Mechanistic Probing of Encapsulation and Confined Growth of Lithium Crystals in Carbonaceous Nanotubes

. 2021 Dec ; 33 (51) : e2105228. [epub] 20211015

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34599775

Grantová podpora
52172240 National Natural Science Foundation of China
21935009 National Natural Science Foundation of China
52071225 National Natural Science Foundation of China
20720200075 Fundamental Research Funds for the Central Universities
GZ 1400 Sino-German Research Institute
2019B030301001 Guangdong Provincial Key Laboratory of Computational Science and Material Design

Encapsulation of lithium in the confined spaces within individual nanocapsules is intriguing and highly desirable for developing high-performance Li metal anodes. This work aims for a mechanistic understanding of Li encapsulation and its confined growth kinetics inside 1D enclosed spaces. To achieve this, amorphous carbon nanotubes are employed as a model host using in situ transmission electron microscopy. The carbon shells have dual roles, providing geometric/mechanical constraints and electron/ion transport channels, which profoundly alter the Li growth patterns. Li growth/dissolution takes place via atom addition/removal at the free surfaces through Li+ diffusion along the shells in the electric field direction, resulting in the formation of unusual Li structures, such as poly-crystalline nanowires and free-standing 2D ultrathin (1-2 nm) Li membranes. Such confined front-growth processes are dominated by Li {110} or {200} growing faces, distinct from the root growth of single-crystal Li dendrites outside the nanotubes. Controlled experiments show that high lithiophilicity/permeability, enabled by sufficient nitrogen/oxygen doping or pre-lithiation, is critical for the stable encapsulation of lithium inside carbonaceous nanocapsules. First-principles-based calculations reveal that N/O doping can reduce the diffusion barrier for Li+ penetration, and facilitate Li filling driven by energy minimization associated with the formation of low-energy Li/C interfaces.

Zobrazit více v PubMed

D. C. Lin, Y. Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.

Y. Y. Liu, G. M. Zhou, K. Liu, Y. Cui, Acc. Chem. Res. 2017, 50, 2895.

B. Liu, J.-G. Zhang, W. Xu, Joule 2018, 2, 833.

C. C. Fang, J. X. Li, M. H. Zhang, Y. H. Zhang, F. Yang, J. Z. Lee, M. H. Lee, J. Alvarado, M. A. Schroeder, Y. Y. C. Yang, B. Y. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. F. Wang, Y. S. Meng, Nature 2019, 572, 511.

K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P. C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Nat. Energy 2016, 1, 16010.

Y. Sun, G. Zheng, Z. W. Seh, N. Liu, S. Wang, J. Sun, H. R. Lee, Y. Cui, Chem 2016, 1, 287.

L. Liu, Y. X. Yin, J. Y. Li, N. W. Li, X. X. Zeng, H. Ye, Y.-G. Guo, L. J. Wan, Joule 2017, 1, 563.

J. Xie, J. Wang, H. R. Lee, K. Yan, Y. Li, F. Shi, W. Huang, A. Pei, G. Chen, R. Subbaraman, J. Christensen, Y. Cui, Sci. Adv. 2018, 4, eaat5168.

X. Lan, W. Ye, H. Zheng, Y. Cheng, Q. Zhang, D. L. Peng, M. S. Wang, Nano Energy 2019, 66, 104178.

W. Ye, F. Pei, X. Lan, Y. Cheng, X. Fang, Q. Zhang, N. Zheng, D. L. Peng, M. S. Wang, Adv. Energy Mater. 2020, 10, 1902956.

Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Nature 2020, 578, 251.

Y. Shao, H. Wang, Z. Gong, D. Wang, B. Zheng, J. Zhu, Y. Lu, Y. S. Hu, X. Guo, H. Li, X. Huang, Y. Yang, C. W. Nan, L. Chen, ACS Energy Lett. 2018, 3, 1212.

C. Wang, L. Zhang, H. Xie, G. Pastel, J. Dai, Y. Gong, B. Liu, E. D. Wachsman, L. Hu, Nano Energy 2018, 50, 393.

N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, Y. Cui, Nano Lett. 2012, 12, 3315.

N. Liu, Z. D. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. T. Zhao, Y. Cui, Nat. Nanotechnol. 2014, 9, 187.

S. Kim, S. J. Choi, K. Zhao, H. Yang, G. Gobbi, S. Zhang, J. Li, Nat. Commun. 2016, 7, 10146.

T. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F. H. Richter, W. G. Zeier, J. Janek, Joule 2019, 3, 2030.

E. Kazyak, R. Garcia-Mendez, W. S. LePage, A. Sharafi, A. L. Davis, A. J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto, N. P. Dasgupta, Matter 2020, 2, 1025.

J. Kasemchainan, S. Zekoll, D. S. Jolly, Z. Ning, G. O. Hartley, J. Marrow, P. G. Bruce, Nat. Mater. 2019, 18, 1105.

L. Porz, T. Swamy, B. W. Sheldon, D. Rettenwander, T. Froemling, H. L. Thaman, S. Berendts, R. Uecker, W. C. Carter, Y. M. Chiang, Adv. Energy Mater. 2017, 7, 1701003.

M. Kuehne, F. Boerrnert, S. Fecher, M. Ghorbani-Asl, J. Biskupek, D. Samuelis, A. V. Krasheninnikov, U. Kaiser, J. H. Smet, Nature 2018, 564, 234.

B. S. Lee, J. H. Seo, S. B. Son, S. C. Kim, I. S. Choi, J. P. Ahn, K. H. Oh, S. H. Lee, W. R. Yu, ACS Nano 2013, 7, 5801.

Q. Wang, H. Li, L. Q. Chen, X. J. Huang, D. Y. Zhong, E. G. Wang, J. Electrochem. Soc. 2003, 150, A1281.

Y. He, X. Ren, Y. Xu, M. H. Engelhard, X. Li, J. Xiao, J. Liu, J. G. Zhang, W. Xu, C. Wang, Nat. Nanotechnol. 2019, 14, 1042.

L. Zhang, T. Yang, C. Du, Q. Liu, Y. Tang, J. Zhao, B. Wang, T. Chen, Y. Sun, P. Jia, H. Li, L. Geng, J. Chen, H. Ye, Z. Wang, Y. Li, H. Sun, X. Li, Q. Dai, Y. Tang, Q. Peng, T. Shen, S. Zhang, T. Zhu, J. Huang, Nat. Nanotechnol. 2020, 15, 94.

A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Nano Energy 2017, 32, 271.

Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C. L. Wu, L. M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.

X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J. G. Zhang, J. Liu, Y. S. Meng, Nano Lett. 2017, 17, 7606.

C. Liang, X. Zhang, S. Xia, Z. Wang, J. Wu, B. Yuan, X. Luo, W. Liu, W. Liu, Y. Yu, Nat. Commun. 2020, 11, 5367.

Y. Cheng, L. Q. Zhang, Q. B. Zhang, J. Li, Y. F. Tang, C. Delmas, T. Zhu, M. Winter, M. S. Wang, J. Y. Huang, Mater. Today 2021, 42, 137.

L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, Surf. Sci. 1998, 411, 186.

R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A. Persson, S. P. Ong, Sci. Data 2016, 3, 1.

Y. Liu, H. Zheng, X. H. Liu, S. Huang, T. Zhu, J. Wang, A. Kushima, N. S. Hudak, X. Huang, S. Zhang, S. X. Mao, X. Qian, J. Li, J. Y. Huang, ACS Nano 2011, 5, 7245

D. Lin, Y. Liu, Z. Liang, H. W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, Y. Cui, Nat. Nanotechnol. 2016, 11, 626.

X. Chen, X. R. Chen, T. Z. Hou, B. Q. Li, X. B. Cheng, R. Zhang, Q. Zhang, Sci. Adv. 2019, 5, eaau7728.

X. Li, Q. Wang, P. Jena, J. Phys. Chem. Lett. 2017, 8, 3234.

J. Chen, Y. Cheng, Q. Zhang, C. Luo, H. Y. Li, Y. Wu, H. Zhang, X. Wang, H. Liu, X. He, J. Han, D. L. Peng, M. Liu, M. S. Wang, Adv. Funct. Mater. 2021, 31, 2007158.

W. Ye, L. Wang, Y. Yin, X. Fan, Y. Cheng, H. Gao, H. Zhang, Q. Zhang, G. Luo, M.-S. Wang, ACS Energy Lett. 2021, 6, 2145.

G. Yang, Z. Liu, S. Weng, Q. Zhang, X. Wang, Z. Wang, L. Gu, L. Chen, Energy Storage Mater. 2021, 36, 459.

X. Li, Z. Chu, H. Jiang, Y. Dai, W. Zheng, A. Liu, X. Jiang, G. He, Energy Storage Mater. 2021, 37, 233.

D. Das, S. Kim, K. R. Lee, A. K. Singh, Phys. Chem. Chem. Phys. 2013, 15, 15128.

J. Duan, Y. Zheng, W. Luo, W. Wu, T. Wang, Y. Xie, S. Li, J. Li, Y. Huang, Natl. Sci. Rev. 2020, 7, 1208.

Z. Li, M. Peng, X. Zhou, K. Shin, S. Tunmee, X. Zhang, C. Xie, H. Saitoh, Y. Zheng, Z. Zhou, Y. Tang, Adv. Mater. 2021, 2100793.

G. Kresse, J. Furthmuller, Phys. Rev. B 1996, 54, 11169.

G. Kresse, J. Furthmuller, Comput. Mater. Sci. 1996, 6, 15.

P. E. Blochl, Phys. Rev. B 1994, 50, 17953.

J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.

G. Henkelman, B. P. Uberuaga, H. Jonsson, J. Chem. Phys. 2000, 113, 9901.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...