
Zhang X. CERSI Workshop FDA. U.S. Food and Drug Administration; Silver Spring, MD, USA: 2016. Bioequivalence and characterization of generic drugs: Substitutability of generic drugs: Perceptions and reality.
Brus J. Heating of samples induced by fast magic-angle spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Urbanova M., Gajdosova M., Steinhart M., Vetchy D., Brus J. Molecular-level control of ciclopirox olamine release from poly(ethylene oxide)-based mucoadhesive buccal films: Exploration of structure-property relationships with solid-state NMR. Mol. Pharm. 2016;13:1551–1563. doi: 10.1021/acs.molpharmaceut.6b00035. PubMed DOI
Brus J., Urbanova M., Sedenkova I., Brusova H. New perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations. Int. J. Pharm. 2011;409:62–74. doi: 10.1016/j.ijpharm.2011.02.030. PubMed DOI
Hušák M., Jegorov A., Czernek J., Rohlíček J., Žižková S., Vraspír P., Kolesa P., Fitch A., Brus J. Successful strategy for high degree of freedom crystal structure determination from powder X-ray diffraction data: A case study for selexipag form I with 38 DOF. Cryst. Growth Des. 2019;19:4625–4631. doi: 10.1021/acs.cgd.9b00517. DOI
Hušák M., Jegorov A., Rohlíček J., Fitch A., Czernek J., Kobera L., Brus J. Determining the crystal structures of peptide analogs of boronic acid in the absence of single crystals: Intricate motifs of ixazomib citrate revealed by XRPD guided by ss-NMR. Cryst. Growth Des. 2018;18:3616–3625. doi: 10.1021/acs.cgd.8b00402. DOI
Urbanova M., Brus J., Sedenkova I., Policianova O., Kobera L. Characterization of solid polymer dispersions of active pharmaceutical ingredients by 19F MAS NMR and factor analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013;100:59–66. doi: 10.1016/j.saa.2012.02.057. PubMed DOI
Giannini D.D., Chan K.K., Roberts J.D. Carbon-13 nuclear magnetic resonance spectroscopy. Structure of the anticoagulant warfarin and related compounds in solution. Proc. Natl. Acad. Sci. USA. 1974;71:4221–4223. doi: 10.1073/pnas.71.10.4221. PubMed DOI PMC
Valente E.J., Trager W.F., Jensen L.H. The crystal and molecular structure and absolute configuration of (−)-(S)-warfarin. Acta Crystallogr. 1975;31:954–960. doi: 10.1107/S056774087500427X. DOI
Brus J., Czernek J., Kobera L., Urbanova M., Abbrent S., Husak M. Predicting the crystal structure of decitabine by powder NMR crystallography: Influence of long-range molecular packing symmetry on NMR parameters. Cryst. Growth Des. 2016;16:7102–7111. doi: 10.1021/acs.cgd.6b01341. DOI
Deshpande M.D., Scheicher R.H., Ahuja R., Pandey R. Binding strength of sodium ions in cellulose for different water contents. J. Phys. Chem. B. 2008;112:8985–8989. doi: 10.1021/jp8020547. PubMed DOI
Franc A., Kurhajec S., Pavloková S., Sabadková D., Muselík J. Influence of concentration and type of microcrystalline cellulose on the physical properties of tablets containing Cornelian cherry fruits. Acta Pharm. 2017;67:187–202. doi: 10.1515/acph-2017-0019. PubMed DOI
Franc A., Muselłk J., Goněc R., Vetchý D. Biphasic dissolution method for quality control and assurance of drugs containing active substances in the form of weak acid salts. Acta Pharm. 2016;66:139–145. doi: 10.1515/acph-2016-0010. PubMed DOI
Committee for Medicinal Products for Human Use (CHMP) Guideline on the Investigation of Bioequivalence. European Medicines Agency; London, UK: 2010.
Food and Drug Administration . Guidance for Industry. Food and Drug Administration; Rockville, MD, USA: 1997. Dissolution testing of immediate release solid oral dosage forms.
Vercaigne L.M., Zhanel G.G. Clinical significance of bioequivalence and interchangeability of narrow therapeutic range drugs: Focus on warfarins. J. Pharm. Pharm. Sci. 1998;1:92–94. PubMed
Urbanova M., Pavelkova M., Czernek J., Kubova K., Vyslouzil J., Pechova A., Molinkova D., Vyslouzil J., Vetchy D., Brus J. Interaction pathways and structure-chemical transformations of alginate gels in physiological environments. Biomacromolecules. 2019;20:4158–4170. doi: 10.1021/acs.biomac.9b01052. PubMed DOI
Yu Y., Guo H., Pujari-Palmer M., Stevensson B., Grins J., Engqvist H., Edén M. Advanced solid-state 1H/31P NMR characterization of pyrophosphate-doped calcium phosphate cements for biomedical applications: The structural role of pyrophosphate. Ceram. Int. 2019;45:20642–20655. doi: 10.1016/j.ceramint.2019.07.047. DOI
Awa K., Shinzawa H., Ozaki Y. The effect of microcrystalline cellulose crystallinity on the hydrophilic property of tablets and the hydrolysis of acetylsalicylic acid as active pharmaceutical ingredient inside tablets. AAPS PharmSciTech. 2015;16:865–870. doi: 10.1208/s12249-014-0276-7. PubMed DOI PMC