Acceptability of Artificial Intelligence in Poultry Processing and Classification Efficiencies of Different Classification Models in the Categorisation of Breast Fillet Myopathies

. 2021 ; 12 () : 712649. [epub] 20210922

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34630138

Breast meat from modern fast-growing big birds is affected with myopathies such as woody breast (WB), white striping, and spaghetti meat (SM). The detection and separation of the myopathy-affected meat can be carried out at processing plants using technologies such as bioelectrical impedance analysis (BIA). However, BIA raw data from myopathy-affected breast meat are extremely complicated, especially because of the overlap of these myopathies in individual breast fillets and the human error associated with the assignment of fillet categories. Previous research has shown that traditional statistical techniques such as ANOVA and regression, among others, are insufficient in categorising fillets affected with myopathies by BIA. Therefore, more complex data analysis tools can be used, such as support vector machines (SVMs) and backpropagation neural networks (BPNNs), to classify raw poultry breast myopathies using their BIA patterns, such that the technology can be beneficial for the poultry industry in detecting myopathies. Freshly deboned (3-3.5 h post slaughter) breast fillets (n = 100 × 3 flocks) were analysed by hand palpation for WB (0-normal; 1-mild; 2-moderate; 3-Severe) and SM (presence and absence) categorisation. BIA data (resistance and reactance) were collected on each breast fillet; the algorithm of the equipment calculated protein and fat index. The data were analysed by linear discriminant analysis (LDA), and with SVM and BPNN with 70::30: training::test data set. Compared with the LDA analysis, SVM separated WB with a higher accuracy of 71.04% for normal (data for normal and mild merged), 59.99% for moderate, and 81.48% for severe WB. Compared with SVM, the BPNN training model accurately (100%) separated normal WB fillets with and without SM, demonstrating the ability of BIA to detect SM. Supervised learning algorithms, such as SVM and BPNN, can be combined with BIA and successfully implemented in poultry processing to detect breast fillet myopathies.

Zobrazit více v PubMed

Abdullah M. Z., Guan L. C., Mohamed A. M. D., Noor M. A. M. (2002). Color vision system for ripeness inspection of oil palm Elaeisguineensis. J. Food Process. Preserv. 26, 213–223. 10.1111/j.1745-4549.2002.tb00481.x DOI

Akay D. (2011). Grey relational analysis based on instance-based learning approach for classification of risks of occupational low back disorders. Saf. Sci. 49, 1277–1282. 10.1016/j.ssci.2011.04.018 DOI

Alpaydin E. (2010). Introduction to Machine Learning. Cambridge, MA: MIT Press.

Apte C., Weiss S., Grout G. (1993). “Predicting defects in disk drive manufacturing: A case study in high-dimensional classification. Artificial intelligence for applications,” in Proceedings of 9th IEEE Conference (Orlando, FL: ). 10.1109/CAIA.1993.366608 DOI

Arsalane A., El Barbri N., Tabyaoui A., Klilou A., Rhofir K., Halimi A. (2018). Anembedded system based on DSP platform and PCA-SVM algorithms for rapid beef meatfreshness prediction and identification. Comput. Electron. Agric. 152,385–392. 10.1016/j.compag.2018.07.031 DOI

Asmara R. A., Rahutomo F., Hasanah Q., Rahmad C. (2017). “Chicken meatfreshness identification using the histogram color feature,” in Sustainable Information Engineering and Technology (SIET) (Malang: IEEE; ). 10.1109/SIET.2017.8304109 DOI

Azadeh A., Saberi M., Kazem A., Ebrahimipour V., Nourmohammadzadeh A., Saberi Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted dataand noise based on ANN and support vector machine with hyper-parametersoptimization. Appl. Soft. Comput. 13, 1478–1485. 10.1016/j.asoc.2012.06.020 DOI

Balakrishnama S., Ganapathiraju A. (1998). “Linear discriminant analysis-a brief tutorial,” in Institute for Signal and Information Processing (Piscataway, NJ: IEEE; ), 1–8.

Baldi G., Soglia F., Mazzoni M., Sirri F., Canonico L., Babini E., et al. . (2018). Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal 12, 164–173. 10.1017/S1751731117001069 PubMed DOI

Barbon S., Costa Barbon A. P. A. D., Mantovani R. G., Barbin D. F. (2018). Machinelearning applied to near-infrared spectra for chicken meat classification. J. Spectrosc. 2018:894971. 10.1155/2018/8949741 DOI

Bar-Or A., Schuster A., Wolff R., Keren D. (2005). “Decision tree induction in highdimensional, hierarchically distributed databases. Society for Industrial and Applied Mathematics,” in Proceedings SIAM International (Newport, CA: ). 10.1137/1.9781611972757.42 DOI

Battiti R., Brunato M., Villani A. (2002). Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Available online at: http://eprints.biblio.unitn.it/238/ (accessed April 15, 2021).

Bera T. K. (2014). Bioelectrical impedance methods for noninvasive health monitoring: a review. J. Med. Eng. 2014, 1–28. 10.1155/2014/381251 PubMed DOI PMC

Bharathi P. T., Subashini P. (2011). Optimization of image processing techniques usingneural networks: a review. WSEAS Trans. Inf. Sci. Appli. 8, 300–328.

Borin A., Ferrao M. F., Mello C., Maretto D. A., Poppi R. J. (2006). Least-squares supportvector machines and near infrared spectroscopy for quantification of common adulterantsin powdered milk. Anal. Chim. Acta 579, 25–32. 10.1016/j.aca.2006.07.008 PubMed DOI

Bowker B., Zhuang H. (2016). Impact of white striping on functionality attributes of broiler breast meat. Poult. Sci. 95, 1957–1965. 10.3382/ps/pew115 PubMed DOI

Burbidge R., Trotter M., Buxton B., Holden S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 26, 5–14. 10.1016/S0097-8485(01)00094-8 PubMed DOI

Carter R. M., Yan Y., Tomlins K. (2005). Digital imaging-based classification andauthentication of granular food products. Meas. Sci. Technol. 17:235. 10.1088/0957-0233/17/2/002 DOI

Çaydaş U., Ekici S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 23, 639–650. 10.1007/s10845-010-0415-2 DOI

Chatterjee D., Zhuang H., Bowker B. C., Rincon A. M., Sanchez-Brambila G. (2016). Instrumental texture characteristics of broiler Pectoralis major with the wooden breast condition. Poult. Sci. 95, 2449–2454. 10.3382/ps/pew204 PubMed DOI

Chen C. P., Zhang C. Y. (2014). Data-intensive applications, challenges, techniques andtechnologies: a survey on big data. Inf. Sci. 275, 314–347. 10.1016/j.ins.2014.01.015 DOI

Chen K., Sun X., Qin C., Tang X. (2010). Color grading of beef fat by using computervision and support vector machine. Comput. Electron. Agr. 70, 27–32. 10.1016/j.compag.2009.08.006 DOI

Chen Z., Cao S., Mao Z. (2017). Remaining useful life estimation of aircraft engines using amodified similarity and supporting vector machine (SVM) approach. Energies 11, 1–14. 10.3390/en11010028 DOI

Chinnam R. B. (2002). Support vector machines for recognizing shifts in correlated and othermanufacturing processes. Int. J. Prod. Res. 40, 4449–4466. 10.1080/00207540210152920 DOI

Clark D. L., Velleman S. G. (2016). Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers. Poult. Sci. 95, 2930–2945. 10.3382/ps/pew243 PubMed DOI

Corne D., Dhaenens C., Jourdan L. (2012). Synergies between operations research and datamining: the emerging use of multi-objective approaches. Eur. J. Oper. Res. 221, 469–479. 10.1016/j.ejor.2012.03.039 DOI

Cortes C., Vapnik V. (1995). Support-vector networks. Mach. Learn. 20, 273–297. 10.1007/BF00994018 DOI

Cox M. K., Heintz R., Hartman K. (2011). Measurements of resistance and reactance in fish with the use of bioelectrical impedance analysis: sources of error. Fishery Bull. 109, 34–47.

Craven B. D. (1989). A modified Wolfe dual for weak vector minimization. Numer. Funct. Anal. Optim. 10, 899–907. 10.1080/01630568908816337 DOI

Do T. N., Lenca P., Lallich S., Pham N. K. (2010). “Classifying very-high-dimensional data with random forests of oblique decision trees,” in Advances in Knowledge Discovery and Management, eds Guillet F., Ritschard G., Zighed D. A., Briand H. (Berlin: Springer; ). 10.1007/978-3-642-00580-0_3 DOI

Durgesh K. S., Lekha B. (2010). Data classification using support vector machine. J. Theor. Appl. 12, 1–7.

Evgeniou T., Pontil M., Poggio T. (2000). Statistical learning theory: A primer. Int. J. Comput. Vis. 38, 9–13. 10.1023/A:1008110632619 DOI

FAO (2003). Livestock Commodities. Available online at: http://www.fao.org/3/y4252e/y4252e00.htm#TopOfPage (accessed April 17, 2021).

Filipič B., Junkar M. (2000). Using inductive machine learning to support decision making inmachining processes. Comput. Ind. 43, 31–41. 10.1016/S0166-3615(00)00056-7 PubMed DOI

Fisher R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188. 10.1111/j.1469-1809.1936.tb02137.x DOI

Fukunaga K. (2013). Introduction to Statistical Pattern Recognition. San Diego, CA: Academic Press, INC.

Ganatra A., Kosta Y. P., Panchal G., Gajjar C. (2011). Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Appl. 3, 98–116. 10.5121/ijcsit.2011.3108 DOI

Gardner R., Bicker J. (2000). Using machine learning to solve tough manufacturingproblems. Int. J. Ind. Eng. Theory Appl. Pract. 7, 359–364.

Geronimo B. C., Mastelini S. M., Carvalho R. H., Júnior S. B., Barbin D. F., Shimokomaki M., et al. . (2019). Computer vision system and near-infrared spectroscopy foridentification and classification of chicken with wooden breast, and physicochemical andtechnological characterization. Infrared Phys. Technol. 96, 303–310. 10.1016/j.infrared.2018.11.036 DOI

Guo X., Sun L., Li G., Wang S. (2008). A hybrid wavelet analysis and support vectormachines in forecasting development of manufacturing. Expert Syst. Appl. 35, 415–422. 10.1016/j.eswa.2007.07.052 DOI

Heinz G., Hautzinger P. (2009). Meat Processing Technology for Small to Medium Scale Producers. FAO. Available online at: https://agris.fao.org/agris-search/search.do?recordID=XF2016077667 (accessed March 3, 2021).

Hoffer E. C., Meador C. K., Simpson D. C. (1969). Correlation of whole-body impedancewith total body water volume. J. Appl. Physiol. 27, 531–534. 10.1152/jappl.1969.27.4.531 PubMed DOI

Huang R., Liu Q., Lu H., Ma S. (2002). “Solving the small sample size problem of LDA,” in Object Recognition Supported by User Interaction for Service Robots (Quebec City, QC: IEEE; ), 29–32. 10.1109/ICPR.2002.1047787 DOI

Huang X., Ahn D. U. (2018). The incidence of muscle abnormalities in broiler breast meat–A review. Korean J. Food Sci. Anim. Resour. 38:835. 10.5851/kosfa.2018.e2 PubMed DOI PMC

Kala R. (2012). Multi-robot path planning using co-evolutionary genetic programming. Expert Syst. Appl. 39, 3817–3831. 10.1016/j.eswa.2011.09.090 DOI

Kecman V. (2001). Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. Cambridge, MA: MIT Press.

Kennedy-Smith A., Johnson M. L., Bauermeister L. J., Cox M. K., Morey A. (2017). Evaluating a novel bioelectric impedance analysis technology for the rapid detection of wooden breast myopathy in broiler breast filets. Int. Poultry Sci. 96:252.

Kotsiantis S. B., Zaharakis I., Pintelas P. (2007). “Supervised machine learning: a review of classification techniques” in Emerging Artificial Intelligence Applications in Computer Engineering (Amsterdam: IOS Press; ), 3–24. 10.1007/s10462-007-9052-3 DOI

Kusiak A. (2006). Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128, 969.10.1115/1.2194554 DOI

Kuttappan V., Lee Y., Erf G., Meullenet J., McKee S., Owens C. (2012). Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poul. Sci. J. 91, 1240–1247. 10.3382/ps.2011-01947 PubMed DOI

Kuttappan V. A., Owens C. M., Coon C., Hargis B. M., Vazquez-Anon M. (2017). Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters. Poult. Sci. J. 96, 3005–3009. 10.3382/ps/pex072 PubMed DOI

Kyle U. G., Bosaeus I., De Lorenzo A. D., Deurenberg P., Elia M., Gómez J. M., Composition of the ESPEN Working Group . (2004). Bioelectrical impedance analysispart I: review of principles and methods. Clin. Nutr. 23, 1226–1243. 10.1016/j.clnu.2004.06.004 PubMed DOI

Lee M. C., To C. (2010). Comparison of support vector machine and back propagation neural network in evaluating the enterprise financial distress. IJAIA 1, 31–43. 10.5121/ijaia.2010.1303 DOI

Li H., Liang Y., Xu Q. (2009). Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 95, 188–198. 10.1016/j.chemolab.2008.10.007 DOI

Lippmann R. (1987). “An introduction to computing with neural nets” in IEEE Assp Magazine (New York, NY:IEEE: ), 4–22. 10.1109/MASSP.1987.1165576 DOI

Liu M., Wang M., Wang J., Li D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sens. Actuat. B Chem. 177, 970–980. 10.1016/j.snb.2012.11.071 DOI

Lu J., Plataniotis K. N., Venetsanopoulos A. N. (2005). Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Patt. Recogn. Lett. 26, 181–191. 10.1016/j.patrec.2004.09.014 DOI

Maji S., Berg A. C., Malik J. (2008). “Classification using intersection kernel support vector machines is efficient,” in Computer Vision and Pattern Recognition (Anchorage, AK: IEEE; ). 10.1109/CVPR.2008.4587630 DOI

Mandal T., Wu Q. J., Yuan Y. (2009). Curvelet based face recognition via dimension reduction. Sig. Proc. 89, 2345–2353. 10.1016/j.sigpro.2009.03.007 DOI

Mazzoni M., Petracci M., Meluzzi A., Cavani C., Clavenzani P., Sirri F. (2015). Relationship between Pectoralis major muscle histology and quality traits of chicken meat. Poult. Sci. 94, 123–130. 10.3382/ps/peu043 PubMed DOI

Monostori L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Eng. Appl. Artif. Intell. 16, 277–291. 10.1016/S0952-1976(03)00078-2 DOI

Morey A., Smith A. E., Garner L. J., Cox M. K. (2020). Application of bioelectrical impedance analysis to detect broiler breast filets affected with woody breast myopathy. Front. Physiol. 11:808. 10.3389/fphys.2020.00808 PubMed DOI PMC

Mudalal S., Lorenzi M., Soglia F., Cavani C., Petracci M. (2015). Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animals 9, 728–734. 10.1017/S175173111400295X PubMed DOI

Nashat S., Abdullah A., Aramvith S., Abdullah M. Z. (2011). Support vector machineapproach to real-time inspection of biscuits on moving conveyor belt. Comput. Electron. Agr. 75, 147–158. 10.1016/j.compag.2010.10.010 DOI

National Chicken Council (2020). Per Capita Consumption of Poultry and Livestock, 1965 to Estimated 2021. Available online at: https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2021-in-pounds/ (accessed March 30, 2021).

Nilsson N. J. (2005). Introduction to Machine Learning. Stanford, CA: Standford University Press.

Noble W. S. (2006). What is a support vector machine? Nat. Biotechnol. 24, 1565–1567. 10.1038/nbt1206-1565 PubMed DOI

Nyboer J., Kreider M. M., Hannapel L. (1950). Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation 2, 811–821. 10.1161/01.CIR.2.6.811 PubMed DOI

Osuna E., Freund R., Girosi F. (1997). “An improved training algorithm for support vector machines”. in Neural Networks for Signal Processing VII (New York, NY:IEEE; ), 276–285. 10.1109/NNSP.1997.622408 DOI

Pan F., Song G., Gan X., Gu Q. (2014). Consistent feature selection and its application to face recognition. J. Intell. Inf. Syst. 43, 307–321. 10.1007/s10844-014-0324-5 DOI

Panchal G., Ganatra A., Shah P., Panchal D. (2011). Determination of over-learning and over-fitting problem in back propagation neural network. Int. J. Soft. Comput. 2, 40–51. 10.5121/ijsc.2011.2204 DOI

Paola J. D., Schowengerdt R. A. (1995). A review and analysis of backpropagation neuralnetworks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 16, 3033–3058. 10.1080/01431169508954607 DOI

Pardo M., Sberveglieri G. (2005). Classification of electronic nose data with support vectormachines. Sens. Actuat. B Chem. 107, 730–737. 10.1016/j.snb.2004.12.005 DOI

Petracci M., Bianchi M., Mudalal S., Cavani C. (2013). Functional ingredients for poultrymeat products. Trends Food Sci. Technol. 33, 27–39. 10.1016/j.tifs.2013.06.004 DOI

Petracci M., Cavani C. (2012). Muscle growth and poultry meat quality issues. Nutrients 4, 1–12. 10.3390/nu4010001 PubMed DOI PMC

Petracci M., Mudalal S., Soglia F., Cavani C. (2015). Meat quality in fast-growing broiler chickens. Worlds Poult. Sci. J. 71, 363–374. 10.1017/S0043933915000367 PubMed DOI

Pham D. T., Afify A. A. (2005). Machine-learning techniques and their applications inmanufacturing. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 219, 395–412. 10.1243/095440505X32274 DOI

Pontil M., Verri A. (1998). Properties of support vector machines. Neural Comput. 10, 955–974. 10.1162/089976698300017575 PubMed DOI

Radaelli G., Piccirillo A., Birolo M., Bertotto D., Gratta F., Ballarin C., et al. . (2017). Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction. Poult. Sci. 96, 309–319. 10.3382/ps/pew270 PubMed DOI

Rao C. R. (1948). The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. Ser. B Stat. Methodol. 10, 159–193. 10.1111/j.2517-6161.1948.tb00008.x DOI

Ribeiro B. (2005). Support vector machines for quality monitoring in a plastic injection moldingprocess. IEEE T. Syst. Man. Cyber. C 35, 401–410. 10.1109/TSMCC.2004.843228 DOI

Rumelhart D. E., Hinton G. E., Williams R. J. (1986). “Learning internal representations by error propagation” in Parallel Distributed Processing: Explorations in the Microstructures of Cognition (Cambridge, MA: MIT Press; ), 318–362. 10.21236/ADA164453 DOI

Salahshoor K., Khoshro M. S., Kordestani M. (2011). Fault detection and diagnosis of anindustrial steam turbine using a distributed configuration of adaptive neuro-fuzzyinference systems. Simul. Model Pract. Theory 19, 1280–1293. 10.1016/j.simpat.2011.01.005 DOI

Shao Y., Lunetta R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRSJ. Photogramm. Remote Sens. 70, 78–87. 10.1016/j.isprsjprs.2012.04.001 DOI

Sihvo H., Immonen K., Puolanne E. (2014). Myodegeneration with fibrosis and regeneration in thepectoralis major muscle of broilers. Vet. Pathol. 51, 619–623. 10.1177/0300985813497488 PubMed DOI

Sihvo H. K., Lindén J., Airas N., Immonen K., Valaja J., Puolanne E. (2017). Wooden breast myodegeneration of Pectoralis major muscle over the growth period in broilers. Vet. Pathol. 54, 119–128. 10.1177/0300985816658099 PubMed DOI

Singh K. P., Basant N., Gupta S. (2011). Support vector machines in water qualitymanagement. Anal. Chim. Acta 703, 152–162. 10.1016/j.aca.2011.07.027 PubMed DOI

Smola A., Vishwanathan S. V. N. (2008). Introduction to Machine Learning. Cambridge: Cambridge University Press.

Soglia F., Mudalal S., Babini E., Di Nunzio M., Mazzoni M., Sirri F., Petracci M. (2016). Histology, composition, and quality traits of chicken Pectoralis major muscle affected bywooden breast abnormality. Poult. Sci. J. 95, 651–659. 10.3382/ps/pev353 PubMed DOI

Su B., Ding X., Wang H., Wu Y. (2017). Discriminative dimensionality reduction for multi-dimensional sequences. IEEE PAMI 40, 77–91. 10.1109/TPAMI.2017.2665545 PubMed DOI

Tao Y., Heinemann P. H., Varghese Z., Morrow C. T., Sommer III. H. J. (1995). Machinevision for color inspection of potatoes and apples. Trans. ASAE 38, 1555–1561. 10.13031/2013.27982 DOI

Tasoniero G., Bertram H. C., Young J. F., Dalle Zotte A., Puolanne E. (2017). Relationship between hardness and myowater properties in wooden breast affected chicken meat: a nuclear magnetic resonance study. LWT 86, 20–24. 10.1016/j.lwt.2017.07.032 DOI

Tharwat A. (2019). Parameter investigation of support vector machine classifier with kernel functions. Knowl. Inf. Syst. 61, 1269–1302. 10.1007/s10115-019-01335-4 DOI

Tharwat A., Gaber T., Ibrahim A., Hassanien A. E. (2017). Linear discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190. 10.3233/AIC-170729 DOI

Tijare V. V., Yang F. L., Kuttappan V. A., Alvarado C. Z., Coon C. N., Owens C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast musclemyopathies. Poult. Sci. J. 95, 2167–2173. 10.3382/ps/pew129 PubMed DOI

Tufféry S. (2011). Data Mining and Statistics for Decision Making. Hoboken, NJ: John Wiley & Sons. 10.1002/9780470979174 DOI

Vapnik V. (1963). Pattern recognition using generalized portrait method. Autom. Remote Control 24, 774–780.

Vapnik V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag. 10.1007/978-1-4757-2440-0 DOI

Vapnik V. (2013). The Nature of Statistical Learning Theory. Berlin: Springer Science & Business Media.

Velleman S. G. (2015). Relationship of skeletal muscle development and growth to breast muscle myopathies: a review. Avian Dis. 59, 525–531. 10.1637/11223-063015-Review.1 PubMed DOI

Vijayarani S., Dhayanand S., Phil M. (2015). Kidney disease prediction using SVM and ANN algorithms. Int. J. Comput. Mark. Res. 6, 1–12.

Wang K. J., Chen J. C., Lin Y. S. (2005). A hybrid knowledge discovery model usingdecision tree and neural network for selecting dispatching rules of a semiconductor finaltesting factory. Prod. Plan. Control. 16, 665–680. 10.1080/09537280500213757 DOI

Wiendahl H. P., Scholtissek P. (1994). Management and control of complexity inmanufacturing. Cirp. Ann. Manuf. Techn. 43, 533–540. 10.1016/S0007-8506(07)60499-5 DOI

Wold J. P., Måge I., Løvland A., Sanden K. W., Ofstad R. (2019). Near-infraredspectroscopy detects woody breast syndrome in chicken fillets by the markers proteincontent and degree of water binding. Poult. Sci. J. 98, 480–490. 10.3382/ps/pey351 PubMed DOI

Xanthopoulos P., Pardalos P. M., Trafalis T. B. (2013). “Linear discriminant analysis”, in Robust Data Mining (New York, NY: Springer; ), 27–33. 10.1007/978-1-4419-9878-1_4 DOI

Yang Y., Wang W., Zhuang H., Yoon S. C., Bowker B., Jiang H., et al. . (2021). Evaluation of broiler breast fillets with the woody breast condition using expressible fluid measurement combined with deep learning algorithm. J. Food Eng. 288:110133. 10.1016/j.jfoodeng.2020.110133 DOI

Yang Y., Zhu J., Zhao C., Liu S., Tong X. (2011). The spatial continuity study of NDVI based on kriging and BPNN algorithm. Math. Comput. Model 54, 1138–1144. 10.1016/j.mcm.2010.11.046 DOI

Yao X. (1999). Evolving artificial neural networks. Proc. IEEE 87, 1423–1447. 10.1109/5.784219 DOI

Zampiga M., Soglia F., Baldi G., Petracci M., Strasburg G. M., Sirri F. (2020). Muscle abnormalities and meat quality consequences in modern turkey hybrids. Front. Physiol. 11:554. 10.3389/fphys.2020.00554 PubMed DOI PMC

Zhuang X. S., Dai D. Q. (2005). Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition. Patt. Recog. 38, 2192–2194 10.1016/j.patcog.2005.02.011 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...