A cell-ECM mechanism for connecting the ipsilateral eye to the brain
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
F99 NS113459
NINDS NIH HHS - United States
R21 EY030568
NEI NIH HHS - United States
R21 EY029874
NEI NIH HHS - United States
R25 NS105141
NINDS NIH HHS - United States
K00 NS113459
NINDS NIH HHS - United States
R01 EY025627
NEI NIH HHS - United States
R01 EY021222
NEI NIH HHS - United States
PubMed
34654745
PubMed Central
PMC8545493
DOI
10.1073/pnas.2104343118
PII: 2104343118
Knihovny.cz E-zdroje
- Klíčová slova
- axon targeting, development, extracellular matrix, retina, superior colliculus,
- MeSH
- axony fyziologie MeSH
- colliculus superior cytologie metabolismus fyziologie MeSH
- extracelulární matrix fyziologie MeSH
- integriny metabolismus MeSH
- mozek fyziologie MeSH
- myši MeSH
- retinální gangliové buňky fyziologie MeSH
- signální transdukce MeSH
- zrakové dráhy * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- integriny MeSH
Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.
Center for Neuroscience Research Children's National Medical Center Washington DC 20010
Department of Biological Sciences Virginia Tech Blacksburg VA 24061
Department of Pediatrics Virginia Tech Carilion School of Medicine Roanoke VA 24016
Graduate Program in Translational Biology Medicine and Health Virginia Tech Blacksburg VA 24061
Zobrazit více v PubMed
Tran N. M., et al. ., Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104, 1039–1055.e12 (2019). PubMed PMC
Rheaume B. A., et al. ., Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759 (2018). PubMed PMC
Baden T., et al. ., The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016). PubMed PMC
Sanes J. R., Masland R. H., The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015). PubMed
Martersteck E. M., et al. ., Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18, 2058–2072 (2017). PubMed PMC
Morin L. P., Studholme K. M., Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014). PubMed PMC
Monavarfeshani A., Sabbagh U., Fox M. A., Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34, E012 (2017). PubMed PMC
Hong Y. K., Chen C., Wiring and rewiring of the retinogeniculate synapse. Curr. Opin. Neurobiol. 21, 228–237 (2011). PubMed PMC
Huberman A. D., Feller M. B., Chapman B., Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008). PubMed PMC
Zhang C., Kolodkin A. L., Wong R. O., James R. E., Establishing wiring specificity in visual system circuits: From the retina to the brain. Annu. Rev. Neurosci. 40, 395–424 (2017). PubMed
Basso M. A., May P. J., Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci. 3, 197–226 (2017). PubMed PMC
Ito S., Feldheim D. A., The mouse superior colliculus: An emerging model for studying circuit formation and function. Front. Neural Circuits 12, 10 (2018). PubMed PMC
Dhande O. S., Stafford B. K., Lim J. A., Huberman A. D., Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1, 291–328 (2015). PubMed
Huberman A. D., et al. ., Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009). PubMed PMC
Rivlin-Etzion M., et al. ., Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31, 8760–8769 (2011). PubMed PMC
Triplett J. W., et al. ., Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev. 9, 2 (2014). PubMed PMC
Kay J. N., et al. ., Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31, 7753–7762 (2011). PubMed PMC
Kim I. J., Zhang Y., Yamagata M., Meister M., Sanes J. R., Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008). PubMed
Hong Y. K., Kim I. J., Sanes J. R., Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519, 1691–1711 (2011). PubMed PMC
Godement P., Saillour P., Imbert M., The ipsilateral optic pathway to the dorsal lateral geniculate nucleus and superior colliculus in mice with prenatal or postnatal loss of one eye. J. Comp. Neurol. 190, 611–626 (1980). PubMed
Wilks T. A., Harvey A. R., Rodger J., “Seeing with two eyes: Integration of binocular retinal projections in the brain” in Functional Brain Mapping and the Endeavor to Understand the Working Brain, F. Signorelli, D. Chirchiglia, Eds. (InTech, Rijecka, Croatia, 2013), pp. 227–250.
Soares C. A., Mason C. A., Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance. Dev. Neurobiol. 75, 1385–1401 (2015). PubMed PMC
Osterhout J. A., El-Danaf R. N., Nguyen P. L., Huberman A. D., Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep. 8, 1006–1017 (2014). PubMed PMC
García-Frigola C., Herrera E., Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets. EMBO J. 29, 3170–3183 (2010). PubMed PMC
Wang Q., Marcucci F., Cerullo I., Mason C., Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm. eNeuro 3, ENEURO.0169-16.2016 (2016). PubMed PMC
Koch S. M., et al. ., Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron 71, 235–242 (2011). PubMed PMC
Sitko A. A., Kuwajima T., Mason C. A., Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J. Comp. Neurol. 526, 1077–1096 (2018). PubMed PMC
Johnson K. P., et al. ., Cell-type-specific binocular vision guides predation in mice. Neuron 109, 1527–1539.e4 (2021). PubMed PMC
Rodriguez A. R., de Sevilla Müller L. P., Brecha N. C., The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 522, 1411–1443 (2014). PubMed PMC
Quina L. A., et al. ., Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J. Neurosci. 25, 11595–11604 (2005). PubMed PMC
Petros T. J., Rebsam A., Mason C. A., Retinal axon growth at the optic chiasm: To cross or not to cross. Annu. Rev. Neurosci. 31, 295–315 (2008). PubMed
Williams R. W., Strom R. C., Rice D. S., Goldowitz D., Genetic and environmental control of variation in retinal ganglion cell number in mice. J. Neurosci. 16, 7193–7205 (1996). PubMed PMC
Jaubert-Miazza L., et al. ., Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22, 661–676 (2005). PubMed
Lein E. S., et al. ., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). PubMed
Brandenberger R., et al. ., Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J. Cell Biol. 154, 447–458 (2001). PubMed PMC
Morimura N., et al. ., Molecular cloning of POEM: A novel adhesion molecule that interacts with alpha8beta1 integrin. J. Biol. Chem. 276, 42172–42181 (2001). PubMed
Zingg B., et al. ., AAV-mediated anterograde transsynaptic tagging: Mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017). PubMed PMC
Sabbagh U., et al. ., Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J. Neurochem. 10.1111/jnc.15101 (2020). PubMed DOI PMC
Xu X., et al. ., Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107, 1029–1047 (2020). PubMed PMC
Linton J. M., Martin G. R., Reichardt L. F., The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134, 2501–2509 (2007). PubMed PMC
Kerr A., et al. ., Non-cell autonomous roles for CASK in optic nerve hypoplasia. Invest. Ophthalmol. Vis. Sci. 60, 3584–3594 (2019). PubMed PMC
Sato Y., et al. ., Molecular basis of the recognition of nephronectin by integrin alpha8beta1. J. Biol. Chem. 284, 14524–14536 (2009). PubMed PMC
Stone K. E., Sakaguchi D. S., Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin. Dev. Biol. 180, 297–310 (1996). PubMed
Russell A. L., Triplett J. W., Prevalence of multiple subtypes of binocularly-modulated visual neurons in the mouse superior colliculus. bioRxiv [Preprint] (2020). (Accessed 15 December 2020).
Yilmaz M., Meister M., Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013). PubMed PMC
Wei P., et al. ., Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015). PubMed PMC
Hoy J. L., Bishop H. I., Niell C. M., Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138.e5 (2019). PubMed PMC
Hoy J. L., Yavorska I., Wehr M., Niell C. M., Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26, 3046–3052 (2016). PubMed PMC
Mason C., Slavi N., Retinal ganglion cell axon wiring establishing the binocular circuit. Annu. Rev. Vis. Sci. 6, 215–236 (2020). PubMed
Cang J., Feldheim D. A., Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36, 51–77 (2013). PubMed
Baier H., Synaptic laminae in the visual system: Molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29, 385–416 (2013). PubMed
Sanes J. R., Zipursky S. L., Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010). PubMed PMC
Erskine L., Herrera E., The retinal ganglion cell axon’s journey: Insights into molecular mechanisms of axon guidance. Dev. Biol. 308, 1–14 (2007). PubMed
Raper J., Mason C., Cellular strategies of axonal pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001933 (2010). PubMed PMC
Guido W., Development, form, and function of the mouse visual thalamus. J. Neurophysiol. 120, 211–225 (2018). PubMed PMC
Clements R., Wright K. M., Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev. Biol. 442, 210–219 (2018). PubMed PMC
Hynes R. O., The extracellular matrix: Not just pretty fibrils. Science 326, 1216–1219 (2009). PubMed PMC
Engel J., EGF-like domains in extracellular matrix proteins: Localized signals for growth and differentiation? FEBS Lett. 251, 1–7 (1989). PubMed
Xiao T., Baier H., Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat. Neurosci. 10, 1529–1537 (2007). PubMed
Xiao T., et al. ., Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 146, 164–176 (2011). PubMed PMC
Di Donato V., et al. ., An attractive reelin gradient establishes synaptic lamination in the vertebrate visual system. Neuron 97, 1049–1062.e6 (2018). PubMed
Müller U., Bossy B., Venstrom K., Reichardt L. F., Integrin alpha 8 beta 1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol. Biol. Cell 6, 433–448 (1995). PubMed PMC
Khoshnoodi J., Pedchenko V., Hudson B. G., Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008). PubMed PMC
Dulabon L., et al. ., Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000). PubMed
Laboissonniere L. A., et al. ., Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci. Rep. 9, 15778 (2019). PubMed PMC
Lin B., Wang S. W., Masland R. H., Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43, 475–485 (2004). PubMed
Su J., et al. ., Reelin is required for class-specific retinogeniculate targeting. J. Neurosci. 31, 575–586 (2011). PubMed PMC
Su J., Klemm M. A., Josephson A. M., Fox M. A., Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev. 8, 11 (2013). PubMed PMC
Dharmaratne N., et al. ., Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway. PLoS One 7, e43083 (2012). PubMed PMC
Leamey C. A., et al. ., Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol. 5, e241 (2007). PubMed PMC
Sparks D. L., Lee C., Rohrer W. H., Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harb. Symp. Quant. Biol. 55, 805–811 (1990). PubMed
Liang F., et al. ., Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86, 755–767 (2015). PubMed PMC
Meyer A. F., O’Keefe J., Poort J., Two distinct types of eye-head coupling in freely moving mice. Curr. Biol. 30, 2116–2130.e6 (2020). PubMed PMC
Samonds J. M., Choi V., Priebe N. J., Mice discriminate stereoscopic surfaces without fixating in depth. J. Neurosci. 39, 8024–8037 (2019). PubMed PMC
Michaiel A. M., Abe E. T., Niell C. M., Dynamics of gaze control during prey capture in freely moving mice. eLife 9, e57458 (2020). PubMed PMC
Berman N., Cynader M., Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. J. Physiol. 224, 363–389 (1972). PubMed PMC
Goldberg M. E., Wurtz R. H., Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35, 542–559 (1972). PubMed
Dias E. C., Rocha-Miranda C. E., Bernardes R. F., Schmidt S. L., Disparity selective units in the superior colliculus of the opossum. Exp. Brain Res. 87, 546–552 (1991). PubMed
Udin S. B., Binocular maps in Xenopus tectum: Visual experience and the development of isthmotectal topography. Dev. Neurobiol. 72, 564–574 (2012). PubMed PMC
Gebhardt C., et al. ., An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat. Commun. 10, 5471 (2019). PubMed PMC
Zimmerman S. E., et al. ., Nephronectin regulates mesangial cell adhesion and behavior in glomeruli. J. Am. Soc. Nephrol. 29, 1128–1140 (2018). PubMed PMC
Robel S., et al. ., Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57, 1630–1647 (2009). PubMed
Potocnik A. J., Brakebusch C., Fässler R., Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000). PubMed
Fox M. A., et al. ., Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007). PubMed
Su J., et al. ., Paracrine role for somatostatin interneurons in the assembly of perisomatic inhibitory synapses. J. Neurosci. 40, 7421–7435 (2020). PubMed PMC
Su J., et al. ., Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex. J. Cell Biol. 212, 721–736 (2016). PubMed PMC
Su J., Gorse K., Ramirez F., Fox M. A., Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J. Comp. Neurol. 518, 229–253 (2010). PubMed PMC
Monavarfeshani A., et al. ., LRRTM1 underlies synaptic convergence in visual thalamus. eLife 7, e33498 (2018). PubMed PMC
Winzeler A., Wang J. T., Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643–652 (2013). PubMed
Kay R. B., Triplett J. W., Visual neurons in the superior colliculus innervated by Islet2+ or Islet2− Retinal ganglion cells display distinct tuning properties. Front. Neural Circuits 11, 73 (2017). PubMed PMC
Salay L. D., Ishiko N., Huberman A. D., A midline thalamic circuit determines reactions to visual threat. Nature 557, 183–189 (2018). PubMed PMC