Archaeal community dynamics in biogas fermentation at various temperatures assessed by mcrA amplicon sequencing using different primer pairs
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/0947/2019
Masarykova Univerzita
PubMed
34611812
DOI
10.1007/s11274-021-03152-w
PII: 10.1007/s11274-021-03152-w
Knihovny.cz E-zdroje
- Klíčová slova
- Anaerobic digestion, Biogas, Methanogenic Archaea, Next-Generation Sequencing, Temperature, mcrA primers,
- MeSH
- Archaea genetika metabolismus MeSH
- biodiverzita MeSH
- biopaliva * MeSH
- bioreaktory MeSH
- DNA archebakterií genetika MeSH
- Euryarchaeota MeSH
- fermentace * MeSH
- fylogeneze MeSH
- methan MeSH
- oxidoreduktasy genetika MeSH
- teplota * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biopaliva * MeSH
- DNA archebakterií MeSH
- methan MeSH
- methyl coenzyme M reductase MeSH Prohlížeč
- oxidoreduktasy MeSH
In this study, the taxonomic and functional diversity of methanogenic archaea in two parallel 120 l fermenters operated at different temperatures and fed with maize silage was estimated by mcrA metabarcoding analysis using two typical primer pairs (ML and MLA) amplifying part of the functional methyl coenzyme M reductase (mcrA) gene. The alpha diversity indices showed that the ML primer pair detected a higher Operational Taxonomic Unit (OTU) abundance compared to the MLA primer pair and methanogen diversity was significantly lower in the 60 °C fermenters. The beta diversity analysis showed the methanogenic community clustered together at 50 °C and 40° and was statistically different from the 60 °C community. Similar, to alpha diversity, beta diversity was also significantly different between primer pairs. At all temperatures analysed, the primer pairs showed a different abundance of the different methanogenic OTUs, e.g. more OTUs relative to Methanoculleus sp. with the ML primer pair, and more OTUs corresponding to Methanobacterium sp. with the MLA primer pair. Moreover, OTUs corresponding to Methanosphaera sp. and Methanobrevibacter sp. were found only by using ML primer pair, while the MLA primer pair detected sequences corresponding to Methanothrix sp.
Department of Biochemistry Faculty of Science Masaryk University 62500 Brno Czech Republic
Department of Experimental Biology Faculty of Science Masaryk University 62500 Brno Czech Republic
Institute of Applied Microbiology Justus Liebig University Giessen 35392 Giessen Germany
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2 PubMed DOI
Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. https://doi.org/10.1038/ismej.2011.141 PubMed DOI
Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9 PubMed DOI PMC
Borrel G, Parisot N, Harris HM et al (2014) Comparative genomics highlights the unique biology of methanomassiliicoccales, a thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine. BMC Genom 15:679. https://doi.org/10.1186/1471-2164-15-679 DOI
Brocks JJ (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036. https://doi.org/10.1126/science.285.5430.1033 PubMed DOI
Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303 PubMed DOI PMC
Chen YR, Hashimoto AG (1978) Kinetics of methane fermentation. Science and Education Administration, Clay Center. Meat Animal Research Center
Chu C-F, Li Y-Y, Xu K-Q et al (2008) A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste. Int J Hydrogen Energy 33:4739–4746. https://doi.org/10.1016/j.ijhydene.2008.06.060 DOI
Czech Standard Institute (1998) Characterization of sludge. Determination of pH value. https://www.mystandards.biz/standard/bsen-12176-1998-15.6.1998.html
Czech Standard Institute (2007) Characterization of waste - Determination of loss on ignition in waste, sludge and sediments. https://www.mystandards.biz/standard/csnen-15169-1.9.2007.html
Czech Standard Institute ČE 15934 (2013) Sludge, treated biowaste, soil and waste: calculation of dry matter fraction after determination of dry residue or water content. http://www.technicke-normy-csn.cz/838125-csn-en-15934_4_92539.html
De Vrieze J, Saunders AM, He Y et al (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323. https://doi.org/10.1016/j.watres.2015.02.025 PubMed DOI
Dianou D, Miyaki T, Asakawa S et al (2001) Methanoculleus chikugoensis sp. nov., a novel methanogenic archaeon isolated from paddy field soil in Japan, and DNA-DNA hybridization among methanoculleus species. Int J Syst Evol Microbiol 51:1663–1669. https://doi.org/10.1099/00207713-51-5-1663 PubMed DOI
Dziewit L, Pyzik A, Romaniuk K et al (2015) Novel molecular markers for the detection of methanogens and phylogenetic analyses of methanogenic communities. Front Microbiol. https://doi.org/10.3389/fmicb.2015.00694 PubMed DOI PMC
Ellis JT, Tramp C, Sims RC, Miller CD (2012) Characterization of a methanogenic community within an algal fed anaerobic digester. ISRN Microbiol 2012:1–12. https://doi.org/10.5402/2012/753892 DOI
Finn RD, Coggill P, Eberhardt RY et al (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44:D279–D285. https://doi.org/10.1093/nar/gkv1344 PubMed DOI
Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and modeling of anaerobic digestion process. In: Ahring BK, Angelidaki I, de Macario EC et al (eds) Biomethanation I. Springer, Berlin, pp 57–93 DOI
Hernon F, Forbes C, Colleran E (2006) Identification of mesophilic and thermophilic fermentative species in anaerobic granular sludge. Water Sci Technol 54:19–24. https://doi.org/10.2166/wst.2006.481 PubMed DOI
Kampmann K, Ratering S, Baumann R et al (2012a) Hydrogenotrophic methanogens dominate in biogas reactors fed with defined substrates. Syst Appl Microbiol 35:404–413. https://doi.org/10.1016/j.syapm.2012.07.002 PubMed DOI
Kampmann K, Ratering S, Kramer I et al (2012b) Unexpected stability of bacteroidetes and firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78:2106–2119. https://doi.org/10.1128/AEM.06394-11 PubMed DOI PMC
Kröber M, Bekel T, Diaz NN et al (2009) Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol 142:38–49. https://doi.org/10.1016/j.jbiotec.2009.02.010 PubMed DOI
Kushkevych I, Vítězová M, Vítěz T et al (2018) A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sciences 13:119–128. https://doi.org/10.1515/biol-2018-0017 PubMed DOI PMC
Kushkevych I, Cejnar J, Vítězová M et al (2019) Occurrence of thermophilic microorganisms in different full scale biogas plants. IJMS 21:283. https://doi.org/10.3390/ijms21010283 DOI PMC
Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste: Temperature effects on microbial communities in bioreactors. FEMS Microbiol Ecol 59:683–693. https://doi.org/10.1111/j.1574-6941.2006.00263.x PubMed DOI
Lucas R, Kuchenbuch A, Fetzer I et al (2015) Long-term monitoring reveals stable and remarkably similar microbial communities in parallel full-scale biogas reactors digesting energy crops. FEMS Microbiol Ecol. https://doi.org/10.1093/femsec/fiv004 PubMed DOI
Ludwig W (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. https://doi.org/10.1093/nar/gkh293 PubMed DOI PMC
Lueders T, Friedrich MW (2003) Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. AEM 69:320–326. https://doi.org/10.1128/AEM.69.1.320-326.2003 DOI
Luton PE, Wayne JM, Sharp RJ, Riley PW (2002) The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521–3530. https://doi.org/10.1099/00221287-148-11-3521 PubMed DOI
Maus I, Koeck DE, Cibis KG et al (2016) Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates. Biotechnol Biofuels 9:171. https://doi.org/10.1186/s13068-016-0581-3 PubMed DOI PMC
McHugh S, Carton M, Mahony T, O’Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactors. FEMS Microbiol Lett 219:297–304. https://doi.org/10.1016/S0378-1097(03)00055-7 PubMed DOI
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217 PubMed DOI PMC
Mu Y, Yu H-Q, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41:1152–1160. https://doi.org/10.1016/j.watres.2006.11.047 PubMed DOI
Munk B, Bauer C, Gronauer A, Lebuhn M (2010) Population dynamics of methanogens during acidification of biogas fermenters fed with maize silage. Eng Life Sci 10:496–508. https://doi.org/10.1002/elsc.201000056 DOI
Nettmann E, Bergmann I, Mundt K et al (2008) Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcr A analysis. J Appl Microbiol 105:1835–1850. https://doi.org/10.1111/j.1365-2672.2008.03949.x PubMed DOI
Pap B, Györkei Á, Boboescu IZ et al (2015) Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation. Biores Technol 177:375–380. https://doi.org/10.1016/j.biortech.2014.11.021 DOI
Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: primers for marine microbiome studies. Environ Microbiol 18:1403–1414. https://doi.org/10.1111/1462-2920.13023 PubMed DOI
Polz MF, Cavanaugh CM (1998) Bias in template-to-product ratios in multitemplate PCR. Appl Environ Microbiol 64:3724–3730. https://doi.org/10.1128/AEM.64.10.3724-3730.1998 PubMed DOI PMC
Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res 38:e191–e191. https://doi.org/10.1093/nar/gkq747 PubMed DOI PMC
Rognes T, Flouri T, Nichols B et al (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. https://doi.org/10.7717/peerj.2584 PubMed DOI PMC
Sánchez E, Borja R, Weiland P et al (2000) Effect of temperature and pH on the kinetics of methane production, organic nitrogen and phosphorus removal in the batch anaerobic digestion process of cattle manure. Bioprocess Eng 22:247–252. https://doi.org/10.1007/s004490050727 DOI
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. AEM 75:7537–7541. https://doi.org/10.1128/AEM.01541-09 DOI
Sekiguchi Y, Kamagata Y, Ohashi A, Harada H (2002) Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges. Water Sci Technol 45:19–25 DOI
Steinberg LM, Regan JM (2008) Phylogenetic Comparison of the Methanogenic Communities from an Acidic, Oligotrophic Fen and an Anaerobic Digester Treating Municipal Wastewater Sludge. Appl Environ Microbiol 74:6663–6671. https://doi.org/10.1128/AEM.00553-08 PubMed DOI PMC
Stolze Y, Zakrzewski M, Maus I et al (2015) Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol Biofuels 8:14. https://doi.org/10.1186/s13068-014-0193-8 PubMed DOI PMC
Sundberg C, Al-Soud WA, Larsson M et al (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85:612–626. https://doi.org/10.1111/1574-6941.12148 PubMed DOI
Verlag des Vereins Deutscher Ingenieure V 4630 (2016) Fermentation of organic materials: characterization of the substrate, sampling, collection of material data, fermentation tests. https://eshop.normservis.cz/norma/vdi-4630-1.11.2016.html
Webster G, O’Sullivan LA, Meng Y et al (2015) Archaeal community diversity and abundance changes along a natural salinity gradient in estuarine sediments. FEMS Microbiol Ecol 91:1–18. https://doi.org/10.1093/femsec/fiu025 PubMed DOI
Wilkins D, Lu X-Y, Shen Z et al (2015) Pyrosequencing of mcrA and archaeal 16S rRNA genes reveals diversity and substrate preferences of methanogen communities in anaerobic digesters. Appl Environ Microbiol 81:604–613. https://doi.org/10.1128/AEM.02566-14 PubMed DOI PMC
Wojcieszak M, Pyzik A, Poszytek K et al (2017) Adaptation of methanogenic inocula to anaerobic digestion of maize silage. Front Microbiol 8:1881. https://doi.org/10.3389/fmicb.2017.01881 PubMed DOI PMC
Yang S, Liebner S, Alawi M et al (2014) Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J Microbiol Methods 103:3–5. https://doi.org/10.1016/j.mimet.2014.05.006 PubMed DOI
Ziganshin AM, Ziganshina EE, Kleinsteuber S, Nikolausz M (2016) Comparative analysis of methanogenic communities in different laboratory-scale anaerobic digesters. Archaea 2016:1–12. https://doi.org/10.1155/2016/3401272 DOI