Peptidomics and Capillary Electrophoresis

. 2021 ; 1336 () : 87-104.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34628628

Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.

Zobrazit více v PubMed

Saz JM, Marina ML (2008) Application of micro- and nano-HPLC to the determination and characterization of bioactive and biomarker peptides. J Sep Sci 31:446–458 PubMed DOI PMC

Khalaf R, Baur D, Pfister D (2015) Optimization of reversed-phase chromatography methods for peptide analytics. J Chromatogr A 1425:198–203 PubMed DOI PMC

Le Maux S, Nongonierma AB, FitzGerald RJ (2015) Improved short peptide identification using HILIC-MS/MS: retention time prediction model based on the impact of amino acid position in the peptide sequence. Food Chem 173:847–854 PubMed DOI PMC

Kašička V (2018) Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 39:209–234 PubMed DOI PMC

Mikšík I (2019) Coupling of CE-MS for protein and peptide analysis. J Sep Sci 42:385–397 PubMed DOI PMC

Ramstrom M, Bergquist J (2004) Miniaturized proteomics and peptidomics using capillary liquid separation and high mass spectrometry. FEBS Lett 567:92–95 PubMed DOI PMC

Holtta M, Zetterberg H, Mirgorodskaya E, Mattsson N, Blennow K, Gobom J (2012) Peptidome analysis of cerebrospinal fluid by LC-MALDI MS. PLoS One 7:Art. no. e42555 DOI

Štěpánová S, Kašička V (2016) Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 39:198–211 PubMed DOI PMC

Štěpánová S, Kašička V (2019) Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 42:398–414 PubMed DOI PMC

Jurgens M, Schrader M (2002) Peptidomic approaches in proteomic research. Curr Opin Mol Ther 4:236–241 PubMed PMC

Baggerman G, Verleyen P, Clynen E, Huybrechts J, De Loof A, Schoofs L (2004) Peptidomics. J Chromatogr B 803:3–16 DOI

Ivanov VT, Yatskin ON (2005) Peptidomics: a logical sequel to proteomics. Expert Rev Proteomics 2:463–473 PubMed DOI PMC

Schulz-Knappe P, Schrader M, Zucht HD (2005) The peptidomics concept. Comb Chem High Throughput Screen 8:697–704 PubMed DOI PMC

Soloviev M, Shaw C, Andrén P (2008) Peptidomics: methods and applications. John Wiley and Sons, Inc., Hoboken

Schrader M, Schulz-Knappe P, Fricker LD (2014) Historical perspective of peptidomics. EuPA Open Proteom 3:171–182 DOI

Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan JN, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038 PubMed DOI PMC

Mahboob S, Mohamedali A, Ahn SB, Schulz-Knappe P, Nice E, Baker MS (2015) Is isolation of comprehensive human plasma peptidomes an achievable quest? J Proteome 127:300–309 DOI

Schrader M (2018) Origins, technological development, and applications of peptidomics. Methods Mol Biol 1719:3–39 PubMed DOI PMC

Romanova EV, Sweedler JV (2015) Peptidomics for the discovery and characterization of neuropeptides and hormones. Trends Pharmacol Sci 36:579–586 PubMed DOI PMC

Agyei D, Tsopmo A, Udenigwe CC (2018) Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Anal Bioanal Chem 410:3463–3472 PubMed DOI PMC

Schrader M, Selle H (2006) The process chain for peptidomic biomarker discovery. Dis Markers 22:27–37 PubMed DOI PMC

Bauca JM, Martinez-Morillo E, Diamandis EP (2014) Peptidomics of urine and other biofluids for cancer diagnostics. Clin Chem 60:1052–1061 PubMed DOI PMC

Di Meo A, Pasic MD, Yousef GM (2016) Proteomics and peptidomics: moving toward precision medicine in urological malignancies. Oncotarget 7:52460–52474 PubMed DOI PMC

Picariello G, Mamone G, Nitride C, Addeo F, Ferranti P (2013) Protein digestomics: integrated platforms to study food-protein digestion and derived functional and active peptides. Trends Anal Chem 52:120–134 DOI

Toldra F, Reig M, Aristoy MC, Mora L (2018) Generation of bioactive peptides during food processing. Food Chem 267:395–404 PubMed DOI PMC

Crameri R (2005) The potential of proteomics and peptidomics for allergy and asthma research. Allergy 60:1227–1237 PubMed DOI PMC

Krochmal M, Schanstra JP, Mischak H (2018) Urinary peptidomics in kidney disease and drug research. Expert Opin Drug Discovery 13:259–268 DOI

Clynen E, Baggerman G, Husson SJ, Landuyt B, Schoofs L (2008) Peptidomics in drug research. Expert Opin Drug Discovery 3:425–440 DOI

Tsiatsiani L, Heck AJR (2015) Proteomics beyond trypsin. FEBS J 282:2612–2626 PubMed DOI PMC

Giansanti P, Tsiatsiani L, Low TY, Heck AJR (2016) Six alternative proteases for mass spectrometry-based proteomics beyond trypsin. Nat Protoc 11:993–1006 PubMed DOI PMC

Tinoco AD, Saghatelian A (2011) Investigating endogenous peptides and peptidases using peptidomics. Biochemistry 50:7447–7461 PubMed DOI PMC

Sun LL, Zhu GJ, Yan XJ, Zhang ZB, Wojcik R, Champion MM, Dovichi NJ (2016) Capillary zone electrophoresis for bottom-up analysis of complex proteomes. Proteomics 16:188–196 PubMed DOI PMC

Vitorino R (2018) Digging deep into peptidomics applied to body fluids. Proteomics 18:Art. No. 1700401. https://doi.org/10.1002/pmic.201700401 DOI

Dams M, Dores-Sousa JL, Lamers RJ, Treumann A, Eeltink S (2019) High-resolution nano-liquid chromatography with tandem mass spectrometric detection for the bottom-up analysis of complex proteomic samples. Chromatographia 82:101–110 DOI

Gan JN, Robinson RC, Wang JQ, Krishnakumar N, Manning CJ, Lor Y, Breck M, Barile D, German JB (2019) Peptidomic profiling of human milk with LC-MS/MS reveals pH-specific proteolysis of milk proteins. Food Chem 274:766–774 PubMed DOI PMC

Chen DY, Shen XJ, Sun LL (2017) Capillary zone electrophoresis-mass spectrometry with microliter-scale loading capacity, 140 min separation window and high peak capacity for bottom-up proteomics. Analyst 142:2118–2127 PubMed DOI PMC

Lubeckyj RA, McCool EN, Shen XJ, Kou Q, Liu XW, Sun LL (2017) Single-shot top-down proteomics with capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry for identification of nearly 600 Escherichia coli proteoforms. Anal Chem 89:12059–12067 PubMed DOI PMC

Mullen W, Albalat A, Gonzalez J, Zerefos P, Siwy J, Franke J, Mischak H (2012) Performance of different separation methods interfaced in the same MS-reflection TOF detector: a comparison of performance between CE versus HPLC for biomarker analysis. Electrophoresis 33:567–574 PubMed DOI PMC

Li YH, Champion MM, Sun LL, Champion PAD, Wojcik R, Dovichi NJ (2012) Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Anal Chem 84:1617–1622 PubMed DOI PMC

Sarg B, Faserl K, Kremser L, Halfinger B, Sebastiano R, Lindner HH (2013) Comparing and combining capillary electrophoresis electrospray ionization mass spectrometry and nano-liquid chromatography electrospray ionization mass spectrometry for the characterization of post-translationally modified histones. Mol Cell Proteomics 12:2640–2656 PubMed DOI PMC

Klein J, Papadopoulos T, Mischak H, Mullen W (2014) Comparison of CE-MS/MS and LC-MS/MS sequencing demonstrates significant complementarity in natural peptide identification in human urine. Electrophoresis 35:1060–1064 PubMed DOI

Chen DY, Shen XJ, Sun LL (2018) Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics. Anal Chim Acta 1012:1–9 PubMed DOI PMC

Boonen K, Creemers JW, Schoofs L (2009) Bioactive peptides, networks and systems biology. BioEssays 31:300–314 PubMed DOI PMC

Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr B 849:1–31 DOI

Finoulst I, Pinkse M, Van Dongen W, Verhaert P (2011) Sample preparation techniques for the untargeted LC-MS-based discovery of peptides in complex biological matrices. J Biomed Biotechnol:Article No. 245291. https://doi.org/10.1155/2011/245291

Niu ZL, Zhang WW, Yu CW, Zhang J, Wen YY (2018) Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. Trends Anal Chem 102:123–146 DOI

Xue YJ, Gao H, Ji QC, Lam Z, Fang XP, Lin ZP, Hoffman M, Schulz-Jander D, Weng ND (2012) Bioanalysis of drug in tissue: current status and challenges. Bioanalysis 4:2637–2653 PubMed DOI PMC

Smith KM, Xu Y (2012) Tissue sample preparation in bioanalytical assays. Bioanalysis 4:741–749 PubMed DOI PMC

Aristoteli LP, Molloy MP, Baker MS (2007) Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery. J Proteome Res 6:571–581 PubMed DOI PMC

Vitorino R, Barros AS, Caseiro A, Ferreira R, Amado F (2012) Evaluation of different extraction procedures for salivary peptide analysis. Talanta 94:209–215 PubMed DOI

Maes E, Oeyen E, Boonen K, Schildermans K, Mertens I, Pauwels P, Valkenborg D, Baggerman G (2018) The challenges of peptidomics in complementing proteomics in a clinical context. Mass Spectrom Rev. https://doi.org/10.1002/mas.21581

Li Y, Zhang XM, Deng CH (2013) Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chem Soc Rev 42:8517–8539 PubMed DOI

Kamphorst JJ, Tjaden UR, van der Heijden R, DeGroot J, Van der Greef J, Hankemeier T (2009) Feasibility of electrodialysis as a fast and selective sample preparation method for the profiling of low-abundant peptides in biofluids. Electrophoresis 30:2284–2292 PubMed DOI

Lindenburg PW, Ramautar R, Hankemeier T (2013) The potential of electrophoretic sample pretreatment techniques and new instrumentation for bioanalysis, with a focus on peptidomics and metabolomics. Bioanalysis 5:2785–2801 PubMed DOI

Anderson NL, Anderson NG (2002) The human plasma proteome – history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867 PubMed DOI

Theodorescu D, Fliser D, Wittke S, Mischak H, Krebs R, Walden M, Ross M, Eltze E, Bettendorf O, Wulfing C, Semjonow A (2005) Pilot study of capillary electrophoresis coupled to mass spectrometry as a tool to define potential prostate cancer biomarkers in urine. Electrophoresis 26:2797–2808 PubMed DOI

Mischak H, Vlahou A, Ioannidis JPA (2013) Technical aspects and inter-laboratory variability in native peptide profiling: the CE-MS experience. Clin Biochem 46:432–443 PubMed DOI

Magalhaes P, Pontillo C, Pejchinovski M, Siwy J, Krochmal M, Makridakis M, Carrick E, Klein J, Mullen W, Jankowski J, Vlahou A, Mischak H, Schanstra JP, Zurbig P, Pape L (2018) Comparison of urine and plasma peptidome indicates selectivity in renal peptide handling. Proteomics Clin Appl 12:Article Number: 1700163. https://doi.org/10.1002/prca.201700163 DOI

Jahn H, Wittke S, Zurbig P, Raedler TJ, Arlt S, Kellmann M, Mullen W, Eichenlaub M, Mischak H, Wiedemann K (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One 6:Art. No.: e26540. https://doi.org/10.1371/journal.pone.0026540 DOI

Herrero M, Ibanez E, Cifuentes A (2008) Capillary electrophoresis-electrospray-mass spectrometry in peptide analysis and peptidomics. Electrophoresis 29:2148–2160 PubMed DOI

Simo C, Cifuentes A, Kašička V (2013) Capillary electrophoresis-mass spectrometry for peptide analysis: target-based approaches and proteomics/peptidomics strategies. In: Volpi N, Maccari F (eds) Capillary electrophoresis of biomolecules. Methods and protocols. Humana Press (Springer), New York, pp 139–151 DOI

Robledo VR, Smyth WF (2014) Review of the CE-MS platform as a powerful alternative to conventional couplings in bio-omics and target-based applications. Electrophoresis 35:2292–2308 PubMed DOI

Wang JH, Jiang XY, Sturm RM, Li LJ (2009) Combining tissue extraction and off-line capillary electrophoresis matrix-assisted laser desorption/ionization Fourier transform mass spectrometry for neuropeptide analysis in individual neuronal organs using 2,5-dihydroxybenzoic acid as a multi-functional agent. J Chromatogr A 1216:8283–8288 PubMed DOI PMC

Wang JH, Zhang YZ, Xiang F, Zhang ZC, Li LJ (2010) Combining capillary electrophoresis matrix-assisted laser desorption/ionization mass spectrometry and stable isotopic labeling techniques for comparative crustacean peptidomics. J Chromatogr A 1217:4463–4470 PubMed DOI PMC

Rejtar T, Hu P, Juhasz P, Campbell JM, Vestal ML, Preisler J, Karger BL (2002) Off-line coupling of high-resolution capillary electrophoresis to MALDI-TOF and TOF/TOF MS. J Proteome Res 1:171–179 PubMed DOI

Mischak H, Kaiser T, Walden M, Hillmann M, Wittke S, Herrmann A, Knueppel S, Haller H, Fliser D (2004) Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci 107:485–495 DOI

Wittke S, Mischak H, Walden M, Kolch W, Radler T, Wiedemann K (2005) Discovery of biomarkers in human urine and cerebrospinal fluid by capillary electrophoresis coupled to mass spectrometry: towards new diagnostic and therapeutic approaches. Electrophoresis 26:1476–1487 PubMed DOI

Zurbig P, Renfrow MB, Schiffer E, Novak J, Walden M, Wittke S, Just I, Pelzing M, Neusüss C, Theodorescu D, Root KE, Ross MM, Mischak H (2006) Biomarker discovery by CE-MS enables sequence analysis via MS/MS with platform-independent separation. Electrophoresis 27:2111–2125 PubMed DOI

Voeten RLC, Ventouri IK, Haselberg R, Somsen GW (2018) Capillary electrophoresis: trends and recent advances. Anal Chem 90:1464–1481 PubMed DOI PMC

Hajba L, Guttman A (2017) Recent advances in column coatings for capillary electrophoresis of proteins. Trends Anal Chem 90:38–44 DOI

Huhn C, Ramautar R, Wuhrer M, Somsen GW (2010) Relevance and use of capillary coatings in capillary electrophoresis-mass spectrometry. Anal Bioanal Chem 396:297–314 PubMed DOI

Faserl K, Sarg B, Gruber P, Lindner HH (2018) Investigating capillary electrophoresis-mass spectrometry for the analysis of common post-translational modifications. Electrophoresis 39:1208–1215 PubMed DOI PMC

Kitagawa F, Otsuka K (2014) Recent applications of on-line sample preconcentration techniques in capillary electrophoresis. J Chromatogr A 1335:43–60 PubMed DOI PMC

Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wüthrich A, Dawod M, Quirino JP (2019) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 40:17–39 PubMed DOI

Šlampová A, Malá Z, Gebauer P (2019) Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 40:40–54 PubMed DOI

Guo XJ, Fillmore TL, Gao YQ, Tang KQ (2016) Capillary electrophoresis-nanoelectrospray ionization-selected reaction monitoring mass spectrometry via a true sheathless metal-coated emitter interface for robust and high-sensitivity sample quantification. Anal Chem 88:4418–4425 PubMed DOI PMC

Malá Z, Gebauer P (2019) Recent progress in analytical capillary isotachophoresis. Electrophoresis 40:55–64 PubMed DOI

Zhu GJ, Sun LL, Dovichi NJ (2016) Dynamic pH junction preconcentration in capillary electrophoresis-electrospray ionization-mass spectrometry for proteomics analysis. Analyst 141:5216–5220 PubMed DOI PMC

Ramautar R, Somsen GW, de Jong GJ (2016) Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015. Electrophoresis 37:35–44 PubMed DOI

Kohler I, Schappler J, Rudaz S (2013) Microextraction techniques combined with capillary electrophoresis in bioanalysis. Anal Bioanal Chem 405:125–141 PubMed DOI PMC

Lindenburg PW, Haselberg R, Rozing G, Ramautar R (2015) Developments in interfacing designs for CE-MS: towards enabling tools for proteomics and metabolomics. Chromatographia 78:367–377 DOI

Týčová A, Ledvina V, Klepárník K (2017) Recent advances in CE-MS coupling: instrumentation, methodology, and applications. Electrophoresis 38:115–134 PubMed DOI PMC

Stolz A, Jooss K, Hocker O, Romer J, Schlecht J, Neusüss C (2019) Recent advances in capillary electrophoresis-mass spectrometry: instrumentation, methodology and applications. Electrophoresis 40:79–112 PubMed DOI PMC

Hocker O, Montealegre C, Neusüss C (2018) Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem 410:5265–5275 PubMed DOI PMC

Shen YF, Tolic N, Xie F, Zhao R, Purvine SO, Schepmoes AA, Ronald JM, Anderson GA, Smith RD (2011) Effectiveness of CID, HCD, and ETD with FT MS/MS for degradomic-peptidomic analysis: comparison of peptide identification methods. J Proteome Res 10:3929–3943 PubMed DOI PMC

Azkargorta M, Soria J, Ojeda C, Guzman F, Acera A, Iloro I, Suarez T, Elortza F (2015) Human basal tear peptidome characterization by CID, HCD, and ETD followed by in silico and in vitro analyses for antimicrobial peptide identification. J Proteome Res 14:2649–2658 PubMed DOI PMC

Mischak H, Coon JJ, Novak J, Weissinger EM, Schanstra JP, Dominiczak AF (2009) Capillary electrophoresis-mass spectrometry as a powerful tool in biomarker discovery and clinical diagnosis: an update of recent developments. Mass Spectrom Rev 28:703–724 PubMed DOI PMC

Menschaert G, Van de Kerckhove TTM, Baggerman G, Schoofs L, Luyten W, Van Criekinge W (2010) Peptidomics coming of age: a review of contributions from a bioinformatics angle. J Proteome Res 9:2051–2061 PubMed DOI PMC

Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567 PubMed DOI PMC

Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J Am Soc Mass Spectrom 5:976–989 PubMed DOI

Craig R, Beavis RC (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20:1466–1467 PubMed DOI PMC

Geer LY, Markey SP, Kowalak JA, Wagner L, Xu M, Maynard DM, Yang XY, Shi WY, Bryant SH (2004) Open mass spectrometry search algorithm. J Proteome Res 3:958–964 PubMed DOI PMC

Jimenez CR, Huang L, Qiu Y, Burlingame AL (1998) Searching sequence databases over the internet: protein identification using MS-fit. Curr Protoc Protein Sci 14:unit 16.5

Han X, He L, Xin L, Shan BZ, Ma B (2011) PeaksPTM: mass spectrometry-based identification of peptides with unspecified modifications. J Proteome Res 10:2930–2936 PubMed DOI PMC

Falth M, Skold K, Norrman M, Svensson M, Fenyo D, Andren PE (2006) SwePep, a database designed for endogenous peptides and mass spectrometry. Mol Cell Proteomics 5:998–1005 PubMed DOI PMC

Zamyatnin AA, Borchikov AS, Vladimirov MG, Voronina OL (2006) The EROP-Moscow oligopeptide database. Nucleic Acids Res 34:D261–D266 PubMed DOI PMC

Liu F, Baggerman G, Schoofs L, Wets G (2008) The construction of a bioactive peptide database in Metazoa. J Proteome Res 7:4119–4131 PubMed DOI PMC

Minamino N (2001) Peptidome: the fact-database for endogenous peptides. Tanpakushitsu Kakusan Koso 46:1510–1517 PubMed PMC

Falth M, Svensson M, Nilsson A, Skold K, Fenyo D, Andren PE (2008) Validation of endogenous peptide identifications using a database of tandem mass spectra. J Proteome Res 7:3049–3053 PubMed DOI PMC

Boonen K, Landuyt B, Baggerman G, Husson SJ, Huybrechts J, Schoofs L (2008) Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis. J Sep Sci 31:427–445 PubMed DOI PMC

Ma B, Lajoie G (2009) De novo interpretation of tandem mass spectra. Curr Protoc Bioinformatics 25:Chapter 13, Unit 10. https://doi.org/10.1002/0471250953.bi1310s25 DOI

Frank A, Pevzner P (2005) PepNovo: De novo peptide sequencing via probabilistic network modeling. Anal Chem 77:964–973 PubMed DOI PMC

Frank AM, Savitski MM, Nielsen ML, Zubarev RA, Pevzner PA (2007) De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 6:114–123 PubMed DOI PMC

Frank AM (2009) A ranking-based scoring function for peptide-spectrum matches. J Proteome Res 8:2241–2252 PubMed DOI PMC

Frank AM (2009) Predicting intensity ranks of peptide fragment ions. J Proteome Res 8:2226–2240 PubMed DOI PMC

Dancik V, Addona TA, Clauser KR, Vath JE, Pevzner PA (1999) De novo peptide sequencing via tandem mass spectrometry. J Comput Biol 6:327–342 PubMed DOI PMC

Tabb DL, Ma ZQ, Martin DB, Ham AJL, Chambers MC (2008) DirecTag: accurate sequence tags from peptide MS/MS through statistical scoring. J Proteome Res 7:3838–3846 PubMed DOI PMC

Jimenez CR, Huang L, Qiu Y, Burlingame AL (1998) Searching sequence databases over the internet: protein identification using MS-tag. Curr Protoc Protein Sci 14:Chapter 16, unit 16.6. https://doi.org/10.1002/0471140864.ps1606s14 DOI

Shen YF, Tolic N, Hixson KK, Purvine SO, Pasa-Tolic L, Qian WJ, Adkins JN, Moore RJ, Smith RD (2008) Proteome-wide identification of proteins and their modifications with decreased ambiguities and improved false discovery rates using unique sequence tags. Anal Chem 80:1871–1882 PubMed DOI PMC

Simo C, Gonzalez R, Barbas C, Cifuentes A (2005) Combining peptide modeling and capillary electrophoresis mass spectrometry for characterization of enzymes cleavage patterns: recombinant versus natural bovine pepsin A. Anal Chem 77:7709–7716 PubMed DOI PMC

Catala-Clariana S, Benavente F, Gimenez E, Barbosa J, Sanz-Nebot V (2013) Identification of bioactive peptides in hypoallergenic infant milk formulas by CE-TOF-MS assisted by semiempirical model of electromigration behavior. Electrophoresis 34:1886–1894 PubMed DOI PMC

Barroso A, Gimenez E, Benavente F, Barbosa J, Sanz-Nebot V (2015) Modelling the electrophoretic migration behaviour of peptides and glycopeptides from glycoprotein digests in capillary electrophoresis-mass spectrometry. Anal Chim Acta 854:169–177 PubMed DOI PMC

Metzger J, Luppa PB, Good DM, Mischak H (2009) Adapting mass spectrometry-based platforms for clinical proteomics applications: the capillary electrophoresis coupled mass spectrometry paradigm. Crit Rev Clin Lab Sci 46:129–152 PubMed DOI PMC

Romanova EV, Dowd SE, Sweedler JV (2013) Quantitation of endogenous peptides using mass spectrometry based methods. Curr Opin Chem Biol 17:801–808 PubMed DOI PMC

Fricker LD, Lim JY, Pan H, Che FY (2006) Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. Mass Spectrom Rev 25:327–344 PubMed DOI

Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553 PubMed DOI

Fricker L (2018) Quantitative peptidomics: general considerations. Methods Mol Biol 1719:121–140 PubMed DOI PMC

Liu HB, Sadygov RG, Yates JR (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76:4193–4201 PubMed DOI PMC

Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, Delles C, Mischak H, Metzger J (2009) Quantitative urinary proteome analysis for biomarker evaluation in chronic kidney disease. J Proteome Res 8:268–281 PubMed DOI PMC

Rodriguez-Ortiz ME, Pontillo C, Rodriguez M, Zurbig P, Mischak H, Ortiz A (2018) Novel urinary biomarkers for improved prediction of progressive eGFR loss in early chronic kidney disease stages and in high risk individuals without chronic kidney disease. Sci Rep 8:Article number 15940. https://doi.org/10.1038/s41598-018-34386-8 DOI

Pejchinovski M, Siwy J, Metzger J, Dakna M, Mischak H, Klein J, Jankowski V, Bae KT, Chapman AB, Kistler AD (2017) Urine peptidome analysis predicts risk of end-stage renal disease and reveals proteolytic pathways involved in autosomal dominant polycystic kidney disease progression. Nephrol Dial Transplant 32:487–497 PubMed PMC

Simionato AVC, Carrilho E, Tavares MFM (2010) CE-MS and related techniques as a valuable tool in tumor biomarkers research. Electrophoresis 31:1214–1226 PubMed DOI PMC

Latosinska A, Frantzi M, Vlahou A, Mischak H (2013) Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery: focus on bladder cancer. Proteomics Clin Appl 7:779–793 PubMed DOI PMC

Frantzi M, van Kessel KE, Zwarthoff EC, Marquez M, Rava M, Malats N, Merseburger AS, Katafigiotis I, Stravodimos K, Mullen W, Zoidakis J, Makridakis M, Pejchinovski M, Critselis E, Lichtinghagen R, Brand K, Dakna M, Roubelakis MG, Theodorescu D, Vlahou A, Mischak H, Anagnou NP (2016) Development and validation of urine-based peptide biomarker panels for detecting bladder cancer in a multi-center study. Clin Cancer Res 22:4077–4086 PubMed DOI PMC

Belczacka I, Latosinska A, Siwy J, Metzger J, Merseburger AS, Mischak H, Vlahou A, Frantzi M, Jankowski V (2018) Urinary CE-MS peptide marker pattern for detection of solid tumors. Sci Rep 8:Article Number: 5227. https://doi.org/10.1038/s41598-018-23585-y DOI

Gao Y, Lin L, Huang ZZ, Chen YJ, Hang W (2011) Peptidome workflow of serum and urine samples for biomarker discovery. Anal Methods 3:773–779 DOI

Kolch W, Neusüss C, Pelzing M, Mischak H (2005) Capillary electrophoresis - mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev 24:959–977 PubMed DOI PMC

Albalat A, Mischak H, Mullen W (2011) Clinical application of urinary proteomics/peptidomics. Expert Rev Proteomics 8:615–629 PubMed DOI PMC

Mischak H, Julian BA, Novak J (2007) High-resolution proteome/peptidome analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin Appl 1:792–804 PubMed DOI PMC

Neuhoff NV, Kaiser T, Wittke S, Krebs R, Pitt A, Burchard A, Sundmacher A, Schlegelberger B, Kolch W, Mischak H (2004) Mass spectrometry for the detection of differentially expressed proteins: a comparison of surface-enhanced laser desorption/ionization and capillary electrophoresis/mass spectrometry. Rapid Commun Mass Spectrom 18:149–156 PubMed DOI PMC

Palagi PM, Walther D, Quadroni M, Catherinet S, Burgess J, Zimmermann-Ivol CG, Sanchez JC, Binz PA, Hochstrasser DF, Appel RD (2005) MSight: an image analysis software for liquid chromatography-mass spectrometry. Proteomics 5:2381–2384 PubMed DOI

Kaplan A, Soderstrom M, Fenyo D, Nilsson A, Falth M, Skold K, Svensson M, Pettersen H, Lindqvist S, Svenningsson P, Andren PE, Bjorkesten L (2007) An automated method for scanning LC-MS data sets for significant peptides and proteins, including quantitative profiling and interactive confirmation. J Proteome Res 6:2888–2895 PubMed DOI

Mischak H, Schanstra JP (2011) CE-MS in biomarker discovery, validation, and clinical application. Proteomics Clin Appl 5:9–23 PubMed DOI

Pontillo C, Filip S, Borras DM, Mullen W, Vlahou A, Mischak H (2015) CE-MS-based proteomics in biomarker discovery and clinical application. Proteomics Clin Appl 9:322–334 PubMed DOI PMC

Pejchinovski M, Siwy J, Mullen W, Mischak H, Petri MA, Burkly LC, Wei R (2018) Urine peptidomic biomarkers for diagnosis of patients with systematic lupus erythematosus. Lupus 27:6–16 PubMed DOI PMC

Carleo A, Chorostowska-Wynimko J, Koeck T, Mischak H, Czajkowska-Malinowska M, Rozy A, Welte T, Janciauskiene S (2017) Does urinary peptide content differ between COPD patients with and without inherited alpha-1 antitrypsin deficiency? Int J Chron Obstruct Pulmon Dis 12:829–837 PubMed DOI PMC

Schiffer E, Mischak H, Novak J (2006) High resolution proteome/peptidome analysis of body fluids by capillary electrophoresis coupled with MS. Proteomics 6:5615–5627 PubMed DOI

Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, Coon JJ, Dakna M, Decramer S, Delles C, Dominiczak AF, Ehrich JHH, Eitner F, Fliser D, Frommberger M, Ganser A, Girolami MA, Golovko I, Gwinner W, Haubitz M, Herget-Rosenthal S, Jankowski J, Jahn H, Jerums G, Julian BA, Kellmann M, Kliem V, Kolch W, Krolewski AS, Luppi M, Massy Z, Melter M, Neusüss C, Novak J, Peter K, Rossing K, Rupprecht H, Schanstra JP, Schiffer E, Stolzenburg JU, Tarnow L, Theodorescu D, Thongboonkerd V, Vanholder R, Weissinger EM, Mischak H, Schmitt-Kopplin P (2010) Naturally occurring human urinary peptides for use in diagnosis of chronic kidney disease. Mol Cell Proteomics 9:2424–2437 PubMed DOI PMC

Rossing K, Mischak H, Dakna M, Zurbig P, Novak J, Julian BA, Good DM, Coon JJ, Tarnow L, Rossing P (2008) Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 19:1283–1290 PubMed DOI PMC

Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, Just I, Mischak H, Frierson HF (2006) Discovery and validation of new protein biomarkers for 4 urothelial cancer: a prospective analysis. Lancet Oncol 7:230–240 PubMed DOI PMC

Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, Polley R, Schmidt T, Schofer W, Zurbig P, Good DM, Coon JJ, Mischak H (2008) Discovery and validation of urinary biomarkers for prostate cancer. Proteomics Clin Appl 2:556–570 PubMed DOI PMC

Zimmerli LU, Schiffer E, Zurbig P, Good DM, Kellmann M, Mouls L, Pitt AR, Coon JJ, Schmieder RE, Peter KH, Mischak H, Kolch W, Delles C, Dominiczak AF (2008) Urinary proteomic biomarkers on coronary artery disease. Mol Cell Proteomics 7:290–298 PubMed DOI

Torati LS, Migaud H, Doherty MK, Siwy J, Mullen W, Mesquita PEC, Albalat A (2017) Comparative proteome and peptidome analysis of the cephalic fluid secreted by Arapaima gigas (Teleostei: Osteoglossidae) during and outside parental care. PLoS One 12:art.no. e0186692 PubMed DOI

Mansor R, Mullen W, Albalat A, Zerefos P, Mischak H, Barrett DC, Biggs A, Eckersall PD (2013) A peptidomic approach to biomarker discovery for bovine mastitis. J Proteome 85:89–98 DOI

Thomas FC, Mullen W, Tassi R, Ramirez-Torres A, Mudaliar M, McNeilly TN, Zadoks RN, Burchmore R, Eckersall PD (2016) Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 1. High abundance proteins, acute phase proteins and peptidomics. Mol BioSyst 12:2735–2747 PubMed DOI PMC

Garcia-Canas V, Simo C, Herrero M, Ibanez E, Cifuentes A (2012) Present and future challenges in food analysis: foodomics. Anal Chem 84:10150–10159 PubMed DOI

Ibanez C, Simo C, Garcia-Canas V, Cifuentes A, Castro-Puyana M (2013) Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. Anal Chim Acta 802:1–13 PubMed DOI

Alvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A (2018) Recent advances in the application of capillary electromigration methods for food analysis and foodomics. Electrophoresis 39:136–159 PubMed DOI

Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Lagana A (2016) Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal Bioanal Chem 408:2677–2685 PubMed DOI

Minkiewicz P, Dziuba J, Darewicz M, Iwaniak A, Dziuba M, Nalecz D (2008) Food peptidomics. Food Technol Biotechnol 46:1–10

Carrasco-Castilla J, Hernandez-Alvarez AJ, Jimenez-Martinez C, Gutierrez-Lopez GF, Vila-Ortiz G (2012) Use of proteomics and peptidomics methods in food bioactive peptide science and engineering. Food Eng Rev 4:224–243 DOI

Saavedra L, Hebert EM, Minahk C, Ferranti P (2013) An overview of "omic" analytical methods applied in bioactive peptide studies. Food Res Int 54:925–934 DOI

Sanchez-Rivera L, Martinez-Maqueda D, Cruz-Huerta E, Miralles B, Recio I (2014) Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides. Food Res Int 63:170–181 DOI

Giacometti J, Buretic-Tomljanovic A (2017) Peptidomics as a tool for characterizing bioactive milk peptides. Food Chem 230:91–98 PubMed DOI PMC

Gomez-Ruiz JA, Ramos M, Recio I (2007) Identification of novel angiotensin-converting enzyme-inhibitory peptides from ovine milk proteins by CE-MS and chromatographic techniques. Electrophoresis 28:4202–4211 PubMed DOI PMC

Baptista DP, Araujo FDD, Eberlin MN, Gigante ML (2017) A survey of the peptide profile in prato cheese as measured by MALDI-MS and capillary electrophoresis. J Food Sci 82:386–393 PubMed DOI PMC

Benavente F, Pero-Gascon R, Pont L, Jaumot J, Barbosa J, Sanz-Nebot V (2018) Identification of antihypertensive peptides in nutraceuticals by capillary electrophoresis-mass spectrometry. J Chromatogr A 1579:129–137 PubMed DOI PMC

Catala-Clariana S, Benavente F, Gimenez E, Barbosa J, Sanz-Nebot V (2010) Identification of bioactive peptides in hypoallergenic infant milk formulas by capillary electrophoresis-mass spectrometry. Anal Chim Acta 683:119–125 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...