Nucleotides in both donor and acceptor splice sites are responsible for choice in NAGNAG tandem splice sites

. 2021 Nov ; 78 (21-22) : 6979-6993. [epub] 20211001

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34596691

Grantová podpora
MUNI/A/1099/2019 ministerstvo školství, mládeže a tělovýchovy
2020001 centre for cardiovascular surgery and transplantation

Odkazy

PubMed 34596691
PubMed Central PMC11072513
DOI 10.1007/s00018-021-03943-2
PII: 10.1007/s00018-021-03943-2
Knihovny.cz E-zdroje

Among alternative splicing events in the human transcriptome, tandem NAGNAG acceptor splice sites represent an appreciable proportion. Both proximal and distal NAG can be used to produce two splicing isoforms differing by three nucleotides. In some cases, the upstream exon can be alternatively spliced as well, which further increases the number of possible transcripts. In this study, we showed that NAG choice in tandem splice site depends considerably not only on the concerned acceptor, but also on the upstream donor splice site sequence. Using an extensive set of experiments with systematically modified two-exonic minigene systems of AFAP1L2 or CSTD gene, we recognized the third and fifth intronic upstream donor splice site position and the tandem acceptor splice site region spanning from -10 to +2, including NAGNAG itself, as the main drivers. In addition, competition between different branch points and their composition were also shown to play a significant role in NAG choice. All these nucleotide effects appeared almost additive, which explained the high variability in proximal versus distal NAG usage.

Zobrazit více v PubMed

Bradley RK, Merkin J, Lambert NJ, Burge CB. Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. PLoS Biol. 2012;10:e1001229. doi: 10.1371/journal.pbio.1001229. PubMed DOI PMC

Chang CY, Lin WD, Tu SL. Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens. Plant Physiol. 2014;165:826–840. doi: 10.1104/pp.113.230540. PubMed DOI PMC

Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S, et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet. 2004;36:1255–1257. doi: 10.1038/ng1469. PubMed DOI

Sammeth M, Foissac S, Guigó R. A general definition and nomenclature for alternative splicing events. PLoS Comput Biol. 2008;4:e1000147. doi: 10.1371/journal.pcbi.1000147. PubMed DOI PMC

Sinha R, Nikolajewa S, Szafranski K, Hiller M, Jahn N, Huse K, et al. Accurate prediction of NAGNAG alternative splicing. Nucleic Acids Res. 2009;37:3569–3579. doi: 10.1093/nar/gkp220. PubMed DOI PMC

Zavolan M, Kondo S, Schönbach C, Adachi J, Hume DA, Arakawa T, et al. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 2003;13:1290–1300. doi: 10.1101/gr.1017303. PubMed DOI PMC

Hinzpeter A, Aissat A, Sondo E, Costa C, Arous N, Gameiro C, et al. Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 2010;6:e1001153. doi: 10.1371/journal.pgen.1001153. PubMed DOI PMC

Akerman M, Mandel-Gutfreund Y. Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res. 2006;34:23–31. doi: 10.1093/nar/gkj408. PubMed DOI PMC

Dou Y, Fox-Walsh KL, Baldi PF, Hertel KJ. Genomic splice-site analysis reveals frequent alternative splicing close to the dominant splice site. RNA. 2006;12:2047–2056. doi: 10.1261/rna.151106. PubMed DOI PMC

Hiller M, Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet. 2008;24:246–255. doi: 10.1016/j.tig.2008.03.003. PubMed DOI

Yan X, Sablok G, Feng G, Ma J, Zhao H, Sun X. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data. FEBS Lett. 2015;589:1766–1770. doi: 10.1016/j.febslet.2015.05.029. PubMed DOI

Bougé AL, Murauer E, Beyne E, Miro J, Varilh J, Taulan M, et al. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle. Sci Rep. 2017;7:45414. doi: 10.1038/srep39094. PubMed DOI PMC

Chua K, Reed R. The RNA splicing factor hSlu7 is required for correct 3’ splice-site choice. Nature. 1999;402:207–210. doi: 10.1038/46086. PubMed DOI

Královičová J, Christensen MB, Vořechovský I. Biased exon/intron distribution of cryptic and de novo 3’ splice sites. Nucleic Acids Res. 2005;33:4882–4898. doi: 10.1093/nar/gki811. PubMed DOI PMC

Tsai K-W, Chan W-C, Hsu C-N, Lin W-C. Sequence features involved in the mechanism of 3’ splice junction wobbling. BMC Mol Biol. 2010;11:34. doi: 10.1186/1471-2199-11-34. PubMed DOI PMC

Akerman M, Mandel-Gutfreund Y. Does distance matter? Variations in alternative 3′ splicing regulation. Nucleic Acids Res. 2007;35:5487–5498. doi: 10.1093/nar/gkm603. PubMed DOI PMC

Chern TM, Van Nimwegen E, Kai C, Kawai J, Carninci P, Hayashizaki Y, et al. A simple physical model predicts small exon length variations. PLoS Genet. 2006;2:e45. doi: 10.1371/journal.pgen.0020045. PubMed DOI PMC

Reed R. Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol. 2000;12:340–345. doi: 10.1016/S0955-0674(00)00097-1. PubMed DOI

Chua K, Reed R. An upstream AG determines whether a downstream AG is selected during catalytic step II of splicing. Mol Cell Biol. 2001;21:1509–1514. doi: 10.1128/MCB.21.5.1509-1514.2001. PubMed DOI PMC

Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcárcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell. 2002;109:285–296. doi: 10.1016/S0092-8674(02)00730-4. PubMed DOI

Tsai K-W, Tarn W-Y, Lin W-C. Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3’ tandem splice site selection. Mol Cell Biol. 2007;27:5835–5848. doi: 10.1128/MCB.00363-07. PubMed DOI PMC

Deirdre A, Scadden J, Smith CW. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 1995;14:3236–3246. doi: 10.1002/j.1460-2075.1995.tb07326.x. PubMed DOI PMC

Hujová P, Grodecká L, Souček P, Freiberger T. Impact of acceptor splice site NAGTAG motif on exon recognition. Mol Biol Rep. 2019;46:2877–2884. doi: 10.1007/s11033-019-04734-6. PubMed DOI

Desmet FO-O, Hamroun D, Lalande M, Collod-BéRoud G, Claustres M, BéRoud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC

Hiller M, Szafranski K, Backofen R, Platzer M. Alternative splicing at NAGNAG acceptors: simply noise or noise and more? PLoS Genet. 2006;2:e207. doi: 10.1371/journal.pgen.0020207. PubMed DOI PMC

Hiller M, Szafranski K, Sinha R, Huse K, Nikolajewa S, Rosenstiel P, et al. Assessing the fraction of short-distance tandem splice sites under purifying selection. RNA. 2008;14:616–619. doi: 10.1261/rna.883908. PubMed DOI PMC

Rooke N, Markovtsov V, Cagavi E, Black DL. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol Cell Biol. 2003;23:1874–1884. doi: 10.1128/MCB.23.6.1874-1884.2003. PubMed DOI PMC

Doktor TK, Schroeder LD, Vested A, Palmfeldt J, Andersen HS, Gregersen N, Andresen BS. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site. Hum Mutat. 2011;32:220–230. doi: 10.1002/humu.21419. PubMed DOI

Kováčová T, Souček P, Hujová P, Freiberger T, Grodecká L. Splicing enhancers at intron-exon borders participate in acceptor splice sites recognition. Int J Mol Sci. 2020;21:6553. doi: 10.3390/ijms21186553. PubMed DOI PMC

Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, YanBY DJP, Shiue L, Hoon S, Brenner S, Ares M, Yeo GW. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012;1:167–178. doi: 10.1016/j.celrep.2012.02.001. PubMed DOI PMC

Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15:2490–2508. doi: 10.1093/hmg/ddl171. PubMed DOI

Caputi M, Zahler AM. SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J. 2002;21:845–855. doi: 10.1093/emboj/21.4.845. PubMed DOI PMC

Szafranski K, Kramer M. It’s a bit over, is that ok? The subtle surplus from tandem alternative splicing. RNA Biol. 2015;12:115–122. doi: 10.1080/15476286.2015.1017210. PubMed DOI PMC

Newman AJ, Norman C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell. 1992;68:743–754. doi: 10.1016/0092-8674(92)90149-7. PubMed DOI

Kershaw CJ, David Barrass J, Beggs JD, O’Keefe RT. Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. RNA. 2009;15:1292–1304. doi: 10.1261/rna.1347409. PubMed DOI PMC

O’Keefe RT, Norman C, Newman AJ. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996;86:679–689. doi: 10.1016/S0092-8674(00)80140-3. PubMed DOI

Smith CWJ, Porro EB, Patton JG, Nadal-Ginard B. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature. 1989;342:243–247. doi: 10.1038/342243a0. PubMed DOI

Frank D, Guthrie C. An essential splicing factor, SLU7, mediates 3’ splice site choice in yeast. Genes Dev. 1992;6:2112–2124. doi: 10.1101/gad.6.11.2112. PubMed DOI

Zhang X, Schwer B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 1997;25:2146–2152. doi: 10.1093/nar/25.11.2146. PubMed DOI PMC

Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One. 2017;12:e0188159. doi: 10.1371/journal.pone.0188159. PubMed DOI PMC

Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell. 2016;164:985–998. doi: 10.1016/j.cell.2016.01.025. PubMed DOI PMC

Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res. 2019;47:899–910. doi: 10.1093/nar/gky1089. PubMed DOI PMC

Brys A, Schwer B. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3’ splice site. RNA. 1996;2:707–717. PubMed PMC

Umen JG, Guthrie C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3’ splice site selection. Genetics. 1996;143:723–739. doi: 10.1093/genetics/143.2.723. PubMed DOI PMC

Bouck J, Fu XD, Skalka AM, Katz RA. Genetic selection for balanced retroviral splicing: novel regulation involving the second step can be mediated by transitions in the polypyrimidine tract. Mol Cell Biol. 1995;15:2663–2671. doi: 10.1128/mcb.15.5.2663. PubMed DOI PMC

Schindler S, Szafranski K, Hiller M, Ali GS, Palusa SG, Backofen R, et al. Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics. 2008;9:159. doi: 10.1186/1471-2164-9-159. PubMed DOI PMC

Szafranski K, Fritsch C, Schumann F, Siebel L, Sinha R, Hampe J, et al. Physiological state co-regulates thousands of mammalian mRNA splicing events at tandem splice sites and alternative exons. Nucleic Acids Res. 2014;42:8895–8904. doi: 10.1093/nar/gku532. PubMed DOI PMC

Szafranski K, Schindler S, Taudien S, Hiller M, Huse K, Jahn N, et al. Violating the splicing rules: TG dinucleotides function as alternative 3′ splice sites in U2-dependent introns. Genome Biol. 2007;8:R154. doi: 10.1186/gb-2007-8-8-r154. PubMed DOI PMC

Tadokoro K, Yamazaki-Inoue M, Tachibana M, Fujishiro M, Nagao K, Toyoda M, et al. Frequent occurrence of protein isoforms with or without a single amino acid residue by subtle alternative splicing: the case of Gln in DRPLA affects subcellular localization of the products. J Hum Genet. 2005;50:382–394. doi: 10.1007/s10038-005-0261-9. PubMed DOI

Chisa JL, Burke DT. Mammalian mRNA splice-isoform selection is tightly controlled. Genetics. 2007;175:1079–1087. doi: 10.1534/genetics.106.066183. PubMed DOI PMC

Kramer M, Huse K, Menzel U, Backhaus O, Rosenstiel P, Schreiber S, et al. Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat. Genetics. 2011;187:761–770. doi: 10.1534/genetics.110.125096. PubMed DOI PMC

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–394. doi: 10.1089/1066527041410418. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...