• This record comes from PubMed

Either IL-7 activation of JAK-STAT or BEZ inhibition of PI3K-AKT-mTOR pathways dominates the single-cell phosphosignature of ex vivo treated pediatric T-cell acute lymphoblastic leukemia cells

. 2022 Jun 01 ; 107 (6) : 1293-1310. [epub] 20220601

Language English Country Italy Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer arising from lymphoblasts of T-cell origin. While TALL accounts for only 15% of childhood and 25% of adult ALL, 30% of patients relapse with a poor outcome. Targeted therapy of resistant and high-risk pediatric T-ALL is therefore urgently needed, together with precision medicine tools allowing the testing of efficacy in patient samples. Furthermore, leukemic cell heterogeneity requires drug response assessment at the single-cell level. Here we used single-cell mass cytometry to study signal transduction pathways such as JAK-STAT, PI3K-AKT-mTOR and MEK-ERK in 16 diagnostic and five relapsed T-ALL primary samples, and investigated the in vitro response of cells to Interleukin-7 (IL-7) and the inhibitor BEZ-235. T-ALL cells showed upregulated activity of the PI3K-AKT-mTOR and MEK-ERK pathways and increased expression of proliferation and translation markers. We found that perturbation induced by the ex vivo administration of either IL-7 or BEZ-235 reveals a high degree of exclusivity with respect to the phospho-protein responsiveness to these agents. Notably, these response signatures were maintained from diagnosis to relapse in individual patients. In conclusion, we demonstrated the power of mass cytometry single-cell profiling of signal transduction pathways in T-ALL. Taking advantage of this advanced approach, we were able to identify distinct clusters with different responsiveness to IL-7 and BEZ-235 that can persist at relapse. Collectively our observations can contribute to a better understanding of the complex signaling network governing T-ALL behavior and its correlation with influence on the response to therapy.

See more in PubMed

Pui CH. Acute lymphoblastic leukemia: introduction. Semin Hematol. 2009;46(1):1-2. PubMed PMC

Girardi T, Vicente C, Cools J, Keersmaecker K De. The genetics and molecular biology of T-ALL. Blood. 2017;129(9):1113-1123. PubMed PMC

Klumper E, Pieters R, Veerman A, et al. . In vitro cellular drug resistance in children with relapsed/refractory acute lymphoblastic leukemia. Blood. 1995;86(10):3861-3868. PubMed

Gao J, Liu WJ. Prognostic value of the response to prednisone for children with acute lymphoblastic leukemia: a meta-analysis. Eur Rev Med Pharmacol Sci. 2018;22(22):7858-7866. PubMed

Lauten M, Moricke A, Beier R, et al. . Prediction of outcome by early bone marrow response in childhood acute lymphoblastic leukemia treated in the ALL-BFM 95 trial: differential effects in precursor B-cell and T-cell leukemia. Haematologica. 2012;97(7):1048-1056. PubMed PMC

Follini E, Marchesini M, Roti G. Strategies to overcome resistance mechanisms in T-cell acute lymphoblastic leukemia. Int J Mol Sci. 2019;20(12):3021. PubMed PMC

Scheijen B. Molecular mechanisms contributing to glucocorticoid resistance in lymphoid malignancies. Cancer Drug Resist. 2019;2:647-664. PubMed PMC

De Smedt R, Morscio J, Goossens S, Van Vlierberghe P. Targeting steroid resistance in T-cell acute lymphoblastic leukemia. Blood Rev. 2019;38:100591. PubMed

Rich BE, Campos-Torres J, Tepper RI, Moreadith RW, Leder P. Cutaneous lymphoproliferation and lymphomas in interleukin 7 transgenic mice. J Exp Med. 1993;177(2):305-316. PubMed PMC

Lindqvist CM, Lundmark A, Nordlund J, et al. . Deep targeted sequencing in pediatric acute lymphoblastic leukemia unveils distinct mutational patterns between genetic subtypes and novel relapse-associated genes. Oncotarget. 2016;7(39):64071-64088. PubMed PMC

Abraham N, Ma MC, Snow JW, Miners MJ, Herndier BG, Goldsmith MA. Haploinsufficiency identifies STAT5 as a modifier of IL-7-induced lymphomas. Oncogene. 2005;24(33):5252-5257. PubMed

Silva A, Laranjeira ABA, Martins LR, et al. . IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias. Cancer Res. 2011;71(14):4780-4789. PubMed

Dibirdik I, Langlie M, Ledbetter J, et al. . Engagement of interleukin-7 receptor stimulates tyrosine phosphorylation, phosphoinositide turnover, and clonal proliferation of human T-lineage acute lymphoblastic leukemia cells. Blood. 1991;78(3):564-570. PubMed

Treanor LM, Zhou S, Janke L, et al. . Interleukin-7 receptor mutants initiate early T cell precursor leukemia in murine thymocyte progenitors with multipotent potential. J Exp Med. 2014;211(4):701-713. PubMed PMC

Ribeiro D, Melão A, van Boxtel R, et al. . STAT5 is essential for IL-7–mediated viability, growth, and proliferation of T-cell acute lymphoblastic leukemia cells. Blood Adv. 2018;2(17):2199-2213. PubMed PMC

Shochat C, Tal N, Bandapalli OR, et al. . Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med. 2011;208(5):901-908. PubMed PMC

Zenatti PP, Ribeiro D, Li W, et al. . Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet. 2011;43(10):932-939. PubMed PMC

Canté-Barrett K, Spijkers-Hagelstein JAP, Buijs-Gladdines JGCAM, et al. . MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30(9):1832-1843. PubMed PMC

Li Y, Buijs-Gladdines JGCAM, Canté-Barrett K, et al. . IL-7 receptor mutations and steroid resistance in pediatric T cell acute lymphoblastic leukemia: a genome sequencing study. PLoS Med. 2016;13(12):e1002200. PubMed PMC

Oliveira ML, Akkapeddi P, Alcobia I, et al. . From the outside, from within: biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal. 2017;38:10-25. PubMed

Kim R, Boissel N, Touzart A, et al. . Adult T-cell acute lymphoblastic leukemias with IL7R pathway mutations are slow-responders who do not benefit from allogeneic stem-cell transplantation. Leukemia. 2020;34(7):1730-1740. PubMed

Liu Y, Easton J, Shao Y, et al. . The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet. 2017;49(8):1211-1218. PubMed PMC

Goossens S, Radaelli E, Blanchet O, et al. . ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6(1):5794. PubMed PMC

Zhang J, Ding L, Holmfeldt L, et al. . The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380):157-163. PubMed PMC

Vicente C, Schwab C, Broux M, et al. . Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia. Haematologica. 2015;100(10):1301-1310. PubMed PMC

Meyer LK, Huang BJ, Delgado-Martin C, et al. . Glucocorticoids paradoxically facilitate steroid resistance in T cell acute lymphoblastic leukemias and thymocytes. J Clin Invest. 2020;130(2):863-876. PubMed PMC

Okkenhaug K, Vanhaesebroeck B. PI3K in lymphocyte development, differentiation and activation. Nat Rev Immunol. 2003;3(4):317-330. PubMed

Mendes RD, Sarmento LM, Canté-Barrett K, et al. . PTEN microdeletions in T-cell acute lymphoblastic leukemia are caused by illegitimate RAG-mediated recombination events. Blood. 2014;124(4):567-578. PubMed

Milella M, Falcone I, Conciatori F, et al. . PTEN: multiple functions in human malignant tumors. Front Oncol. 2015;5:24. PubMed PMC

Zuurbier L, Petricoin EF, Vuerhard MJ, et al. . The significance of PTEN and AKT aberrations in pediatric T-cell acute lymphoblastic leukemia. Haematologica. 2012;97(9):1405-1413. PubMed PMC

Homminga I, Pieters R, Langerak AW, et al. . Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell. 2011;19(4):484-497. PubMed

Ferrando AA, Neuberg DS, Staunton J, et al. . Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell. 2002;1(1):75-87. PubMed

Soulier J, Clappier E, Cayuela JM, et al. . HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood. 2005;106(1):274-286. PubMed

Bhatla T, Jones CL, Meyer JA, Vitanza NA, Raetz EA, Carroll WL. The biology of relapsed acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2014;36(6):413-418. PubMed PMC

Loosveld M, Castellano R, Gon S, et al. . Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia (T-ALL). Oncotarget. 2014;5(10):3168-3172. PubMed PMC

Bodenmiller B, Zunder ER, Finck R, et al. . Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012;30(9):858-867. PubMed PMC

Bendall SC, Simonds EF, Qiu P, et al. . Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687-696. PubMed PMC

Bonaccorso P, Bugarin C, Buracchi C, et al. . Single-cell profiling of pediatric T-cell acute lymphoblastic leukemia: impact of PTEN exon 7 mutation on PI3K/Akt and JAK–STAT signaling pathways. Cytometry B Clin Cytom. 2020;98(6):491-503. PubMed

Dworzak MN, Buldini B, Gaipa G, et al. . AIEOP-BFM consensus guidelines 2016 for flow cytometric immunophenotyping of pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom. 2018;94(1):82-93. PubMed

Watson M, Chow S, Barsyte D, et al. . The study of epigenetic mechanisms based on the analysis of histone modification patterns by flow cytoametry. Cytometry A. 2014;85(1):78-87. PubMed

Mei HE, Leipold MD, Maecker HT. Platinum-conjugated antibodies for application in mass cytometry. Cytometry A. 2016;89(3):292-300. PubMed

Mei HE, Leipold MD, Schulz AR, Chester C, Maecker HT. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J Immunol. 2015;194(4):2022-2031. PubMed PMC

Schulz AR, Baumgart S, Schulze J, Urbicht M, Grützkau A, Mei HE. Stabilizing antibody cocktails for mass cytometry. Cytometry A. 2019;95(8):910-916. PubMed

Chevrier S, Crowell HL, Zanotelli VRT, Engler S, Robinson MD, Bodenmiller B. Compensation of signal spillover in suspension and imaging mass cytometry. Cell Syst. 2018;6(5):612-620. PubMed PMC

Saeed AI, Sharov V, White J, et al. . TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374-378. PubMed

Szubert B, Cole JE, Monaco C, Drozdov I. Structure-preserving visualisation of high dimensional single-cell datasets. Sci Rep. 2019;9(1):8914. PubMed PMC

Ding J, Condon A, Shah SP. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat Commun. 2018;9(1):2002. PubMed PMC

Sulis ML, Williams O, Palomero T, et al. . NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood. 2008;112(3):733-740. PubMed PMC

Silva A, Yunes JA, Cardoso BA, et al. . PTEN posttranslational inactivation and hyperactivation of the PI3K/Akt pathway sustain primary T cell leukemia viability. J Clin Invest. 2008;118(11):3762-3774. PubMed PMC

Palomero T, Sulis ML, Cortina M, et al. . Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med. 2007;13(10):1203-1210. PubMed PMC

Schrappe M, Valsecchi MG, Bartram CR, et al. . Late MRD response determines relapse risk overall and in subsets of childhood T-cell ALL: results of the AIEOP-BFM-ALL 2000 study. Blood. 2011;118(8):2077-2084. PubMed

Dang C V., O’Donnell KA, Zeller KI, Nguyen T, Osthus RC Li F. The c-Myc target gene network. Semin Cancer Biol. 2006;16(4):253-264. PubMed

Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8(12):976-990. PubMed

Bonnet M, Loosveld M, Montpellier B, et al. . Posttranscriptional deregulation of MYC via PTEN constitutes a major alternative pathway of MYC activation in T-cell acute lymphoblastic leukemia. Blood. 2011;117(24):6650-6659. PubMed

Piovan E, Yu J, Tosello V, et al. . Direct reversal of glucocorticoid resistance by AKT inhibition in acute lymphoblastic leukemia. Cancer Cell. 2013;24(6):766-776. PubMed PMC

Serafin V, Capuzzo G, Milani G, et al. . Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia. Blood. 2017;130(25):2750-2761. PubMed

Delgado-Martin C, Meyer LK, Huang BJ, et al. . JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31(12):2568-2576. PubMed PMC

Ebinger S, Özdemir EZ, Ziegenhain C, et al. . Characterization of rare, dormant, and therapy-resistant cells in acute lymphoblastic leukemia. Cancer Cell. 2016;30(6):849-862. PubMed PMC

Martelli AM, Lonetti A, Buontempo F, et al. . Targeting signaling pathways in T-cell acute lymphoblastic leukemia initiating cells. Adv Biol Regul. 2014;56:6-21. PubMed

Hall CP, Reynolds CP, Kang MH. Modulation of glucocorticoid resistance in pediatric T-cell acute lymphoblastic leukemia by increasing BIM expression with the PI3K/mTOR inhibitor BEZ235. Clin Cancer Res. 2016;22(3):621-632. PubMed PMC

Coustan-Smith E, Mullighan CG, Onciu M, et al. . Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia indentified in two independent cohorts. Lancet Oncol. 2009;10(2):147-156. PubMed PMC

Basso G, Veltroni M, Valsecchi MG, et al. . Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol. 2009;27(31):5168-5174. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...