Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-08066Y
Czech Science Foundation
LTAUSA17160
Ministry of Education, Youth and Sports
No. L200041802
Czech Academy of Sciences
PubMed
34576143
PubMed Central
PMC8468660
DOI
10.3390/ijms22189981
PII: ijms22189981
Knihovny.cz E-zdroje
- Klíčová slova
- STAT3, cardiomyogenesis, mouse embryonic stem cells, neurogenesis, nitro-oleic acid, pluripotency,
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace * účinky léků MeSH
- dusíkaté sloučeniny farmakologie MeSH
- embryoidní tělíska účinky léků metabolismus MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- kyseliny olejové farmakologie MeSH
- myší embryonální kmenové buňky cytologie účinky léků metabolismus MeSH
- myši MeSH
- neurony cytologie účinky léků metabolismus MeSH
- organogeneze účinky léků MeSH
- pluripotentní kmenové buňky účinky léků metabolismus MeSH
- signální transdukce účinky léků MeSH
- transkripční faktor STAT3 metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- CXA-10 MeSH Prohlížeč
- dusíkaté sloučeniny MeSH
- kyseliny olejové MeSH
- transkripční faktor STAT3 MeSH
Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.
Zobrazit více v PubMed
He R., Xhabija B., Al-Qanber B., Kidder B.L. OCT4 supports extended LIF-independent self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. Sci. Rep. 2017;7:16360. doi: 10.1038/s41598-017-16611-y. PubMed DOI PMC
Wang L., Zhang T., Wang L., Cai Y., Zhong X., He X., Hu L., Tian S., Wu M., Hui L., et al. Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO J. 2017;36:1330–1347. doi: 10.15252/embj.201695417. PubMed DOI PMC
Kucera J., Netusilova J., Sladecek S., Lanova M., Vasicek O., Stefkova K., Navratilova J., Kubala L., Pachernik J. Hypoxia Downregulates MAPK/ERK but Not STAT3 Signaling in ROS-Dependent and HIF-1-Independent Manners in Mouse Embryonic Stem Cells. Oxid. Med. Cell. Longev. 2017;2017:4386947. doi: 10.1155/2017/4386947. PubMed DOI PMC
Storm M.P., Bone H.K., Beck C.G., Bourillot P.Y., Schreiber V., Damiano T., Nelson A., Savatier P., Welham M.J. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J. Biol. Chem. 2007;282:6265–6273. doi: 10.1074/jbc.M610906200. PubMed DOI
Niwa H., Burdon T., Chambers I., Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–2060. doi: 10.1101/gad.12.13.2048. PubMed DOI PMC
Kitamura H., Ohno Y., Toyoshima Y., Ohtake J., Homma S., Kawamura H., Takahashi N., Taketomi A. Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci. 2017;108:1947–1952. doi: 10.1111/cas.13332. PubMed DOI PMC
Chakraborty D., Sumova B., Mallano T., Chen C.W., Distler A., Bergmann C., Ludolph I., Horch R.E., Gelse K., Ramming A., et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 2017;8:1130. doi: 10.1038/s41467-017-01236-6. PubMed DOI PMC
Huang G., Ye S., Zhou X., Liu D., Ying Q.L. Molecular basis of embryonic stem cell self-renewal: From signaling pathways to pluripotency network. Cell. Mol. Life Sci. 2015;72:1741–1757. doi: 10.1007/s00018-015-1833-2. PubMed DOI PMC
Bourillot P.Y., Aksoy I., Schreiber V., Wianny F., Schulz H., Hummel O., Hubner N., Savatier P. Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and endoderm differentiation in cooperation with Nanog. Stem Cells. 2009;27:1760–1771. doi: 10.1002/stem.110. PubMed DOI
Foshay K., Rodriguez G., Hoel B., Narayan J., Gallicano G.I. JAK2/STAT3 directs cardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells. 2005;23:530–543. doi: 10.1634/stemcells.2004-0293. PubMed DOI
Foshay K.M., Gallicano G.I. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev. 2008;17:269–278. doi: 10.1089/scd.2007.0098. PubMed DOI
Huang G., Yan H., Ye S., Tong C., Ying Q.L. STAT3 phosphorylation at tyrosine 705 and serine 727 differentially regulates mouse ESC fates. Stem Cells. 2014;32:1149–1160. doi: 10.1002/stem.1609. PubMed DOI PMC
Liu Y., Ji L., Ten Y., Wang Y., Pei X. The molecular mechanism of embryonic stem cell pluripotency and self-renewal. Sci. China C Life Sci. 2007;50:619–623. doi: 10.1007/s11427-007-0074-5. PubMed DOI
Groenendyk J., Michalak M. Disrupted WNT signaling in mouse embryonic stem cells in the absence of calreticulin. Stem Cell Rev. Rep. 2014;10:191–206. doi: 10.1007/s12015-013-9488-6. PubMed DOI
Sinova R., Kudova J., Nesporova K., Karel S., Sulakova R., Velebny V., Kubala L. Opioid receptors and opioid peptides in the cardiomyogenesis of mouse embryonic stem cells. J. Cell Physiol. 2019;234:13209–13219. doi: 10.1002/jcp.27992. PubMed DOI
Ambrozova G., Fidlerova T., Verescakova H., Koudelka A., Rudolph T.K., Woodcock S.R., Freeman B.A., Kubala L., Pekarova M. Nitro-oleic acid inhibits vascular endothelial inflammatory responses and the endothelial-mesenchymal transition. Biochim. Biophys. Acta. 2016;1860:2428–2437. doi: 10.1016/j.bbagen.2016.07.010. PubMed DOI PMC
Rudolph V., Rudolph T.K., Schopfer F.J., Bonacci G., Woodcock S.R., Cole M.P., Baker P.R., Ramani R., Freeman B.A. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 2010;85:155–166. doi: 10.1093/cvr/cvp275. PubMed DOI PMC
Schopfer F.J., Vitturi D.A., Jorkasky D.K., Freeman B.A. Nitro-fatty acids: New drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide. 2018;79:31–37. doi: 10.1016/j.niox.2018.06.006. PubMed DOI PMC
Zhang J., Villacorta L., Chang L., Fan Z., Hamblin M., Zhu T., Chen C.S., Cole M.P., Schopfer F.J., Deng C.X., et al. Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ. Res. 2010;107:540–548. doi: 10.1161/CIRCRESAHA.110.218404. PubMed DOI PMC
Freeman B.A., Baker P.R., Schopfer F.J., Woodcock S.R., Napolitano A., d’Ischia M. Nitro-fatty acid formation and signaling. J. Biol. Chem. 2008;283:15515–15519. doi: 10.1074/jbc.R800004200. PubMed DOI PMC
Delmastro-Greenwood M., Freeman B.A., Wendell S.G. Redox-dependent anti-inflammatory signaling actions of unsaturated fatty acids. Annu. Rev. Physiol. 2014;76:79–105. doi: 10.1146/annurev-physiol-021113-170341. PubMed DOI PMC
Freeman B.A., O’Donnell V.B., Schopfer F.J. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric. Oxide. 2018;77:106–111. doi: 10.1016/j.niox.2018.05.002. PubMed DOI PMC
Yang X., Rodriguez M.L., Leonard A., Sun L., Fischer K.A., Wang Y., Ritterhoff J., Zhao L., Kolwicz S.C., Jr., Pabon L., et al. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Rep. 2019;13:657–668. doi: 10.1016/j.stemcr.2019.08.013. PubMed DOI PMC
Vecera J., Kudova J., Kucera J., Kubala L., Pachernik J. Neural Differentiation Is Inhibited through HIF1alpha/beta-Catenin Signaling in Embryoid Bodies. Stem Cells Int. 2017;2017:8715798. doi: 10.1155/2017/8715798. PubMed DOI PMC
Saxena S., Choudhury S., Mohan K.N. Reproducible differentiation and characterization of neurons from mouse embryonic stem cells. MethodsX. 2020;7:101073. doi: 10.1016/j.mex.2020.101073. PubMed DOI PMC
Mukherjee A., Kenny H.A., Lengyel E. Unsaturated Fatty Acids Maintain Cancer Cell Stemness. Cell Stem Cell. 2017;20:291–292. doi: 10.1016/j.stem.2017.02.008. PubMed DOI PMC
Yasumoto Y., Miyazaki H., Vaidyan L.K., Kagawa Y., Ebrahimi M., Yamamoto Y., Ogata M., Katsuyama Y., Sadahiro H., Suzuki M., et al. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS ONE. 2016;11:e0147717. doi: 10.1371/journal.pone.0147717. PubMed DOI PMC
Tai C.I., Schulze E.N., Ying Q.L. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner. Biol. Open. 2014;3:958–965. doi: 10.1242/bio.20149514. PubMed DOI PMC
Ulrich H., do Nascimento I.C., Bocsi J., Tarnok A. Immunomodulation in stem cell differentiation into neurons and brain repair. Stem Cell Rev. Rep. 2015;11:474–486. doi: 10.1007/s12015-014-9556-6. PubMed DOI