Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34610315
DOI
10.1016/j.celrep.2021.109797
PII: S2211-1247(21)01257-2
Knihovny.cz E-zdroje
- Klíčová slova
- Lipidomics, endocannabinoid signaling, enriched environment, multiomics, synaptic junctions,
- MeSH
- amidohydrolasy metabolismus MeSH
- AMPA receptory metabolismus MeSH
- endokanabinoidy metabolismus MeSH
- hipokampus cytologie metabolismus MeSH
- krysa rodu Rattus MeSH
- lipidy analýza MeSH
- metabolismus lipidů * genetika MeSH
- monoacylglycerollipasy metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potkani Wistar MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- signální transdukce * genetika MeSH
- synapse metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amidohydrolasy MeSH
- AMPA receptory MeSH
- endokanabinoidy MeSH
- fatty-acid amide hydrolase MeSH Prohlížeč
- lipidy MeSH
- monoacylglycerollipasy MeSH
- proteom MeSH
Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.
Leibniz Institut für Analytische Wissenschaften ISAS e 5 44227 Dortmund Germany
RG Neuroplasticity Leibniz Institute for Neurobiology 39118 Magdeburg Germany
University of Pardubice Department of Analytical Chemistry CZ 532 10 Pardubice Czech Republic
Citace poskytuje Crossref.org