A cell-ECM mechanism for connecting the ipsilateral eye to the brain

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34654745

Grantová podpora
F99 NS113459 NINDS NIH HHS - United States
R21 EY030568 NEI NIH HHS - United States
R21 EY029874 NEI NIH HHS - United States
R25 NS105141 NINDS NIH HHS - United States
K00 NS113459 NINDS NIH HHS - United States
R01 EY025627 NEI NIH HHS - United States
R01 EY021222 NEI NIH HHS - United States

Information about features in the visual world is parsed by circuits in the retina and is then transmitted to the brain by distinct subtypes of retinal ganglion cells (RGCs). Axons from RGC subtypes are stratified in retinorecipient brain nuclei, such as the superior colliculus (SC), to provide a segregated relay of parallel and feature-specific visual streams. Here, we sought to identify the molecular mechanisms that direct the stereotyped laminar targeting of these axons. We focused on ipsilateral-projecting subtypes of RGCs (ipsiRGCs) whose axons target a deep SC sublamina. We identified an extracellular glycoprotein, Nephronectin (NPNT), whose expression is restricted to this ipsiRGC-targeted sublamina. SC-derived NPNT and integrin receptors expressed by ipsiRGCs are both required for the targeting of ipsiRGC axons to the deep sublamina of SC. Thus, a cell-extracellular matrix (ECM) recognition mechanism specifies precise laminar targeting of ipsiRGC axons and the assembly of eye-specific parallel visual pathways.

Zobrazit více v PubMed

Tran N. M., et al. ., Single-cell profiles of retinal ganglion cells differing in resilience to injury reveal neuroprotective genes. Neuron 104, 1039–1055.e12 (2019). PubMed PMC

Rheaume B. A., et al. ., Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat. Commun. 9, 2759 (2018). PubMed PMC

Baden T., et al. ., The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345–350 (2016). PubMed PMC

Sanes J. R., Masland R. H., The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 38, 221–246 (2015). PubMed

Martersteck E. M., et al. ., Diverse central projection patterns of retinal ganglion cells. Cell Rep. 18, 2058–2072 (2017). PubMed PMC

Morin L. P., Studholme K. M., Retinofugal projections in the mouse. J. Comp. Neurol. 522, 3733–3753 (2014). PubMed PMC

Monavarfeshani A., Sabbagh U., Fox M. A., Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis. Neurosci. 34, E012 (2017). PubMed PMC

Hong Y. K., Chen C., Wiring and rewiring of the retinogeniculate synapse. Curr. Opin. Neurobiol. 21, 228–237 (2011). PubMed PMC

Huberman A. D., Feller M. B., Chapman B., Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31, 479–509 (2008). PubMed PMC

Zhang C., Kolodkin A. L., Wong R. O., James R. E., Establishing wiring specificity in visual system circuits: From the retina to the brain. Annu. Rev. Neurosci. 40, 395–424 (2017). PubMed

Basso M. A., May P. J., Circuits for action and cognition: A view from the superior colliculus. Annu. Rev. Vis. Sci. 3, 197–226 (2017). PubMed PMC

Ito S., Feldheim D. A., The mouse superior colliculus: An emerging model for studying circuit formation and function. Front. Neural Circuits 12, 10 (2018). PubMed PMC

Dhande O. S., Stafford B. K., Lim J. A., Huberman A. D., Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1, 291–328 (2015). PubMed

Huberman A. D., et al. ., Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62, 327–334 (2009). PubMed PMC

Rivlin-Etzion M., et al. ., Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31, 8760–8769 (2011). PubMed PMC

Triplett J. W., et al. ., Dendritic and axonal targeting patterns of a genetically-specified class of retinal ganglion cells that participate in image-forming circuits. Neural Dev. 9, 2 (2014). PubMed PMC

Kay J. N., et al. ., Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31, 7753–7762 (2011). PubMed PMC

Kim I. J., Zhang Y., Yamagata M., Meister M., Sanes J. R., Molecular identification of a retinal cell type that responds to upward motion. Nature 452, 478–482 (2008). PubMed

Hong Y. K., Kim I. J., Sanes J. R., Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519, 1691–1711 (2011). PubMed PMC

Godement P., Saillour P., Imbert M., The ipsilateral optic pathway to the dorsal lateral geniculate nucleus and superior colliculus in mice with prenatal or postnatal loss of one eye. J. Comp. Neurol. 190, 611–626 (1980). PubMed

Wilks T. A., Harvey A. R., Rodger J., “Seeing with two eyes: Integration of binocular retinal projections in the brain” in Functional Brain Mapping and the Endeavor to Understand the Working Brain, F. Signorelli, D. Chirchiglia, Eds. (InTech, Rijecka, Croatia, 2013), pp. 227–250.

Soares C. A., Mason C. A., Transient ipsilateral retinal ganglion cell projections to the brain: Extent, targeting, and disappearance. Dev. Neurobiol. 75, 1385–1401 (2015). PubMed PMC

Osterhout J. A., El-Danaf R. N., Nguyen P. L., Huberman A. D., Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep. 8, 1006–1017 (2014). PubMed PMC

García-Frigola C., Herrera E., Zic2 regulates the expression of Sert to modulate eye-specific refinement at the visual targets. EMBO J. 29, 3170–3183 (2010). PubMed PMC

Wang Q., Marcucci F., Cerullo I., Mason C., Ipsilateral and contralateral retinal ganglion cells express distinct genes during decussation at the optic chiasm. eNeuro 3, ENEURO.0169-16.2016 (2016). PubMed PMC

Koch S. M., et al. ., Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron 71, 235–242 (2011). PubMed PMC

Sitko A. A., Kuwajima T., Mason C. A., Eye-specific segregation and differential fasciculation of developing retinal ganglion cell axons in the mouse visual pathway. J. Comp. Neurol. 526, 1077–1096 (2018). PubMed PMC

Johnson K. P., et al. ., Cell-type-specific binocular vision guides predation in mice. Neuron 109, 1527–1539.e4 (2021). PubMed PMC

Rodriguez A. R., de Sevilla Müller L. P., Brecha N. C., The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 522, 1411–1443 (2014). PubMed PMC

Quina L. A., et al. ., Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J. Neurosci. 25, 11595–11604 (2005). PubMed PMC

Petros T. J., Rebsam A., Mason C. A., Retinal axon growth at the optic chiasm: To cross or not to cross. Annu. Rev. Neurosci. 31, 295–315 (2008). PubMed

Williams R. W., Strom R. C., Rice D. S., Goldowitz D., Genetic and environmental control of variation in retinal ganglion cell number in mice. J. Neurosci. 16, 7193–7205 (1996). PubMed PMC

Jaubert-Miazza L., et al. ., Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22, 661–676 (2005). PubMed

Lein E. S., et al. ., Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007). PubMed

Brandenberger R., et al. ., Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J. Cell Biol. 154, 447–458 (2001). PubMed PMC

Morimura N., et al. ., Molecular cloning of POEM: A novel adhesion molecule that interacts with alpha8beta1 integrin. J. Biol. Chem. 276, 42172–42181 (2001). PubMed

Zingg B., et al. ., AAV-mediated anterograde transsynaptic tagging: Mapping corticocollicular input-defined neural pathways for defense behaviors. Neuron 93, 33–47 (2017). PubMed PMC

Sabbagh U., et al. ., Diverse GABAergic neurons organize into subtype-specific sublaminae in the ventral lateral geniculate nucleus. J. Neurochem. 10.1111/jnc.15101 (2020). PubMed DOI PMC

Xu X., et al. ., Viral vectors for neural circuit mapping and recent advances in trans-synaptic anterograde tracers. Neuron 107, 1029–1047 (2020). PubMed PMC

Linton J. M., Martin G. R., Reichardt L. F., The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134, 2501–2509 (2007). PubMed PMC

Kerr A., et al. ., Non-cell autonomous roles for CASK in optic nerve hypoplasia. Invest. Ophthalmol. Vis. Sci. 60, 3584–3594 (2019). PubMed PMC

Sato Y., et al. ., Molecular basis of the recognition of nephronectin by integrin alpha8beta1. J. Biol. Chem. 284, 14524–14536 (2009). PubMed PMC

Stone K. E., Sakaguchi D. S., Perturbation of the developing Xenopus retinotectal projection following injections of antibodies against beta1 integrin receptors and N-cadherin. Dev. Biol. 180, 297–310 (1996). PubMed

Russell A. L., Triplett J. W., Prevalence of multiple subtypes of binocularly-modulated visual neurons in the mouse superior colliculus. bioRxiv [Preprint] (2020). (Accessed 15 December 2020).

Yilmaz M., Meister M., Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23, 2011–2015 (2013). PubMed PMC

Wei P., et al. ., Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6, 6756 (2015). PubMed PMC

Hoy J. L., Bishop H. I., Niell C. M., Defined cell types in superior colliculus make distinct contributions to prey capture behavior in the mouse. Curr. Biol. 29, 4130–4138.e5 (2019). PubMed PMC

Hoy J. L., Yavorska I., Wehr M., Niell C. M., Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26, 3046–3052 (2016). PubMed PMC

Mason C., Slavi N., Retinal ganglion cell axon wiring establishing the binocular circuit. Annu. Rev. Vis. Sci. 6, 215–236 (2020). PubMed

Cang J., Feldheim D. A., Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36, 51–77 (2013). PubMed

Baier H., Synaptic laminae in the visual system: Molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29, 385–416 (2013). PubMed

Sanes J. R., Zipursky S. L., Design principles of insect and vertebrate visual systems. Neuron 66, 15–36 (2010). PubMed PMC

Erskine L., Herrera E., The retinal ganglion cell axon’s journey: Insights into molecular mechanisms of axon guidance. Dev. Biol. 308, 1–14 (2007). PubMed

Raper J., Mason C., Cellular strategies of axonal pathfinding. Cold Spring Harb. Perspect. Biol. 2, a001933 (2010). PubMed PMC

Guido W., Development, form, and function of the mouse visual thalamus. J. Neurophysiol. 120, 211–225 (2018). PubMed PMC

Clements R., Wright K. M., Retinal ganglion cell axon sorting at the optic chiasm requires dystroglycan. Dev. Biol. 442, 210–219 (2018). PubMed PMC

Hynes R. O., The extracellular matrix: Not just pretty fibrils. Science 326, 1216–1219 (2009). PubMed PMC

Engel J., EGF-like domains in extracellular matrix proteins: Localized signals for growth and differentiation? FEBS Lett. 251, 1–7 (1989). PubMed

Xiao T., Baier H., Lamina-specific axonal projections in the zebrafish tectum require the type IV collagen Dragnet. Nat. Neurosci. 10, 1529–1537 (2007). PubMed

Xiao T., et al. ., Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 146, 164–176 (2011). PubMed PMC

Di Donato V., et al. ., An attractive reelin gradient establishes synaptic lamination in the vertebrate visual system. Neuron 97, 1049–1062.e6 (2018). PubMed

Müller U., Bossy B., Venstrom K., Reichardt L. F., Integrin alpha 8 beta 1 promotes attachment, cell spreading, and neurite outgrowth on fibronectin. Mol. Biol. Cell 6, 433–448 (1995). PubMed PMC

Khoshnoodi J., Pedchenko V., Hudson B. G., Mammalian collagen IV. Microsc. Res. Tech. 71, 357–370 (2008). PubMed PMC

Dulabon L., et al. ., Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000). PubMed

Laboissonniere L. A., et al. ., Molecular signatures of retinal ganglion cells revealed through single cell profiling. Sci. Rep. 9, 15778 (2019). PubMed PMC

Lin B., Wang S. W., Masland R. H., Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43, 475–485 (2004). PubMed

Su J., et al. ., Reelin is required for class-specific retinogeniculate targeting. J. Neurosci. 31, 575–586 (2011). PubMed PMC

Su J., Klemm M. A., Josephson A. M., Fox M. A., Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev. 8, 11 (2013). PubMed PMC

Dharmaratne N., et al. ., Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway. PLoS One 7, e43083 (2012). PubMed PMC

Leamey C. A., et al. ., Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLoS Biol. 5, e241 (2007). PubMed PMC

Sparks D. L., Lee C., Rohrer W. H., Population coding of the direction, amplitude, and velocity of saccadic eye movements by neurons in the superior colliculus. Cold Spring Harb. Symp. Quant. Biol. 55, 805–811 (1990). PubMed

Liang F., et al. ., Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86, 755–767 (2015). PubMed PMC

Meyer A. F., O’Keefe J., Poort J., Two distinct types of eye-head coupling in freely moving mice. Curr. Biol. 30, 2116–2130.e6 (2020). PubMed PMC

Samonds J. M., Choi V., Priebe N. J., Mice discriminate stereoscopic surfaces without fixating in depth. J. Neurosci. 39, 8024–8037 (2019). PubMed PMC

Michaiel A. M., Abe E. T., Niell C. M., Dynamics of gaze control during prey capture in freely moving mice. eLife 9, e57458 (2020). PubMed PMC

Berman N., Cynader M., Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. J. Physiol. 224, 363–389 (1972). PubMed PMC

Goldberg M. E., Wurtz R. H., Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. J. Neurophysiol. 35, 542–559 (1972). PubMed

Dias E. C., Rocha-Miranda C. E., Bernardes R. F., Schmidt S. L., Disparity selective units in the superior colliculus of the opossum. Exp. Brain Res. 87, 546–552 (1991). PubMed

Udin S. B., Binocular maps in Xenopus tectum: Visual experience and the development of isthmotectal topography. Dev. Neurobiol. 72, 564–574 (2012). PubMed PMC

Gebhardt C., et al. ., An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat. Commun. 10, 5471 (2019). PubMed PMC

Zimmerman S. E., et al. ., Nephronectin regulates mesangial cell adhesion and behavior in glomeruli. J. Am. Soc. Nephrol. 29, 1128–1140 (2018). PubMed PMC

Robel S., et al. ., Conditional deletion of beta1-integrin in astroglia causes partial reactive gliosis. Glia 57, 1630–1647 (2009). PubMed

Potocnik A. J., Brakebusch C., Fässler R., Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12, 653–663 (2000). PubMed

Fox M. A., et al. ., Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179–193 (2007). PubMed

Su J., et al. ., Paracrine role for somatostatin interneurons in the assembly of perisomatic inhibitory synapses. J. Neurosci. 40, 7421–7435 (2020). PubMed PMC

Su J., et al. ., Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex. J. Cell Biol. 212, 721–736 (2016). PubMed PMC

Su J., Gorse K., Ramirez F., Fox M. A., Collagen XIX is expressed by interneurons and contributes to the formation of hippocampal synapses. J. Comp. Neurol. 518, 229–253 (2010). PubMed PMC

Monavarfeshani A., et al. ., LRRTM1 underlies synaptic convergence in visual thalamus. eLife 7, e33498 (2018). PubMed PMC

Winzeler A., Wang J. T., Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643–652 (2013). PubMed

Kay R. B., Triplett J. W., Visual neurons in the superior colliculus innervated by Islet2+ or Islet2− Retinal ganglion cells display distinct tuning properties. Front. Neural Circuits 11, 73 (2017). PubMed PMC

Salay L. D., Ishiko N., Huberman A. D., A midline thalamic circuit determines reactions to visual threat. Nature 557, 183–189 (2018). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace