Evidence from the resurrected family Polyrhabdinidae Kamm, 1922 (Apicomplexa: Gregarinomorpha) supports the epimerite, an attachment organelle, as a major eugregarine innovation
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34616591
PubMed Central
PMC8450007
DOI
10.7717/peerj.11912
PII: 11912
Knihovny.cz E-zdroje
- Klíčová slova
- Environmental DNA sequences, Eugregarinida, Host-parasite relationships, Intestinal parasites, Marine gregarines, Phylogeny, SSU and LSU rDNA, Taxonomy, Ultrastructure,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Gregarines are a major group of apicomplexan parasites of invertebrates. The gregarine classification is largely incomplete because it relies primarily on light microscopy, while electron microscopy and molecular data in the group are fragmentary and often do not overlap. A key characteristic in gregarine taxonomy is the structure and function of their attachment organelles (AOs). AOs have been commonly classified as "mucrons" or "epimerites" based on their association with other cellular traits such as septation. An alternative proposal focused on the AOs structure, functional role, and developmental fate has recently restricted the terms "mucron" to archigregarines and "epimerite" to eugregarines. METHODS: Light microscopy and scanning and transmission electron microscopy, molecular phylogenetic analyses of ribosomal RNA genes. RESULTS: We obtained the first data on fine morphology of aseptate eugregarines Polyrhabdina pygospionis and Polyrhabdina cf. spionis, the type species. We demonstrate that their AOs differ from the mucron in archigregarines and represent an epimerite structurally resembling that in other eugregarines examined using electron microscopy. We then used the concatenated ribosomal operon DNA sequences (SSU, 5.8S, and LSU rDNA) of P. pygospionis to explore the phylogeny of eugregarines with a resolution superior to SSU rDNA alone. The obtained phylogenies show that the Polyrhabdina clade represents an independent, deep-branching family in the Ancoroidea clade within eugregarines. Combined, these results lend strong support to the hypothesis that the epimerite is a synapomorphic innovation of eugregarines. Based on these findings, we resurrect the family Polyrhabdinidae Kamm, 1922 and erect and diagnose the family Trollidiidae fam. n. within the superfamily Ancoroidea Simdyanov et al., 2017. Additionally, we re-describe the characteristics of P. pygospionis, emend the diagnoses of the genus Polyrhabdina, the family Polyrhabdinidae, and the superfamily Ancoroidea.
Centre Algatech Institute of Microbiology of the Czech Academy of Sciences Třeboň Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Institute of Cytology Russian Academy of Sciences St Petersburg Russian Federation
Zobrazit více v PubMed
Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, Agatha S, Berney C, Brown MW, Burki F, Cárdenas P. Revisions to the classification, nomenclature, and diversity of eukaryotes. Journal of Eukaryotic Microbiology. 2019;66(1):4–119. doi: 10.1111/jeu.12691. PubMed DOI PMC
Aleshin VV, Kedrova OS, Milyutina IA, Vladychenskaya NS, Petrov NB. Secondary structure of some elements of 18S rRNA suggests that strongylid and a part of rhabditid nematodes are monophyletic. FEBS Letters. 1998;429:4–8. doi: 10.1016/S0014-5793(98)00550-X. PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Baumgartner LK, Spear JR, Buckley DH, Pace NR, Reid RP, Dupraz C, Visscher PT. Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environmental Microbiology. 2009;11(10):2710–2719. doi: 10.1111/j.1462-2920.2009.01998.x. PubMed DOI
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Caullery M, Mesnil F. Sur un type nouveau (Metchnikovella n.g.) d’organismes parasites des grégarines. Comptes Rendus Hebdomadaires de Séances et Mémoires de la Societé de Biologie. 1897a;49:960–962.
Caullery M, Mesnil F. Sur trois sporozoaires parasites de la Capitella capitata O.Fab. Comptes Rendus Hebdomadaires de Séances et Mémoires de la Societé de Biologie. 1897b;49:1005–1008.
Caullery M, Mesnil F. Sur l’existence de grégarines dicystidées chez les annélides polychètes. Comptes Rendus Hebdomadaires de Séances et Mémoires de la Societé de Biologie. 1914a;77:516–520.
Caullery M, Mesnil F. Sur les Metchnikovellidae et autres protistes parasites des grégarines d’annélides. Comptes Rendus Hebdomadaires de Séances et Mémoires de la Societé de Biologie. 1914b;77:527–532.
Caullery M, Mesnil F. Metschnikovellidae et autres protistes parasites des Gregarines d’ Annelides. Annales de l’Institut Pasteur. 1919;33(4):209–240.
Cavalier-Smith T. Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. European Journal of Protistology. 2014;50(5):472–495. doi: 10.1016/j.ejop.2014.07.002. PubMed DOI
Cecconi J. Sur l’ Anchorina sagittata Leuck. parasite de la Capitella capitata O. Fabr. Archiv für Protistenkunde. 1905;6:230–244.
Clopton R. Order Eugregarinorida Léger, 1900. In: Lee JJ, Leedale GF, Bradbury F, editors. An illustrated guide to the protozoa: organisms traditionally referred to as protozoa, or newly discovered groups. Vol. 1. Society of Protozoologists; Lawrence: 2000. pp. 205–298.
Clopton RE. Phylogenetic relationships, evolution, and systematic revision of the septate gregarines (Apicomplexa: Eugregarinorida: Septatorina) Comparative Parasitology. 2009;76(2):167–190. doi: 10.1654/4388.1. DOI
Desportes I. Ultrastructure et développement des Grégarines du genre Stylocephalus. Annales des Sciences Naturelles. Zoologie et Biologie Animale. 1969;11:31–96.
Desportes I, Schrével J, editors. The gregarines (2 vols). The early branching apicomplexa. Brill Leiden; Boston: 2013. Treatise on zoology—anatomy, taxonomy, biology.
Diakin A, Paskerova GG, Simdyanov TG, Aleoshin VV, Valigurová A. Morphology and molecular phylogeny of coelomic gregarines (Apicomplexa) with different types of motility: Urospora ovalis and U. travisiae from the polychaete Travisia forbesii. Protist. 2016;167:279–301. doi: 10.1016/j.protis.2016.05.001. PubMed DOI
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. 2004;35:1792–1797. PubMed PMC
De Faria G, De Cunha M, Da Fonseca OR. Protozoarios parazitos de Polydora socialis. Memorias do Instituto Oswaldo Cruz. 1918;10:17–19. doi: 10.1590/S0074-02761918000100002. DOI
Fowell RR. Observations on the Sporozoa inhabiting the gut of the polychaete worm Polydora flava Claparède. Parasitology. 1936;28:414–430. doi: 10.1017/S0031182000022599. DOI
Ganapati PN. Notes on some gregarines from polychaetes of the Madras coast. Proceedings of the Indian Academy of Sciences. Section B, Biological Sciences. 1946;23(5):228–248.
Grassé PP. Vol. 1. Masson & Cie; Paris: 1953. Classe des gregarinomorphes (Gregarinomorpha n. nov.; Gregarinae Haeckel, 1866; Gregarinidea Lankester, 1885; gregarines des auteurs) pp. 550–690.
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 1999;41:95–98.
Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, Bending G, Hilton S, Bass D, Burki F. Long-read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Molecular Ecology Resources. 2019;20(2):429–443. doi: 10.1111/1755-0998.13117. PubMed DOI
Janouškovec J, Paskerova GG, Miroliubova TS, Mikhailov KV, Birley T, Aleoshin VV, Simdyanov TG. Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife. 2019;8:e49662. doi: 10.7554/eLife.49662. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Kamm WM. Studies on gregarinies II. Synopsis of the polycystid gregarines of the world, excluding those from the Myriapoda, Orthoptera, and Coleoptera. Illinois Biological Monographs. 1922;VII(1):1–103.
Karst S, Dueholm M, McIlroy S, Kirkegaard RH, Nielsen PH, Albertsen M. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nature Biotechnology. 2018;36(2):190–195. doi: 10.1038/nbt.4045. PubMed DOI
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Landan G, Graur D. Local reliability measures from sets of co-optimal multiple sequence alignments. Pacific Symposium on Biocomputing. 2008;13:15–24. PubMed
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology. 2013;62:611–615. doi: 10.1093/sysbio/syt022. PubMed DOI
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software. 2008;25:1–18.
Léger L. L’evolution des gregarines intestinales des vers marins. Comptes Rendus de l’Acadmie des Sciences. 1893;116:204–206.
Levine ND. Uniform terminology for the protozoan subphylum Apicomplexa. Journal of Protozoology. 1971;18(2):352–355. doi: 10.1111/j.1550-7408.1971.tb03330.x. DOI
Levine ND. Revision and checklist of the species (other than Lecudina) of the aseptate gregarine family Lecudinidae. Journal of Protozoology. 1977;24(1):41–52. doi: 10.1111/j.1550-7408.1977.tb05279.x. PubMed DOI
Lewis PO, Holder MT, Swofford DL. Phycas: software for Bayesian phylogenetic analysis. Systematic Biology. 2015;64:525–531. doi: 10.1093/sysbio/syu132. PubMed DOI
Mackinnon DL, Ray HN. Observations on dicystid gregarines from marine worms. Quarterly Journal of Microscopical Science. 1931;74:439–466.
Mathur V, Wakeman K, Keeling P. Parallel functional reduction in the mitochondria of apicomplexan parasites. Current Biology. 2021;31(13):2920–2928. doi: 10.1016/j.cub.2021.04.028. PubMed DOI
Mikhailov KV, Nassonova ES, Shishkin YA, Paskerova GG, Simdyanov TG, Yudina VA, Smirnov AV, Janouškovec J, Aleoshin VV. Ribosomal RNA of the metchnikovellids in gregarine transcriptomes and rDNA of the microsporidia sensu lato in environmental metagenomes. Zhurnal Obshchei Biologii. 2021;82(3):201–228. doi: 10.31857/S0044459621030040. DOI
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway computing environments workshop (GCE); New Orleans, LA. 2010. pp. 1–8.
Mingazzini P. Gregarine monocistidee, and conosiute, nuoveopoco and del Golfo di Napoli. Atti Reale Accad. Lincei. Rendiconti. 1891;7:229– 235.
Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution. 2020;37:1530–1534. doi: 10.1093/molbev/msaa015. PubMed DOI PMC
Nikolaev SI, Mylnikov AP, Berney C, Fahrni J, Pawlowski J, Aleshin VV, Petrov NB. Molecular phylogenetic analysis places Percolomonas cosmopolitus within Heterolobosea: evolutionary implications. Journal of Eukaryotic Microbiology. 2004;51:575–581. doi: 10.1111/j.1550-7408.2004.tb00294.x. PubMed DOI
Park SJ, Park BJ, Pham VH, Yoon DN, Kim SK, Rhee SK. Microeukaryotic diversity in marine environments, an analysis of surface layer sediments from the East Sea. Journal of Microbiology. 2008;46(3):244–249. doi: 10.1007/s12275-007-0237-x. PubMed DOI
Paskerova GG, Frolova EV, Kováčiková M, Panfilkina TS, Mesentsev ES, Smirnov AV, Nassonova ES. Metchnikovella dogieli sp. n. (Microsporidia: Metchnikovellida), a parasite of archigregarines Selenidium sp. from polychaetes Pygospio elegans. Protistology. 2016;10:148–157. doi: 10.21685/1680-0826-2016-10-4-4. DOI
Paskerova GG, Miroliubova TS, Diakin A, Kováčiková M, Valigurová A, Guillou L, Aleoshin VV, Simdyanov TG. Fine structure and molecular phylogenetic position of two marine gregarines, Selenidium pygospionis sp. n. and S. pherusae sp. n. with notes on the phylogeny of Archigregarinida (Apicomplexa) Protist. 2018;169:826–852. doi: 10.1016/j.protis.2018.06.004. PubMed DOI
Pawlowski J, Bolivar I, Fahrni JF, Cavalier-Smith T, Gouy M. Early origin of foraminifera suggested by SSU rRNA gene sequences. Molecular Biology and Evolution. 1996;13:445–450. doi: 10.1093/oxfordjournals.molbev.a025605. PubMed DOI
Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Research. 2010;38:W23–W28. doi: 10.1093/nar/gkq443. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; Vienna, Austria: 2021. R: a language and environment for statistical computing.
Reichenow E. Sporozoa. In: Doflein F, Reichenow R, editors. Lehrbuch der Protozoenkunde: eine Darstellung der Naturgeschichte der Protozoen mit besonderer Berücksichtigung der parasitischen und pathogenen Formen. Part II. Jena: Fünfte Auflage; 1929. pp. 863–1153.
Reichenow E. Sporozoa. In: Grimpe G, Wagler E, editors. Die Tierwelt der Nord und Ostsee. m. b. H, Lief 21 (Teil II) Leipzig: Akademische Verlagsgesellschaft; 1932. p. 188.
Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology. 2012;61(3):539–342. doi: 10.1093/sysbio/sys029. PubMed DOI PMC
Rotari YM, Paskerova GG, Sokolova YY. Diversity of metchnikovellids (Metchnikovellidae, Rudimicrosporea), hyperparasites of bristle worms (Annelida, Polychaeta) from the White Sea. Protistology. 2015;9:50–59.
Rueckert S, Glasinovich N, Diez ME, Cremonte F, Vázquez N. Morphology and molecular systematic of marine gregarines (Apicomplexa) from Southwestern Atlantic spionid polychaetes. Journal of Invertebrate Pathology. 2018;159:49–60. doi: 10.1016/j.jip.2018.10.010. PubMed DOI
Rueckert S, Leander BS. Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) –an intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae) Journal of Invertebrate Pathology. 2010;104:172–179. doi: 10.1016/j.jip.2010.03.005. PubMed DOI
Rueckert S, Simdyanov TG, Aleoshin VV, Leander BS. Identification of a divergent environmental DNA sequence clade using the phylogeny of gregarine parasites (Apicomplexa) from crustacean hosts. PLOS ONE. 2011;6:e18163. doi: 10.1371/journal.pone.0018163. PubMed DOI PMC
Rueckert S, Wakeman KC, Leander BS. Discovery of a diverse clade of gregarine Apicomplexans (Apicomplexa: Eugregarinorida) from Pacific eunicid and onuphid polychaetes, including descriptions of Paralecudina n. gen. Trichotokara japonica n. sp. and T. eunicae n. sp. Journal of Eukaryotic Microbiology. 2013;60:121–136. doi: 10.1111/jeu.12015. PubMed DOI
Santos HF, Cury JC, Carmo FL, Rosado AS, Peixoto RS. 18S rDNA sequences from microeukaryotes reveal oil indicators in mangrove sediment. PLOS ONE. 2010;5(8):e12437. doi: 10.1371/journal.pone.0012437. PubMed DOI PMC
Schrével J. 1969. Biologie, cytologie, physiologie des Grégarines parasites d’Annélides polychétes. Faculté des Sciences de Lille. Lille, Université de Lille. Thèse doctorat. CNRS AO 2570
Schrével J, Vivier E. Etude de l’ ultrastructurale et du role de la région antérieure (mucron et épimérite) De Grégarines parasites d’ Annélides Polychètes. Protistologica. 1966;2(3):17–28.
Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research. 2015;43:W7–W14. doi: 10.1093/nar/gkv318. PubMed DOI PMC
Simdyanov TG. Two new species of gregarines with the aberrant structure of epicyte from the White Sea. Parazitologiya. 1995;29:305–315.
Simdyanov TG. Protista: Handbook on zoology. pt. 2. St. Petersburg: Nauka; 2007. Class Gregarinea Dufour, 1828; pp. 20–148. (in Russian with English summary)
Simdyanov TG, Diakin AY, Aleoshin VV. Ultrastructure and 28S rDNA phylogeny of two gregarines: Cephaloidophora cf. communis and Heliospora cf. longissima with remarks on gregarine morphology and phylogenetic analysis. Acta Protozoologica. 2015;54:241–263. doi: 10.4467/16890027AP.15.020.3217. DOI
Simdyanov TG, Guillou L, Diakin AY, Mikhailov KV, Schréve J, Aleoshin VV. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida) PeerJ. 2017;5:e3354. doi: 10.7717/peerj.3354. PubMed DOI PMC
Simdyanov TG, Paskerova GG, Valigurová A, Diakin A, Kováčiková M, Schrével J, Guillou L, Dobrovolskij AA, Aleoshin VV. First ultrastructural and molecular phylogenetic evidence from the blastogregarines, an early branching lineage of plesiomorphic Apicomplexa. Protist. 2018;169(5):697–726. doi: 10.1016/j.protis.2018.04.006. PubMed DOI
Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV. Fine structure of Metchnikovella incurvata Caullery and Mesnil 1914 (microsporidia), a hyperparasite of gregarines Polyrhabdina sp. from the polychaete Pygospio elegans. Parasitology. 2013;140:855–867. doi: 10.1017/S0031182013000036. PubMed DOI
Sokolova YY, Paskerova GG, Rotari YM, Nassonova ES, Smirnov AV. Description of Metchnikovella spiralis sp. n. (Microsporidia: Metchnikovellidae), with notes on the ultrastructure of metchnikovellids. Parasitology. 2014;141:1108–1122. doi: 10.1017/S0031182014000420. PubMed DOI
Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein S. Protistan diversity in the Arctic: a case of paleoclimate shaping modern biodiversity? PLOS ONE. 2007;2:e728. doi: 10.1371/journal.pone.0000728. PubMed DOI PMC
Stoeck T, Taylor GT, Epstein SS. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea) Applied and Environmental Microbiology. 2003;69:5656–5663. doi: 10.1128/AEM.69.9.5656-5663.2003. PubMed DOI PMC
Tabei Y, Kiryu H, Kin T, Asai K. A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics. 2008;9(33):1–17. doi: 10.1186/1471-2105-9-33. PubMed DOI PMC
Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles. 2007;11:563–576. doi: 10.1007/s00792-007-0068-z. PubMed DOI
Von Kölliker A. Die Lehre von der thierischen Zelle und den einfacheren thierischen Formelementen, nach den neuesten Fortschritten dargestellt. Zeitschrift Für Wissenschaftliche Botanik. 1845;1(2):46–102.
Von Kölliker A. Beiträge zur Kenntniss niederer Thiere. Zeitschrift für Wissenschaftliche Zoologie. 1848;1:1–37.
Wakeman KC. Molecular phylogeny of marine gregarines (Apicomplexa) from the Sea of Japan and the Northwest Pacific including the description of three novel species of Selenidium and Trollidium akkeshiense n. gen. n. sp. Protist. 2020;171:125710. doi: 10.1016/j.protis.2019.125710. PubMed DOI
Wakeman KC, Leander BS. Identity of environmental DNA sequences using descriptions of four novel marine gregarine parasites, Polyplicarium n. gen. (Apicomplexa), from capitellid polychaetes. Marine Biodiversity. 2013;43(2):133–147. doi: 10.1007/s12526-012-0140-5. DOI
Wakeman KC, Yabuki A, Fujikura K, Tomikawa K, Horiguchi T. Molecular phylogeny and surface morphology of Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp. (Gregarinasina, Apicomplexa) isolated from a deep sea Oradarea sp. (Amphipoda) in the West Pacific. Journal of Eukaryotic Microbiology. 2017;65(3):372–381. doi: 10.1111/jeu.12480. PubMed DOI
Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer International Publishing; 2016. DOI
Wray CG, Langer MR, De Salle R, Lee JJ, Lipps JH. Origin of the foraminifera. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(7):141–145. doi: 10.1073/pnas.92.1.141. PubMed DOI PMC
Wuyts J, Van de Peer Y, De Wachter R. Distribution of substitution rates and location of insertion sites in the tertiary structure of ribosomal RNA. Nucleic Acids Research. 2001;29:5017–5028. doi: 10.1093/nar/29.24.5017. PubMed DOI PMC
Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research. 2003;31(13):3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC