Acceptability of Artificial Intelligence in Poultry Processing and Classification Efficiencies of Different Classification Models in the Categorisation of Breast Fillet Myopathies
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34630138
PubMed Central
PMC8493215
DOI
10.3389/fphys.2021.712649
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, backpropagation neural networking, bioelectrical impedance analysis, machine learning, meat myopathies, spaghetti meat, support vector machines, woody breast,
- Publikační typ
- časopisecké články MeSH
Breast meat from modern fast-growing big birds is affected with myopathies such as woody breast (WB), white striping, and spaghetti meat (SM). The detection and separation of the myopathy-affected meat can be carried out at processing plants using technologies such as bioelectrical impedance analysis (BIA). However, BIA raw data from myopathy-affected breast meat are extremely complicated, especially because of the overlap of these myopathies in individual breast fillets and the human error associated with the assignment of fillet categories. Previous research has shown that traditional statistical techniques such as ANOVA and regression, among others, are insufficient in categorising fillets affected with myopathies by BIA. Therefore, more complex data analysis tools can be used, such as support vector machines (SVMs) and backpropagation neural networks (BPNNs), to classify raw poultry breast myopathies using their BIA patterns, such that the technology can be beneficial for the poultry industry in detecting myopathies. Freshly deboned (3-3.5 h post slaughter) breast fillets (n = 100 × 3 flocks) were analysed by hand palpation for WB (0-normal; 1-mild; 2-moderate; 3-Severe) and SM (presence and absence) categorisation. BIA data (resistance and reactance) were collected on each breast fillet; the algorithm of the equipment calculated protein and fat index. The data were analysed by linear discriminant analysis (LDA), and with SVM and BPNN with 70::30: training::test data set. Compared with the LDA analysis, SVM separated WB with a higher accuracy of 71.04% for normal (data for normal and mild merged), 59.99% for moderate, and 81.48% for severe WB. Compared with SVM, the BPNN training model accurately (100%) separated normal WB fillets with and without SM, demonstrating the ability of BIA to detect SM. Supervised learning algorithms, such as SVM and BPNN, can be combined with BIA and successfully implemented in poultry processing to detect breast fillet myopathies.
Department of Animal Science Czech University of Life Sciences Prague Czechia
Department of Poultry Science Auburn University Auburn AL United States
Zobrazit více v PubMed
Abdullah M. Z., Guan L. C., Mohamed A. M. D., Noor M. A. M. (2002). Color vision system for ripeness inspection of oil palm Elaeisguineensis. J. Food Process. Preserv. 26, 213–223. 10.1111/j.1745-4549.2002.tb00481.x DOI
Akay D. (2011). Grey relational analysis based on instance-based learning approach for classification of risks of occupational low back disorders. Saf. Sci. 49, 1277–1282. 10.1016/j.ssci.2011.04.018 DOI
Alpaydin E. (2010). Introduction to Machine Learning. Cambridge, MA: MIT Press.
Apte C., Weiss S., Grout G. (1993). “Predicting defects in disk drive manufacturing: A case study in high-dimensional classification. Artificial intelligence for applications,” in Proceedings of 9th IEEE Conference (Orlando, FL: ). 10.1109/CAIA.1993.366608 DOI
Arsalane A., El Barbri N., Tabyaoui A., Klilou A., Rhofir K., Halimi A. (2018). Anembedded system based on DSP platform and PCA-SVM algorithms for rapid beef meatfreshness prediction and identification. Comput. Electron. Agric. 152,385–392. 10.1016/j.compag.2018.07.031 DOI
Asmara R. A., Rahutomo F., Hasanah Q., Rahmad C. (2017). “Chicken meatfreshness identification using the histogram color feature,” in Sustainable Information Engineering and Technology (SIET) (Malang: IEEE; ). 10.1109/SIET.2017.8304109 DOI
Azadeh A., Saberi M., Kazem A., Ebrahimipour V., Nourmohammadzadeh A., Saberi Z. (2013). A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted dataand noise based on ANN and support vector machine with hyper-parametersoptimization. Appl. Soft. Comput. 13, 1478–1485. 10.1016/j.asoc.2012.06.020 DOI
Balakrishnama S., Ganapathiraju A. (1998). “Linear discriminant analysis-a brief tutorial,” in Institute for Signal and Information Processing (Piscataway, NJ: IEEE; ), 1–8.
Baldi G., Soglia F., Mazzoni M., Sirri F., Canonico L., Babini E., et al. . (2018). Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal 12, 164–173. 10.1017/S1751731117001069 PubMed DOI
Barbon S., Costa Barbon A. P. A. D., Mantovani R. G., Barbin D. F. (2018). Machinelearning applied to near-infrared spectra for chicken meat classification. J. Spectrosc. 2018:894971. 10.1155/2018/8949741 DOI
Bar-Or A., Schuster A., Wolff R., Keren D. (2005). “Decision tree induction in highdimensional, hierarchically distributed databases. Society for Industrial and Applied Mathematics,” in Proceedings SIAM International (Newport, CA: ). 10.1137/1.9781611972757.42 DOI
Battiti R., Brunato M., Villani A. (2002). Statistical Learning Theory for Location Fingerprinting in Wireless LANs. Available online at: http://eprints.biblio.unitn.it/238/ (accessed April 15, 2021).
Bera T. K. (2014). Bioelectrical impedance methods for noninvasive health monitoring: a review. J. Med. Eng. 2014, 1–28. 10.1155/2014/381251 PubMed DOI PMC
Bharathi P. T., Subashini P. (2011). Optimization of image processing techniques usingneural networks: a review. WSEAS Trans. Inf. Sci. Appli. 8, 300–328.
Borin A., Ferrao M. F., Mello C., Maretto D. A., Poppi R. J. (2006). Least-squares supportvector machines and near infrared spectroscopy for quantification of common adulterantsin powdered milk. Anal. Chim. Acta 579, 25–32. 10.1016/j.aca.2006.07.008 PubMed DOI
Bowker B., Zhuang H. (2016). Impact of white striping on functionality attributes of broiler breast meat. Poult. Sci. 95, 1957–1965. 10.3382/ps/pew115 PubMed DOI
Burbidge R., Trotter M., Buxton B., Holden S. (2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 26, 5–14. 10.1016/S0097-8485(01)00094-8 PubMed DOI
Carter R. M., Yan Y., Tomlins K. (2005). Digital imaging-based classification andauthentication of granular food products. Meas. Sci. Technol. 17:235. 10.1088/0957-0233/17/2/002 DOI
Çaydaş U., Ekici S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J. Intell. Manuf. 23, 639–650. 10.1007/s10845-010-0415-2 DOI
Chatterjee D., Zhuang H., Bowker B. C., Rincon A. M., Sanchez-Brambila G. (2016). Instrumental texture characteristics of broiler Pectoralis major with the wooden breast condition. Poult. Sci. 95, 2449–2454. 10.3382/ps/pew204 PubMed DOI
Chen C. P., Zhang C. Y. (2014). Data-intensive applications, challenges, techniques andtechnologies: a survey on big data. Inf. Sci. 275, 314–347. 10.1016/j.ins.2014.01.015 DOI
Chen K., Sun X., Qin C., Tang X. (2010). Color grading of beef fat by using computervision and support vector machine. Comput. Electron. Agr. 70, 27–32. 10.1016/j.compag.2009.08.006 DOI
Chen Z., Cao S., Mao Z. (2017). Remaining useful life estimation of aircraft engines using amodified similarity and supporting vector machine (SVM) approach. Energies 11, 1–14. 10.3390/en11010028 DOI
Chinnam R. B. (2002). Support vector machines for recognizing shifts in correlated and othermanufacturing processes. Int. J. Prod. Res. 40, 4449–4466. 10.1080/00207540210152920 DOI
Clark D. L., Velleman S. G. (2016). Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers. Poult. Sci. 95, 2930–2945. 10.3382/ps/pew243 PubMed DOI
Corne D., Dhaenens C., Jourdan L. (2012). Synergies between operations research and datamining: the emerging use of multi-objective approaches. Eur. J. Oper. Res. 221, 469–479. 10.1016/j.ejor.2012.03.039 DOI
Cortes C., Vapnik V. (1995). Support-vector networks. Mach. Learn. 20, 273–297. 10.1007/BF00994018 DOI
Cox M. K., Heintz R., Hartman K. (2011). Measurements of resistance and reactance in fish with the use of bioelectrical impedance analysis: sources of error. Fishery Bull. 109, 34–47.
Craven B. D. (1989). A modified Wolfe dual for weak vector minimization. Numer. Funct. Anal. Optim. 10, 899–907. 10.1080/01630568908816337 DOI
Do T. N., Lenca P., Lallich S., Pham N. K. (2010). “Classifying very-high-dimensional data with random forests of oblique decision trees,” in Advances in Knowledge Discovery and Management, eds Guillet F., Ritschard G., Zighed D. A., Briand H. (Berlin: Springer; ). 10.1007/978-3-642-00580-0_3 DOI
Durgesh K. S., Lekha B. (2010). Data classification using support vector machine. J. Theor. Appl. 12, 1–7.
Evgeniou T., Pontil M., Poggio T. (2000). Statistical learning theory: A primer. Int. J. Comput. Vis. 38, 9–13. 10.1023/A:1008110632619 DOI
FAO (2003). Livestock Commodities. Available online at: http://www.fao.org/3/y4252e/y4252e00.htm#TopOfPage (accessed April 17, 2021).
Filipič B., Junkar M. (2000). Using inductive machine learning to support decision making inmachining processes. Comput. Ind. 43, 31–41. 10.1016/S0166-3615(00)00056-7 PubMed DOI
Fisher R. A. (1936). The use of multiple measurements in taxonomic problems. Ann. Eugen. 7, 179–188. 10.1111/j.1469-1809.1936.tb02137.x DOI
Fukunaga K. (2013). Introduction to Statistical Pattern Recognition. San Diego, CA: Academic Press, INC.
Ganatra A., Kosta Y. P., Panchal G., Gajjar C. (2011). Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Appl. 3, 98–116. 10.5121/ijcsit.2011.3108 DOI
Gardner R., Bicker J. (2000). Using machine learning to solve tough manufacturingproblems. Int. J. Ind. Eng. Theory Appl. Pract. 7, 359–364.
Geronimo B. C., Mastelini S. M., Carvalho R. H., Júnior S. B., Barbin D. F., Shimokomaki M., et al. . (2019). Computer vision system and near-infrared spectroscopy foridentification and classification of chicken with wooden breast, and physicochemical andtechnological characterization. Infrared Phys. Technol. 96, 303–310. 10.1016/j.infrared.2018.11.036 DOI
Guo X., Sun L., Li G., Wang S. (2008). A hybrid wavelet analysis and support vectormachines in forecasting development of manufacturing. Expert Syst. Appl. 35, 415–422. 10.1016/j.eswa.2007.07.052 DOI
Heinz G., Hautzinger P. (2009). Meat Processing Technology for Small to Medium Scale Producers. FAO. Available online at: https://agris.fao.org/agris-search/search.do?recordID=XF2016077667 (accessed March 3, 2021).
Hoffer E. C., Meador C. K., Simpson D. C. (1969). Correlation of whole-body impedancewith total body water volume. J. Appl. Physiol. 27, 531–534. 10.1152/jappl.1969.27.4.531 PubMed DOI
Huang R., Liu Q., Lu H., Ma S. (2002). “Solving the small sample size problem of LDA,” in Object Recognition Supported by User Interaction for Service Robots (Quebec City, QC: IEEE; ), 29–32. 10.1109/ICPR.2002.1047787 DOI
Huang X., Ahn D. U. (2018). The incidence of muscle abnormalities in broiler breast meat–A review. Korean J. Food Sci. Anim. Resour. 38:835. 10.5851/kosfa.2018.e2 PubMed DOI PMC
Kala R. (2012). Multi-robot path planning using co-evolutionary genetic programming. Expert Syst. Appl. 39, 3817–3831. 10.1016/j.eswa.2011.09.090 DOI
Kecman V. (2001). Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. Cambridge, MA: MIT Press.
Kennedy-Smith A., Johnson M. L., Bauermeister L. J., Cox M. K., Morey A. (2017). Evaluating a novel bioelectric impedance analysis technology for the rapid detection of wooden breast myopathy in broiler breast filets. Int. Poultry Sci. 96:252.
Kotsiantis S. B., Zaharakis I., Pintelas P. (2007). “Supervised machine learning: a review of classification techniques” in Emerging Artificial Intelligence Applications in Computer Engineering (Amsterdam: IOS Press; ), 3–24. 10.1007/s10462-007-9052-3 DOI
Kusiak A. (2006). Data mining in manufacturing: a review. J. Manuf. Sci. Eng. 128, 969.10.1115/1.2194554 DOI
Kuttappan V., Lee Y., Erf G., Meullenet J., McKee S., Owens C. (2012). Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poul. Sci. J. 91, 1240–1247. 10.3382/ps.2011-01947 PubMed DOI
Kuttappan V. A., Owens C. M., Coon C., Hargis B. M., Vazquez-Anon M. (2017). Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters. Poult. Sci. J. 96, 3005–3009. 10.3382/ps/pex072 PubMed DOI
Kyle U. G., Bosaeus I., De Lorenzo A. D., Deurenberg P., Elia M., Gómez J. M., Composition of the ESPEN Working Group . (2004). Bioelectrical impedance analysispart I: review of principles and methods. Clin. Nutr. 23, 1226–1243. 10.1016/j.clnu.2004.06.004 PubMed DOI
Lee M. C., To C. (2010). Comparison of support vector machine and back propagation neural network in evaluating the enterprise financial distress. IJAIA 1, 31–43. 10.5121/ijaia.2010.1303 DOI
Li H., Liang Y., Xu Q. (2009). Support vector machines and its applications in chemistry. Chemom. Intell. Lab. Syst. 95, 188–198. 10.1016/j.chemolab.2008.10.007 DOI
Lippmann R. (1987). “An introduction to computing with neural nets” in IEEE Assp Magazine (New York, NY:IEEE: ), 4–22. 10.1109/MASSP.1987.1165576 DOI
Liu M., Wang M., Wang J., Li D. (2013). Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the recognition of orange beverage and Chinese vinegar. Sens. Actuat. B Chem. 177, 970–980. 10.1016/j.snb.2012.11.071 DOI
Lu J., Plataniotis K. N., Venetsanopoulos A. N. (2005). Regularization studies of linear discriminant analysis in small sample size scenarios with application to face recognition. Patt. Recogn. Lett. 26, 181–191. 10.1016/j.patrec.2004.09.014 DOI
Maji S., Berg A. C., Malik J. (2008). “Classification using intersection kernel support vector machines is efficient,” in Computer Vision and Pattern Recognition (Anchorage, AK: IEEE; ). 10.1109/CVPR.2008.4587630 DOI
Mandal T., Wu Q. J., Yuan Y. (2009). Curvelet based face recognition via dimension reduction. Sig. Proc. 89, 2345–2353. 10.1016/j.sigpro.2009.03.007 DOI
Mazzoni M., Petracci M., Meluzzi A., Cavani C., Clavenzani P., Sirri F. (2015). Relationship between Pectoralis major muscle histology and quality traits of chicken meat. Poult. Sci. 94, 123–130. 10.3382/ps/peu043 PubMed DOI
Monostori L. (2003). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. Eng. Appl. Artif. Intell. 16, 277–291. 10.1016/S0952-1976(03)00078-2 DOI
Morey A., Smith A. E., Garner L. J., Cox M. K. (2020). Application of bioelectrical impedance analysis to detect broiler breast filets affected with woody breast myopathy. Front. Physiol. 11:808. 10.3389/fphys.2020.00808 PubMed DOI PMC
Mudalal S., Lorenzi M., Soglia F., Cavani C., Petracci M. (2015). Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animals 9, 728–734. 10.1017/S175173111400295X PubMed DOI
Nashat S., Abdullah A., Aramvith S., Abdullah M. Z. (2011). Support vector machineapproach to real-time inspection of biscuits on moving conveyor belt. Comput. Electron. Agr. 75, 147–158. 10.1016/j.compag.2010.10.010 DOI
National Chicken Council (2020). Per Capita Consumption of Poultry and Livestock, 1965 to Estimated 2021. Available online at: https://www.nationalchickencouncil.org/about-the-industry/statistics/per-capita-consumption-of-poultry-and-livestock-1965-to-estimated-2021-in-pounds/ (accessed March 30, 2021).
Nilsson N. J. (2005). Introduction to Machine Learning. Stanford, CA: Standford University Press.
Noble W. S. (2006). What is a support vector machine? Nat. Biotechnol. 24, 1565–1567. 10.1038/nbt1206-1565 PubMed DOI
Nyboer J., Kreider M. M., Hannapel L. (1950). Electrical impedance plethysmography: a physical and physiologic approach to peripheral vascular study. Circulation 2, 811–821. 10.1161/01.CIR.2.6.811 PubMed DOI
Osuna E., Freund R., Girosi F. (1997). “An improved training algorithm for support vector machines”. in Neural Networks for Signal Processing VII (New York, NY:IEEE; ), 276–285. 10.1109/NNSP.1997.622408 DOI
Pan F., Song G., Gan X., Gu Q. (2014). Consistent feature selection and its application to face recognition. J. Intell. Inf. Syst. 43, 307–321. 10.1007/s10844-014-0324-5 DOI
Panchal G., Ganatra A., Shah P., Panchal D. (2011). Determination of over-learning and over-fitting problem in back propagation neural network. Int. J. Soft. Comput. 2, 40–51. 10.5121/ijsc.2011.2204 DOI
Paola J. D., Schowengerdt R. A. (1995). A review and analysis of backpropagation neuralnetworks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote Sens. 16, 3033–3058. 10.1080/01431169508954607 DOI
Pardo M., Sberveglieri G. (2005). Classification of electronic nose data with support vectormachines. Sens. Actuat. B Chem. 107, 730–737. 10.1016/j.snb.2004.12.005 DOI
Petracci M., Bianchi M., Mudalal S., Cavani C. (2013). Functional ingredients for poultrymeat products. Trends Food Sci. Technol. 33, 27–39. 10.1016/j.tifs.2013.06.004 DOI
Petracci M., Cavani C. (2012). Muscle growth and poultry meat quality issues. Nutrients 4, 1–12. 10.3390/nu4010001 PubMed DOI PMC
Petracci M., Mudalal S., Soglia F., Cavani C. (2015). Meat quality in fast-growing broiler chickens. Worlds Poult. Sci. J. 71, 363–374. 10.1017/S0043933915000367 PubMed DOI
Pham D. T., Afify A. A. (2005). Machine-learning techniques and their applications inmanufacturing. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 219, 395–412. 10.1243/095440505X32274 DOI
Pontil M., Verri A. (1998). Properties of support vector machines. Neural Comput. 10, 955–974. 10.1162/089976698300017575 PubMed DOI
Radaelli G., Piccirillo A., Birolo M., Bertotto D., Gratta F., Ballarin C., et al. . (2017). Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction. Poult. Sci. 96, 309–319. 10.3382/ps/pew270 PubMed DOI
Rao C. R. (1948). The utilization of multiple measurements in problems of biological classification. J. R. Stat. Soc. Ser. B Stat. Methodol. 10, 159–193. 10.1111/j.2517-6161.1948.tb00008.x DOI
Ribeiro B. (2005). Support vector machines for quality monitoring in a plastic injection moldingprocess. IEEE T. Syst. Man. Cyber. C 35, 401–410. 10.1109/TSMCC.2004.843228 DOI
Rumelhart D. E., Hinton G. E., Williams R. J. (1986). “Learning internal representations by error propagation” in Parallel Distributed Processing: Explorations in the Microstructures of Cognition (Cambridge, MA: MIT Press; ), 318–362. 10.21236/ADA164453 DOI
Salahshoor K., Khoshro M. S., Kordestani M. (2011). Fault detection and diagnosis of anindustrial steam turbine using a distributed configuration of adaptive neuro-fuzzyinference systems. Simul. Model Pract. Theory 19, 1280–1293. 10.1016/j.simpat.2011.01.005 DOI
Shao Y., Lunetta R. S. (2012). Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRSJ. Photogramm. Remote Sens. 70, 78–87. 10.1016/j.isprsjprs.2012.04.001 DOI
Sihvo H., Immonen K., Puolanne E. (2014). Myodegeneration with fibrosis and regeneration in thepectoralis major muscle of broilers. Vet. Pathol. 51, 619–623. 10.1177/0300985813497488 PubMed DOI
Sihvo H. K., Lindén J., Airas N., Immonen K., Valaja J., Puolanne E. (2017). Wooden breast myodegeneration of Pectoralis major muscle over the growth period in broilers. Vet. Pathol. 54, 119–128. 10.1177/0300985816658099 PubMed DOI
Singh K. P., Basant N., Gupta S. (2011). Support vector machines in water qualitymanagement. Anal. Chim. Acta 703, 152–162. 10.1016/j.aca.2011.07.027 PubMed DOI
Smola A., Vishwanathan S. V. N. (2008). Introduction to Machine Learning. Cambridge: Cambridge University Press.
Soglia F., Mudalal S., Babini E., Di Nunzio M., Mazzoni M., Sirri F., Petracci M. (2016). Histology, composition, and quality traits of chicken Pectoralis major muscle affected bywooden breast abnormality. Poult. Sci. J. 95, 651–659. 10.3382/ps/pev353 PubMed DOI
Su B., Ding X., Wang H., Wu Y. (2017). Discriminative dimensionality reduction for multi-dimensional sequences. IEEE PAMI 40, 77–91. 10.1109/TPAMI.2017.2665545 PubMed DOI
Tao Y., Heinemann P. H., Varghese Z., Morrow C. T., Sommer III. H. J. (1995). Machinevision for color inspection of potatoes and apples. Trans. ASAE 38, 1555–1561. 10.13031/2013.27982 DOI
Tasoniero G., Bertram H. C., Young J. F., Dalle Zotte A., Puolanne E. (2017). Relationship between hardness and myowater properties in wooden breast affected chicken meat: a nuclear magnetic resonance study. LWT 86, 20–24. 10.1016/j.lwt.2017.07.032 DOI
Tharwat A. (2019). Parameter investigation of support vector machine classifier with kernel functions. Knowl. Inf. Syst. 61, 1269–1302. 10.1007/s10115-019-01335-4 DOI
Tharwat A., Gaber T., Ibrahim A., Hassanien A. E. (2017). Linear discriminant analysis: a detailed tutorial. AI Commun. 30, 169–190. 10.3233/AIC-170729 DOI
Tijare V. V., Yang F. L., Kuttappan V. A., Alvarado C. Z., Coon C. N., Owens C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast musclemyopathies. Poult. Sci. J. 95, 2167–2173. 10.3382/ps/pew129 PubMed DOI
Tufféry S. (2011). Data Mining and Statistics for Decision Making. Hoboken, NJ: John Wiley & Sons. 10.1002/9780470979174 DOI
Vapnik V. (1963). Pattern recognition using generalized portrait method. Autom. Remote Control 24, 774–780.
Vapnik V. (1995). The Nature of Statistical Learning Theory. New York, NY: Springer-Verlag. 10.1007/978-1-4757-2440-0 DOI
Vapnik V. (2013). The Nature of Statistical Learning Theory. Berlin: Springer Science & Business Media.
Velleman S. G. (2015). Relationship of skeletal muscle development and growth to breast muscle myopathies: a review. Avian Dis. 59, 525–531. 10.1637/11223-063015-Review.1 PubMed DOI
Vijayarani S., Dhayanand S., Phil M. (2015). Kidney disease prediction using SVM and ANN algorithms. Int. J. Comput. Mark. Res. 6, 1–12.
Wang K. J., Chen J. C., Lin Y. S. (2005). A hybrid knowledge discovery model usingdecision tree and neural network for selecting dispatching rules of a semiconductor finaltesting factory. Prod. Plan. Control. 16, 665–680. 10.1080/09537280500213757 DOI
Wiendahl H. P., Scholtissek P. (1994). Management and control of complexity inmanufacturing. Cirp. Ann. Manuf. Techn. 43, 533–540. 10.1016/S0007-8506(07)60499-5 DOI
Wold J. P., Måge I., Løvland A., Sanden K. W., Ofstad R. (2019). Near-infraredspectroscopy detects woody breast syndrome in chicken fillets by the markers proteincontent and degree of water binding. Poult. Sci. J. 98, 480–490. 10.3382/ps/pey351 PubMed DOI
Xanthopoulos P., Pardalos P. M., Trafalis T. B. (2013). “Linear discriminant analysis”, in Robust Data Mining (New York, NY: Springer; ), 27–33. 10.1007/978-1-4419-9878-1_4 DOI
Yang Y., Wang W., Zhuang H., Yoon S. C., Bowker B., Jiang H., et al. . (2021). Evaluation of broiler breast fillets with the woody breast condition using expressible fluid measurement combined with deep learning algorithm. J. Food Eng. 288:110133. 10.1016/j.jfoodeng.2020.110133 DOI
Yang Y., Zhu J., Zhao C., Liu S., Tong X. (2011). The spatial continuity study of NDVI based on kriging and BPNN algorithm. Math. Comput. Model 54, 1138–1144. 10.1016/j.mcm.2010.11.046 DOI
Yao X. (1999). Evolving artificial neural networks. Proc. IEEE 87, 1423–1447. 10.1109/5.784219 DOI
Zampiga M., Soglia F., Baldi G., Petracci M., Strasburg G. M., Sirri F. (2020). Muscle abnormalities and meat quality consequences in modern turkey hybrids. Front. Physiol. 11:554. 10.3389/fphys.2020.00554 PubMed DOI PMC
Zhuang X. S., Dai D. Q. (2005). Inverse Fisher discriminate criteria for small sample size problem and its application to face recognition. Patt. Recog. 38, 2192–2194 10.1016/j.patcog.2005.02.011 DOI