Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
52172240
National Natural Science Foundation of China
21935009
National Natural Science Foundation of China
52071225
National Natural Science Foundation of China
20720200075
Fundamental Research Funds for the Central Universities
GZ 1400
Sino-German Research Institute
2019B030301001
Guangdong Provincial Key Laboratory of Computational Science and Material Design
PubMed
34599775
DOI
10.1002/adma.202105228
Knihovny.cz E-zdroje
- Klíčová slova
- 2D Li crystals, Li encapsulation, amorphous carbon nanotubes, in situ TEM, lithium metal anodes, spatially confined growth,
- Publikační typ
- časopisecké články MeSH
Encapsulation of lithium in the confined spaces within individual nanocapsules is intriguing and highly desirable for developing high-performance Li metal anodes. This work aims for a mechanistic understanding of Li encapsulation and its confined growth kinetics inside 1D enclosed spaces. To achieve this, amorphous carbon nanotubes are employed as a model host using in situ transmission electron microscopy. The carbon shells have dual roles, providing geometric/mechanical constraints and electron/ion transport channels, which profoundly alter the Li growth patterns. Li growth/dissolution takes place via atom addition/removal at the free surfaces through Li+ diffusion along the shells in the electric field direction, resulting in the formation of unusual Li structures, such as poly-crystalline nanowires and free-standing 2D ultrathin (1-2 nm) Li membranes. Such confined front-growth processes are dominated by Li {110} or {200} growing faces, distinct from the root growth of single-crystal Li dendrites outside the nanotubes. Controlled experiments show that high lithiophilicity/permeability, enabled by sufficient nitrogen/oxygen doping or pre-lithiation, is critical for the stable encapsulation of lithium inside carbonaceous nanocapsules. First-principles-based calculations reveal that N/O doping can reduce the diffusion barrier for Li+ penetration, and facilitate Li filling driven by energy minimization associated with the formation of low-energy Li/C interfaces.
Zobrazit více v PubMed
D. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
Y. Y. Liu, G. M. Zhou, K. Liu, Y. Cui, Acc. Chem. Res. 2017, 50, 2895.
B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833.
C. C. Fang, J. X. Li, M. H. Zhang, Y. H. Zhang, F. Yang, J. Z. Lee, M. H. Lee, J. Alvarado, M. A. Schroeder, Y. Y. C. Yang, B. Y. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. F. Wang, Y. S. Meng, Nature 2019, 572, 511.
K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P. C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.
Y. Sun, G. Zheng, Z. W. Seh, N. Liu, S. Wang, J. Sun, H. R. Lee, Y. Cui, Chem 2016, 1, 287.
L. Liu, Y. X. Yin, J. Y. Li, N. W. Li, X. X. Zeng, H. Ye, Y.-G. Guo, L. J. Wan, Joule 2017, 1, 563.
J. Xie, J. Wang, H. R. Lee, K. Yan, Y. Li, F. Shi, W. Huang, A. Pei, G. Chen, R. Subbaraman, J. Christensen, Y. Cui, Sci. Adv. 2018, 4, eaat5168.
X. Lan, W. Ye, H. Zheng, Y. Cheng, Q. Zhang, D. L. Peng, M. S. Wang, Nano Energy 2019, 66, 104178.
W. Ye, F. Pei, X. Lan, Y. Cheng, X. Fang, Q. Zhang, N. Zheng, D. L. Peng, M. S. Wang, Adv. Energy Mater. 2020, 10, 1902956.
Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251.
Y. Shao, H. Wang, Z. Gong, D. Wang, B. Zheng, J. Zhu, Y. Lu, Y. S. Hu, X. Guo, H. Li, X. Huang, Y. Yang, C. W. Nan, L. Chen, ACS Energy Lett. 2018, 3, 1212.
C. Wang, L. Zhang, H. Xie, G. Pastel, J. Dai, Y. Gong, B. Liu, E. D. Wachsman, L. Hu, Nano Energy 2018, 50, 393.
N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, Y. Cui, Nano Lett. 2012, 12, 3315.
N. Liu, Z. D. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. T. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187.
S. Kim, S. J. Choi, K. Zhao, H. Yang, G. Gobbi, S. Zhang, J. Li, Nat. Commun. 2016, 7, 10146.
T. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F. H. Richter, W. G. Zeier, J. Janek, Joule 2019, 3, 2030.
E. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.
J. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105.
L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Froemling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y. M. Chiang, Adv. Energy Mater. 2017, 7, 1701003.
M. Kuehne, F. Boerrnert, S. Fecher, M. Ghorbani-Asl, J. Biskupek, D. Samuelis, A. V. Krasheninnikov, U. Kaiser, J. H. Smet, Nature 2018, 564, 234.
B. S. Lee, J. H. Seo, S. B. Son, S. C. Kim, I. S. Choi, J. P. Ahn, K. H. Oh, S. H. Lee, W. R. Yu, ACS Nano 2013, 7, 5801.
Q. Wang, H. Li, L. Q. Chen, X. J. Huang, D. Y. Zhong, E. G. Wang, J. Electrochem. Soc. 2003, 150, A1281.
Y. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J. G. Zhang, W. Xu, C. Wang, Nat. Nanotechnol. 2019, 14, 1042.
L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. Peng, T. Shen, S. Zhang, T. Zhu, J. Huang, Nat. Nanotechnol. 2020, 15, 94.
A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Nano Energy 2017, 32, 271.
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C. L. Wu, L. M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.
X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J. G. Zhang, J. Liu, Y. S. Meng, Nano Lett. 2017, 17, 7606.
C. Liang, X. Zhang, S. Xia, Z. Wang, J. Wu, B. Yuan, X. Luo, W. Liu, W. Liu, Y. Yu, Nat. Commun. 2020, 11, 5367.
Y. Cheng, L. Q. Zhang, Q. B. Zhang, J. Li, Y. F. Tang, C. Delmas, T. Zhu, M. Winter, M. S. Wang, J. Y. Huang, Mater. Today 2021, 42, 137.
L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, Surf. Sci. 1998, 411, 186.
R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A. Persson, S. P. Ong, Sci. Data 2016, 3, 1.
Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245
D. Lin, Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626.
X. Chen, X. R. Chen, T. Z. Hou, B. Q. Li, X. B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728.
X. Li, Q. Wang, P. Jena, J. Phys. Chem. Lett. 2017, 8, 3234.
J. Chen, Y. Cheng, Q. Zhang, C. Luo, H. Y. Li, Y. Wu, H. Zhang, X. Wang, H. Liu, X. He, J. Han, D. L. Peng, M. Liu, M. S. Wang, Adv. Funct. Mater. 2021, 31, 2007158.
W. Ye, L. Wang, Y. Yin, X. Fan, Y. Cheng, H. Gao, H. Zhang, Q. Zhang, G. Luo, M.-S. Wang, ACS Energy Lett. 2021, 6, 2145.
G. Yang, Z. Liu, S. Weng, Q. Zhang, X. Wang, Z. Wang, L. Gu, L. Chen, Energy Storage Mater. 2021, 36, 459.
X. Li, Z. Chu, H. Jiang, Y. Dai, W. Zheng, A. Liu, X. Jiang, G. He, Energy Storage Mater. 2021, 37, 233.
D. Das, S. Kim, K. R. Lee, A. K. Singh, Phys. Chem. Chem. Phys. 2013, 15, 15128.
J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang, Y. Xie, S. Li, J. Li, Y. Huang, Natl. Sci. Rev. 2020, 7, 1208.
Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Adv. Mater. 2021, 2100793.
G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.
G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.
P. E. Blochl, Phys. Rev. B 1994, 50, 17953.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.