Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling

. 2021 Sep 15 ; 22 (18) : . [epub] 20210915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576143

Grantová podpora
17-08066Y Czech Science Foundation
LTAUSA17160 Ministry of Education, Youth and Sports
No. L200041802 Czech Academy of Sciences

Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.

Zobrazit více v PubMed

He R., Xhabija B., Al-Qanber B., Kidder B.L. OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Sci. Rep. 2017;7:16360. doi: 10.1038/s41598-017-16611-y. PubMed DOI PMC

Wang L., Zhang T., Wang L., Cai Y., Zhong X., He X., Hu L., Tian S., Wu M., Hui L., et al. Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J. 2017;36:1330–1347. doi: 10.15252/embj.201695417. PubMed DOI PMC

Kucera J., Netusilova J., Sladecek S., Lanova M., Vasicek O., Stefkova K., Navratilova J., Kubala L., Pachernik J. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells. Oxid. Med. Cell. Longev. 2017;2017:4386947. doi: 10.1155/2017/4386947. PubMed DOI PMC

Storm M.P., Bone H.K., Beck C.G., Bourillot P.Y., Schreiber V., Damiano T., Nelson A., Savatier P., Welham M.J. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J. Biol. Chem. 2007;282:6265–6273. doi: 10.1074/jbc.M610906200. PubMed DOI

Niwa H., Burdon T., Chambers I., Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–2060. doi: 10.1101/gad.12.13.2048. PubMed DOI PMC

Kitamura H., Ohno Y., Toyoshima Y., Ohtake J., Homma S., Kawamura H., Takahashi N., Taketomi A. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108:1947–1952. doi: 10.1111/cas.13332. PubMed DOI PMC

Chakraborty D., Sumova B., Mallano T., Chen C.W., Distler A., Bergmann C., Ludolph I., Horch R.E., Gelse K., Ramming A., et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 2017;8:1130. doi: 10.1038/s41467-017-01236-6. PubMed DOI PMC

Huang G., Ye S., Zhou X., Liu D., Ying Q.L. Molecular basis of embryonic stem cell self-renewal: From signaling pathways to pluripotency network. Cell. Mol. Life Sci. 2015;72:1741–1757. doi: 10.1007/s00018-015-1833-2. PubMed DOI PMC

Bourillot P.Y., Aksoy I., Schreiber V., Wianny F., Schulz H., Hummel O., Hubner N., Savatier P. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells. 2009;27:1760–1771. doi: 10.1002/stem.110. PubMed DOI

Foshay K., Rodriguez G., Hoel B., Narayan J., Gallicano G.I. JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells. 2005;23:530–543. doi: 10.1634/stemcells.2004-0293. PubMed DOI

Foshay K.M., Gallicano G.I. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 2008;17:269–278. doi: 10.1089/scd.2007.0098. PubMed DOI

Huang G., Yan H., Ye S., Tong C., Ying Q.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells. 2014;32:1149–1160. doi: 10.1002/stem.1609. PubMed DOI PMC

Liu Y., Ji L., Ten Y., Wang Y., Pei X. The molecular mechanism of embryonic stem cell pluripotency and self-renewal. Sci. China C Life Sci. 2007;50:619–623. doi: 10.1007/s11427-007-0074-5. PubMed DOI

Groenendyk J., Michalak M. Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin. Stem Cell Rev. Rep. 2014;10:191–206. doi: 10.1007/s12015-013-9488-6. PubMed DOI

Sinova R., Kudova J., Nesporova K., Karel S., Sulakova R., Velebny V., Kubala L. Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J. Cell Physiol. 2019;234:13209–13219. doi: 10.1002/jcp.27992. PubMed DOI

Ambrozova G., Fidlerova T., Verescakova H., Koudelka A., Rudolph T.K., Woodcock S.R., Freeman B.A., Kubala L., Pekarova M. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition. Biochim. Biophys. Acta. 2016;1860:2428–2437. doi: 10.1016/j.bbagen.2016.07.010. PubMed DOI PMC

Rudolph V., Rudolph T.K., Schopfer F.J., Bonacci G., Woodcock S.R., Cole M.P., Baker P.R., Ramani R., Freeman B.A. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 2010;85:155–166. doi: 10.1093/cvr/cvp275. PubMed DOI PMC

Schopfer F.J., Vitturi D.A., Jorkasky D.K., Freeman B.A. Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide. 2018;79:31–37. doi: 10.1016/j.niox.2018.06.006. PubMed DOI PMC

Zhang J., Villacorta L., Chang L., Fan Z., Hamblin M., Zhu T., Chen C.S., Cole M.P., Schopfer F.J., Deng C.X., et al. Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ. Res. 2010;107:540–548. doi: 10.1161/CIRCRESAHA.110.218404. PubMed DOI PMC

Freeman B.A., Baker P.R., Schopfer F.J., Woodcock S.R., Napolitano A., d’Ischia M. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008;283:15515–15519. doi: 10.1074/jbc.R800004200. PubMed DOI PMC

Delmastro-Greenwood M., Freeman B.A., Wendell S.G. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu. Rev. Physiol. 2014;76:79–105. doi: 10.1146/annurev-physiol-021113-170341. PubMed DOI PMC

Freeman B.A., O’Donnell V.B., Schopfer F.J. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric. Oxide. 2018;77:106–111. doi: 10.1016/j.niox.2018.05.002. PubMed DOI PMC

Yang X., Rodriguez M.L., Leonard A., Sun L., Fischer K.A., Wang Y., Ritterhoff J., Zhao L., Kolwicz S.C., Jr., Pabon L., et al. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Rep. 2019;13:657–668. doi: 10.1016/j.stemcr.2019.08.013. PubMed DOI PMC

Vecera J., Kudova J., Kucera J., Kubala L., Pachernik J. Neural Differentiation Is Inhibited through HIF1alpha/beta-Catenin Signaling in Embryoid Bodies. Stem Cells Int. 2017;2017:8715798. doi: 10.1155/2017/8715798. PubMed DOI PMC

Saxena S., Choudhury S., Mohan K.N. Reproducible differentiation and characterization of neurons from mouse embryonic stem cells. MethodsX. 2020;7:101073. doi: 10.1016/j.mex.2020.101073. PubMed DOI PMC

Mukherjee A., Kenny H.A., Lengyel E. Unsaturated Fatty Acids Maintain Cancer Cell Stemness. Cell Stem Cell. 2017;20:291–292. doi: 10.1016/j.stem.2017.02.008. PubMed DOI PMC

Yasumoto Y., Miyazaki H., Vaidyan L.K., Kagawa Y., Ebrahimi M., Yamamoto Y., Ogata M., Katsuyama Y., Sadahiro H., Suzuki M., et al. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS ONE. 2016;11:e0147717. doi: 10.1371/journal.pone.0147717. PubMed DOI PMC

Tai C.I., Schulze E.N., Ying Q.L. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner. Biol. Open. 2014;3:958–965. doi: 10.1242/bio.20149514. PubMed DOI PMC

Ulrich H., do Nascimento I.C., Bocsi J., Tarnok A. Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Rev. Rep. 2015;11:474–486. doi: 10.1007/s12015-014-9556-6. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...