RNA splicing
Dotaz
Zobrazit nápovědu
In advanced prostate cancer (PC), in particular after acquisition of resistance to androgen receptor (AR) signaling inhibitors (ARSI), upregulation of AR splice variants compromises endocrine therapy efficiency. Androgen receptor splice variant-7 (ARV7) is clinically the most relevant and has a distinct 3' untranslated region (3'UTR) compared to the AR full-length variant, suggesting a unique post-transcriptional regulation. Here, we set out to evaluate the applicability of the ARV7 3'UTR as a therapy target. A common single nucleotide polymorphism, rs5918762, was found to affect the splicing rate and thus the expression of ARV7 in cellular models and patient specimens. Serine/arginine-rich splicing factor 9 (SRSF9) was found to bind to and increase the inclusion of the cryptic exon 3 of ARV7 during the splicing process in the alternative C allele of rs5918762. The dual specificity protein kinase CLK2 interferes with the activity of SRSF9 by regulating its expression. Inhibition of the Cdc2-like kinase (CLK) family by the small molecules cirtuvivint or lorecivivint results in the decreased expression of ARV7. Both inhibitors show potent anti-proliferative effects in enzalutamide-treated or -naive PC models. Thus, targeting aberrant alternative splicing at the 3'UTR of ARV7 by disturbing the CLK2/SRSF9 axis might be a valuable therapeutic approach in late stage, ARSI-resistant PC.
- MeSH
- 3' nepřekládaná oblast genetika MeSH
- alternativní sestřih genetika účinky léků MeSH
- androgenní receptory * metabolismus genetika MeSH
- jednonukleotidový polymorfismus genetika MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty * genetika metabolismus patologie farmakoterapie MeSH
- protein - isoformy genetika metabolismus MeSH
- protein-serin-threoninkinasy genetika metabolismus antagonisté a inhibitory MeSH
- regulace genové exprese u nádorů * účinky léků MeSH
- serin-arginin sestřihové faktory * metabolismus genetika MeSH
- sestřih RNA genetika MeSH
- tyrosinkinasy * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
- MeSH
- Alzheimerova nemoc genetika MeSH
- jednonukleotidový polymorfismus * MeSH
- kognitivní dysfunkce * genetika MeSH
- lidé MeSH
- longitudinální studie MeSH
- neuropsychologické testy MeSH
- P-glykoproteiny genetika MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: Through the agnostic screening of patients with uncharacterised disease phenotypes for an upregulation of type I interferon (IFN) signalling, we identified a cohort of individuals heterozygous for mutations in PTPN1, encoding the protein-tyrosine phosphatase 1B (PTP1B). We aimed to describe the clinical phenotype and molecular and cellular pathology of this new disease. METHODS: In this case series, we identified patients and collected clinical and neuroradiological data through collaboration with paediatric neurology and clinical genetics colleagues across Europe (Czechia, France, Germany, Italy, Slovenia, and the UK) and Israel. Variants in PTPN1 were identified by exome and directed Sanger sequencing. The expression of IFN-stimulated genes was determined by quantitative (q) PCR or NanoString technology. Experiments to assess RNA and protein expression and to investigate type 1 IFN signalling were undertaken in patient fibroblasts, hTERT-immortalised BJ-5ta fibroblasts, and RPE-1 cells using CRISPR-Cas9 editing and standard cell biology techniques. FINDINGS: Between Dec 20, 2013, and Jan 11, 2023, we identified 12 patients from 11 families who were heterozygous for mutations in PTPN1. We found ten novel or very rare variants in PTPN1 (frequency on gnomAD version 4.1.0 of <1·25 × 10:sup>-6). Six variants were predicted as STOP mutations, two involved canonical splice-site nucleotides, and two were missense substitutions. In three patients, the variant occurred de novo, whereas in nine affected individuals, the variant was inherited from an asymptomatic parent. The clinical phenotype was characterised by the subacute onset (age range 1-8 years) of loss of motor and language skills in the absence of seizures after initially normal development, leading to spastic dystonia and bulbar involvement. Neuroimaging variably demonstrated cerebral atrophy (sometimes unilateral initially) or high T2 white matter signal. Neopterin in CSF was elevated in all ten patients who were tested, and all probands demonstrated an upregulation of IFN-stimulated genes in whole blood. Although clinical stabilisation and neuroradiological improvement was seen in both treated and untreated patients, in six of eight treated patients, high-dose corticosteroids were judged clinically to result in an improvement in neurological status. Of the four asymptomatic parents tested, IFN signalling in blood was normal (three patients) or minimally elevated (one patient). Analysis of patient blood and fibroblasts showed that tested PTPN1 variants led to reduced levels of PTPN1 mRNA and PTP1B protein, and in-vitro assays demonstrated that loss of PTP1B function was associated with impaired negative regulation of type 1 IFN signalling. INTERPRETATION: PTPN1 haploinsufficiency causes a type 1 IFN-driven autoinflammatory encephalopathy. Notably, some patients demonstrated stabilisation, and even recovery, of neurological function in the absence of treatment, whereas in others, the disease appeared to be responsive to immune suppression. Prospective studies are needed to investigate the safety and efficacy of specific immune suppression approaches in this disease population. FUNDING: The UK Medical Research Council, the European Research Council, and the Agence Nationale de la Recherche.
- MeSH
- dítě MeSH
- haploinsuficience * genetika MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mutace genetika MeSH
- nemoci mozku genetika MeSH
- neurozánětlivé nemoci genetika MeSH
- předškolní dítě MeSH
- tyrosinfosfatasa nereceptorového typu 1 * genetika MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
- MeSH
- eukaryotický iniciační faktor 4A metabolismus genetika MeSH
- exony genetika MeSH
- messenger RNA genetika metabolismus MeSH
- nonsense mediated mRNA decay * MeSH
- protozoální proteiny * metabolismus genetika MeSH
- sestřih RNA MeSH
- Trypanosoma brucei brucei * metabolismus genetika MeSH
- Publikační typ
- časopisecké články MeSH
Retinitis pigmentosa (RP) is a hereditary disorder caused by mutations in more than 70 different genes including those that encode proteins important for pre-mRNA splicing. Most RP-associated mutations in splicing factors reduce either their expression, stability or incorporation into functional splicing complexes. However, we have previously shown that two RP mutations in PRPF8 (F2314L and Y2334N) and two in SNRNP200 (S1087L and R1090L) behaved differently, and it was still unclear how these mutations affect the functions of both proteins. To investigate this in the context of functional spliceosomes, we used iCLIP in HeLa and retinal pigment epithelial (RPE) cells. We found that both mutations in the RNA helicase SNRNP200 change its interaction with U4 and U6 snRNAs. The significantly broader binding profile of mutated SNRNP200 within the U4 region upstream of the U4/U6 stem I strongly suggests that its activity to unwind snRNAs is impaired. This was confirmed by FRAP measurements and helicase activity assays comparing mutant and WT protein. The RP variants of PRPF8 did not affect snRNAs, but showed a reduced binding to pre-mRNAs, which resulted in the slower splicing of introns and altered expression of hundreds of genes in RPE cells. This suggests that changes in the expression and splicing of specific genes are the main driver of retinal degeneration in PRPF8-linked RP.
- MeSH
- HeLa buňky MeSH
- lidé MeSH
- malý jaderný ribonukleoprotein U4-U6 metabolismus genetika MeSH
- mutace * MeSH
- oční proteiny genetika metabolismus MeSH
- prekurzory RNA * metabolismus genetika MeSH
- proteiny vázající RNA metabolismus genetika MeSH
- retinální pigmentový epitel metabolismus patologie MeSH
- retinopathia pigmentosa * genetika metabolismus patologie MeSH
- ribonukleoproteiny malé jaderné metabolismus genetika MeSH
- RNA malá jaderná genetika metabolismus MeSH
- sestřih RNA * genetika MeSH
- spliceozomy metabolismus genetika MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Dual reporters encoding two distinct proteins within the same mRNA have had a crucial role in identifying and characterizing unconventional mechanisms of eukaryotic translation. These mechanisms include initiation via internal ribosomal entry sites (IRESs), ribosomal frameshifting, stop codon readthrough and reinitiation. This design enables the expression of one reporter to be influenced by the specific mechanism under investigation, while the other reporter serves as an internal control. However, challenges arise when intervening test sequences are placed between these two reporters. Such sequences can inadvertently impact the expression or function of either reporter, independent of translation-related changes, potentially biasing the results. These effects may occur due to cryptic regulatory elements inducing or affecting transcription initiation, splicing, polyadenylation and antisense transcription as well as unpredictable effects of the translated test sequences on the stability and activity of the reporters. Unfortunately, these unintended effects may lead to misinterpretation of data and the publication of incorrect conclusions in the scientific literature. To address this issue and to assist the scientific community in accurately interpreting dual-reporter experiments, we have developed comprehensive guidelines. These guidelines cover experimental design, interpretation and the minimal requirements for reporting results. They are designed to aid researchers conducting these experiments as well as reviewers, editors and other investigators who seek to evaluate published data.
- MeSH
- Eukaryota genetika MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- proteosyntéza genetika MeSH
- reportérové geny * MeSH
- směrnice jako téma MeSH
- výzkumný projekt normy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The molecular basis of increased hemoglobin in Andean Aymara highlanders is unknown. We conducted an integrative analysis of whole-genome-sequencing and granulocytes transcriptomics from Aymara and Europeans in Bolivia to explore genetic basis of the Aymara high hemoglobin. Differentially expressed and spliced genes in Aymaras were associated with inflammatory and hypoxia-related pathways. We identified transcripts with 4th or 5th exon skipping of NFKB1 (AS-NFKB1), key part of NF-kB complex, and their splicing quantitative trait loci; these were increased in Aymaras. AS-NFKB1 transcripts correlated with both transcripts and protein levels of inflammatory and HIF-regulated genes, including hemoglobin. While overexpression of the AS-NFKB1 variant led to increased expression of inflammatory and HIF-targeted genes; under inflammatory stress, NF-kB protein translocation to the nucleus was attenuated, resulting in reduced expression of these genes. Our study reveals AS-NFKB1 splicing events correlating with increased hemoglobin in Aymara and their possible protective mechanisms against excessive inflammation.
- MeSH
- alternativní sestřih * genetika MeSH
- dospělí MeSH
- exony genetika MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- granulocyty metabolismus MeSH
- hemoglobiny * metabolismus genetika MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- NF-kappa B - podjednotka p50 * metabolismus genetika MeSH
- regulace genové exprese MeSH
- transkriptom MeSH
- zánět * genetika metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Bolívie MeSH
LIM and Src homology 3 (SH3) protein 2 (LASP2) is a small focal adhesion protein first identified as a splice variant of the nebulette gene (Nebl). As the newest member of the nebulin protein family, the regulation and function of LASP2 remain largely unknown. Our previous RNA-sequencing results identified Nebl as one of the most highly induced genes in the mouse liver in response to the activation of pregnane X receptor (PXR). In this study, we investigated this phenomenon further and show that PXR induces Lasp2 instead of Nebl, which partially use the same exons. Lasp2 was found to be induced in response to PXR ligand pregnenolone 16α-carbonitrile (PCN) treatment in mouse liver in vivo both after 4-day treatment and after long-term, 28-day treatment and in both male and female mice. Interestingly, the Lasp2 induction was more efficient in high-fat diet-fed mice (103-fold after 4-day PCN treatment) than in the normal chow-fed mice (32-fold after 4-day PCN treatment). Lasp2 induction was abolished in PXR knockout mice but could be rescued by re-expression of PXR, indicating that Lasp2 induction is PXR mediated. In mouse primary hepatocytes cycloheximide did not inhibit Lasp2 induction by PCN and a PXR binding site could be recognized upstream of the mouse Lasp2 gene suggesting direct regulation of Lasp2 by PXR. In human 3D hepatocytes, rifampicin induced only a modest increase in LASP2 expression. This study shows for the first time that PXR activation strongly induces Lasp2 expression in mouse liver and establishes Lasp2 as a novel PXR target gene. SIGNIFICANCE STATEMENT: RNA-sequencing results have previously identified nebulette (Nebl) to be efficiently induced by pregnane X receptor activating compounds. This study shows that instead of Nebl, LIM and Src homology 3 (SH3) protein 2 (Lasp2) coding for a small focal adhesion protein and partly sharing exons with the Nebl gene is a novel target of pregnane X receptor in mouse liver.
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- cytoskeletální proteiny * genetika metabolismus MeSH
- hepatocyty metabolismus účinky léků MeSH
- játra * metabolismus účinky léků MeSH
- lidé MeSH
- myši inbrední C57BL * MeSH
- myši knockoutované * MeSH
- myši MeSH
- pregnanový X receptor * genetika metabolismus MeSH
- pregnenolonkarbonitril farmakologie MeSH
- proteiny s doménou LIM * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Fat mass and obesity-associated (FTO) protein, a key enzyme integral to the dynamic regulation of epitranscriptomic modifications in RNAs, significantly influences crucial RNA lifecycle processes, including splicing, export, decay, and translation. The role of FTO in altering the epitranscriptome manifests across a spectrum of physiological and pathological conditions. This review aims to consolidate current understanding regarding the implications of FTO in health and disease, with a special emphasis on its involvement in obesity and non-communicable diseases associated with obesity, such as diabetes, cardiovascular disease, and cancer. It also summarizes the established molecules with FTO-inhibiting activity. Given the extensive impact of FTO on both physiology and pathophysiology, this overview provides illustrative insights into its roles, rather than an exhaustive account. A proper understanding of FTO function in human diseases could lead to new treatment approaches, potentially unlocking novel avenues for addressing both metabolic disorders and malignancies. The evolving insights into FTO's regulatory mechanisms hold great promise for future advancements in disease treatment and prevention.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Familial dysautonomia is a debilitating congenital neurodegenerative disorder with no causative therapy. It is caused by a homozygous mutation in ELP1 gene, resulting in the production of the transcript lacking exon 20. The compounds studied as potential treatments include the clinical candidate kinetin, a plant hormone from the cytokinin family. We explored the relationship between the structure of a set of kinetin derivatives (N = 72) and their ability to correct aberrant splicing of the ELP1 gene. Active compounds can be obtained by the substitution of the purine ring with chlorine and fluorine at the C2 atom, with a small alkyl group at the N7 atom, or with diverse groups at the C8 atom. On the other hand, a substitution at the N3 or N9 atoms resulted in a loss of activity. We successfully tested a hypothesis inspired by the remarkable tolerance of the position C8 to substitution, postulating that the imidazole of the purine moiety is not required for the activity. We also evaluated the activity of phytohormones from other families, but none of them corrected ELP1 mRNA aberrant splicing. A panel of in vitro ADME assays, including evaluation of transport across model barriers, stability in plasma and in the presence of liver microsomal fraction as well as plasma protein binding, was used for an initial estimation of the potential bioavailability of the active compounds. Finally, a RNA-seq data suggest that 8-aminokinetin modulates expression spliceosome components.
- MeSH
- kinetin * farmakologie chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- prekurzory RNA * genetika metabolismus MeSH
- sestřih RNA * účinky léků MeSH
- transkripční elongační faktory metabolismus genetika MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH