Nucleotides in both donor and acceptor splice sites are responsible for choice in NAGNAG tandem splice sites
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1099/2019
ministerstvo školství, mládeže a tělovýchovy
2020001
centre for cardiovascular surgery and transplantation
PubMed
34596691
PubMed Central
PMC11072513
DOI
10.1007/s00018-021-03943-2
PII: 10.1007/s00018-021-03943-2
Knihovny.cz E-zdroje
- Klíčová slova
- AFAP1L2, Alternative splicing, NAG choice, RNA splicing, Splicing isoform,
- MeSH
- alternativní sestřih genetika MeSH
- exony genetika MeSH
- HeLa buňky MeSH
- introny genetika MeSH
- lidé MeSH
- místa sestřihu RNA genetika MeSH
- nádorové buněčné linie MeSH
- nukleotidy genetika MeSH
- tandemové repetitivní sekvence genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- místa sestřihu RNA MeSH
- nukleotidy MeSH
Among alternative splicing events in the human transcriptome, tandem NAGNAG acceptor splice sites represent an appreciable proportion. Both proximal and distal NAG can be used to produce two splicing isoforms differing by three nucleotides. In some cases, the upstream exon can be alternatively spliced as well, which further increases the number of possible transcripts. In this study, we showed that NAG choice in tandem splice site depends considerably not only on the concerned acceptor, but also on the upstream donor splice site sequence. Using an extensive set of experiments with systematically modified two-exonic minigene systems of AFAP1L2 or CSTD gene, we recognized the third and fifth intronic upstream donor splice site position and the tandem acceptor splice site region spanning from -10 to +2, including NAGNAG itself, as the main drivers. In addition, competition between different branch points and their composition were also shown to play a significant role in NAG choice. All these nucleotide effects appeared almost additive, which explained the high variability in proximal versus distal NAG usage.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Centre for Cardiovascular Surgery and Transplantation 65691 Brno Czech Republic
Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Zobrazit více v PubMed
Bradley RK, Merkin J, Lambert NJ, Burge CB. Alternative splicing of RNA triplets is often regulated and accelerates proteome evolution. PLoS Biol. 2012;10:e1001229. doi: 10.1371/journal.pbio.1001229. PubMed DOI PMC
Chang CY, Lin WD, Tu SL. Genome-wide analysis of heat-sensitive alternative splicing in Physcomitrella patens. Plant Physiol. 2014;165:826–840. doi: 10.1104/pp.113.230540. PubMed DOI PMC
Hiller M, Huse K, Szafranski K, Jahn N, Hampe J, Schreiber S, et al. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat Genet. 2004;36:1255–1257. doi: 10.1038/ng1469. PubMed DOI
Sammeth M, Foissac S, Guigó R. A general definition and nomenclature for alternative splicing events. PLoS Comput Biol. 2008;4:e1000147. doi: 10.1371/journal.pcbi.1000147. PubMed DOI PMC
Sinha R, Nikolajewa S, Szafranski K, Hiller M, Jahn N, Huse K, et al. Accurate prediction of NAGNAG alternative splicing. Nucleic Acids Res. 2009;37:3569–3579. doi: 10.1093/nar/gkp220. PubMed DOI PMC
Zavolan M, Kondo S, Schönbach C, Adachi J, Hume DA, Arakawa T, et al. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 2003;13:1290–1300. doi: 10.1101/gr.1017303. PubMed DOI PMC
Hinzpeter A, Aissat A, Sondo E, Costa C, Arous N, Gameiro C, et al. Alternative splicing at a NAGNAG acceptor site as a novel phenotype modifier. PLoS Genet. 2010;6:e1001153. doi: 10.1371/journal.pgen.1001153. PubMed DOI PMC
Akerman M, Mandel-Gutfreund Y. Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res. 2006;34:23–31. doi: 10.1093/nar/gkj408. PubMed DOI PMC
Dou Y, Fox-Walsh KL, Baldi PF, Hertel KJ. Genomic splice-site analysis reveals frequent alternative splicing close to the dominant splice site. RNA. 2006;12:2047–2056. doi: 10.1261/rna.151106. PubMed DOI PMC
Hiller M, Platzer M. Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet. 2008;24:246–255. doi: 10.1016/j.tig.2008.03.003. PubMed DOI
Yan X, Sablok G, Feng G, Ma J, Zhao H, Sun X. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data. FEBS Lett. 2015;589:1766–1770. doi: 10.1016/j.febslet.2015.05.029. PubMed DOI
Bougé AL, Murauer E, Beyne E, Miro J, Varilh J, Taulan M, et al. Targeted RNA-Seq profiling of splicing pattern in the DMD gene: exons are mostly constitutively spliced in human skeletal muscle. Sci Rep. 2017;7:45414. doi: 10.1038/srep39094. PubMed DOI PMC
Chua K, Reed R. The RNA splicing factor hSlu7 is required for correct 3’ splice-site choice. Nature. 1999;402:207–210. doi: 10.1038/46086. PubMed DOI
Královičová J, Christensen MB, Vořechovský I. Biased exon/intron distribution of cryptic and de novo 3’ splice sites. Nucleic Acids Res. 2005;33:4882–4898. doi: 10.1093/nar/gki811. PubMed DOI PMC
Tsai K-W, Chan W-C, Hsu C-N, Lin W-C. Sequence features involved in the mechanism of 3’ splice junction wobbling. BMC Mol Biol. 2010;11:34. doi: 10.1186/1471-2199-11-34. PubMed DOI PMC
Akerman M, Mandel-Gutfreund Y. Does distance matter? Variations in alternative 3′ splicing regulation. Nucleic Acids Res. 2007;35:5487–5498. doi: 10.1093/nar/gkm603. PubMed DOI PMC
Chern TM, Van Nimwegen E, Kai C, Kawai J, Carninci P, Hayashizaki Y, et al. A simple physical model predicts small exon length variations. PLoS Genet. 2006;2:e45. doi: 10.1371/journal.pgen.0020045. PubMed DOI PMC
Reed R. Mechanisms of fidelity in pre-mRNA splicing. Curr Opin Cell Biol. 2000;12:340–345. doi: 10.1016/S0955-0674(00)00097-1. PubMed DOI
Chua K, Reed R. An upstream AG determines whether a downstream AG is selected during catalytic step II of splicing. Mol Cell Biol. 2001;21:1509–1514. doi: 10.1128/MCB.21.5.1509-1514.2001. PubMed DOI PMC
Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcárcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3′ splice site recognition by SPF45. Cell. 2002;109:285–296. doi: 10.1016/S0092-8674(02)00730-4. PubMed DOI
Tsai K-W, Tarn W-Y, Lin W-C. Wobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3’ tandem splice site selection. Mol Cell Biol. 2007;27:5835–5848. doi: 10.1128/MCB.00363-07. PubMed DOI PMC
Deirdre A, Scadden J, Smith CW. Interactions between the terminal bases of mammalian introns are retained in inosine-containing pre-mRNAs. EMBO J. 1995;14:3236–3246. doi: 10.1002/j.1460-2075.1995.tb07326.x. PubMed DOI PMC
Hujová P, Grodecká L, Souček P, Freiberger T. Impact of acceptor splice site NAGTAG motif on exon recognition. Mol Biol Rep. 2019;46:2877–2884. doi: 10.1007/s11033-019-04734-6. PubMed DOI
Desmet FO-O, Hamroun D, Lalande M, Collod-BéRoud G, Claustres M, BéRoud C. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC
Hiller M, Szafranski K, Backofen R, Platzer M. Alternative splicing at NAGNAG acceptors: simply noise or noise and more? PLoS Genet. 2006;2:e207. doi: 10.1371/journal.pgen.0020207. PubMed DOI PMC
Hiller M, Szafranski K, Sinha R, Huse K, Nikolajewa S, Rosenstiel P, et al. Assessing the fraction of short-distance tandem splice sites under purifying selection. RNA. 2008;14:616–619. doi: 10.1261/rna.883908. PubMed DOI PMC
Rooke N, Markovtsov V, Cagavi E, Black DL. Roles for SR proteins and hnRNP A1 in the regulation of c-src exon N1. Mol Cell Biol. 2003;23:1874–1884. doi: 10.1128/MCB.23.6.1874-1884.2003. PubMed DOI PMC
Doktor TK, Schroeder LD, Vested A, Palmfeldt J, Andersen HS, Gregersen N, Andresen BS. SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site. Hum Mutat. 2011;32:220–230. doi: 10.1002/humu.21419. PubMed DOI
Kováčová T, Souček P, Hujová P, Freiberger T, Grodecká L. Splicing enhancers at intron-exon borders participate in acceptor splice sites recognition. Int J Mol Sci. 2020;21:6553. doi: 10.3390/ijms21186553. PubMed DOI PMC
Huelga SC, Vu AQ, Arnold JD, Liang TY, Liu PP, YanBY DJP, Shiue L, Hoon S, Brenner S, Ares M, Yeo GW. Integrative genome-wide analysis reveals cooperative regulation of alternative splicing by hnRNP proteins. Cell Rep. 2012;1:167–178. doi: 10.1016/j.celrep.2012.02.001. PubMed DOI PMC
Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15:2490–2508. doi: 10.1093/hmg/ddl171. PubMed DOI
Caputi M, Zahler AM. SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J. 2002;21:845–855. doi: 10.1093/emboj/21.4.845. PubMed DOI PMC
Szafranski K, Kramer M. It’s a bit over, is that ok? The subtle surplus from tandem alternative splicing. RNA Biol. 2015;12:115–122. doi: 10.1080/15476286.2015.1017210. PubMed DOI PMC
Newman AJ, Norman C. U5 snRNA interacts with exon sequences at 5′ and 3′ splice sites. Cell. 1992;68:743–754. doi: 10.1016/0092-8674(92)90149-7. PubMed DOI
Kershaw CJ, David Barrass J, Beggs JD, O’Keefe RT. Mutations in the U5 snRNA result in altered splicing of subsets of pre-mRNAs and reduced stability of Prp8. RNA. 2009;15:1292–1304. doi: 10.1261/rna.1347409. PubMed DOI PMC
O’Keefe RT, Norman C, Newman AJ. The invariant U5 snRNA loop 1 sequence is dispensable for the first catalytic step of pre-mRNA splicing in yeast. Cell. 1996;86:679–689. doi: 10.1016/S0092-8674(00)80140-3. PubMed DOI
Smith CWJ, Porro EB, Patton JG, Nadal-Ginard B. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature. 1989;342:243–247. doi: 10.1038/342243a0. PubMed DOI
Frank D, Guthrie C. An essential splicing factor, SLU7, mediates 3’ splice site choice in yeast. Genes Dev. 1992;6:2112–2124. doi: 10.1101/gad.6.11.2112. PubMed DOI
Zhang X, Schwer B. Functional and physical interaction between the yeast splicing factors Slu7 and Prp18. Nucleic Acids Res. 1997;25:2146–2152. doi: 10.1093/nar/25.11.2146. PubMed DOI PMC
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One. 2017;12:e0188159. doi: 10.1371/journal.pone.0188159. PubMed DOI PMC
Semlow DR, Blanco MR, Walter NG, Staley JP. Spliceosomal DEAH-box ATPases remodel pre-mRNA to activate alternative splice sites. Cell. 2016;164:985–998. doi: 10.1016/j.cell.2016.01.025. PubMed DOI PMC
Chung CS, Tseng CK, Lai YH, Wang HF, Newman AJ, Cheng SC. Dynamic protein-RNA interactions in mediating splicing catalysis. Nucleic Acids Res. 2019;47:899–910. doi: 10.1093/nar/gky1089. PubMed DOI PMC
Brys A, Schwer B. Requirement for SLU7 in yeast pre-mRNA splicing is dictated by the distance between the branchpoint and the 3’ splice site. RNA. 1996;2:707–717. PubMed PMC
Umen JG, Guthrie C. Mutagenesis of the yeast gene PRP8 reveals domains governing the specificity and fidelity of 3’ splice site selection. Genetics. 1996;143:723–739. doi: 10.1093/genetics/143.2.723. PubMed DOI PMC
Bouck J, Fu XD, Skalka AM, Katz RA. Genetic selection for balanced retroviral splicing: novel regulation involving the second step can be mediated by transitions in the polypyrimidine tract. Mol Cell Biol. 1995;15:2663–2671. doi: 10.1128/mcb.15.5.2663. PubMed DOI PMC
Schindler S, Szafranski K, Hiller M, Ali GS, Palusa SG, Backofen R, et al. Alternative splicing at NAGNAG acceptors in Arabidopsis thaliana SR and SR-related protein-coding genes. BMC Genomics. 2008;9:159. doi: 10.1186/1471-2164-9-159. PubMed DOI PMC
Szafranski K, Fritsch C, Schumann F, Siebel L, Sinha R, Hampe J, et al. Physiological state co-regulates thousands of mammalian mRNA splicing events at tandem splice sites and alternative exons. Nucleic Acids Res. 2014;42:8895–8904. doi: 10.1093/nar/gku532. PubMed DOI PMC
Szafranski K, Schindler S, Taudien S, Hiller M, Huse K, Jahn N, et al. Violating the splicing rules: TG dinucleotides function as alternative 3′ splice sites in U2-dependent introns. Genome Biol. 2007;8:R154. doi: 10.1186/gb-2007-8-8-r154. PubMed DOI PMC
Tadokoro K, Yamazaki-Inoue M, Tachibana M, Fujishiro M, Nagao K, Toyoda M, et al. Frequent occurrence of protein isoforms with or without a single amino acid residue by subtle alternative splicing: the case of Gln in DRPLA affects subcellular localization of the products. J Hum Genet. 2005;50:382–394. doi: 10.1007/s10038-005-0261-9. PubMed DOI
Chisa JL, Burke DT. Mammalian mRNA splice-isoform selection is tightly controlled. Genetics. 2007;175:1079–1087. doi: 10.1534/genetics.106.066183. PubMed DOI PMC
Kramer M, Huse K, Menzel U, Backhaus O, Rosenstiel P, Schreiber S, et al. Constant splice-isoform ratios in human lymphoblastoid cells support the concept of a splico-stat. Genetics. 2011;187:761–770. doi: 10.1534/genetics.110.125096. PubMed DOI PMC
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11:377–394. doi: 10.1089/1066527041410418. PubMed DOI