Tviblindi algorithm identifies branching developmental trajectories of human B-cell development and describes abnormalities in RAG-1 and WAS patients

. 2024 Dec ; 54 (12) : e2451004. [epub] 20240905

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39235410

Grantová podpora
23-05561S The Czech Science Foundation
23-07-00170 Czech Health Research Council
LX22NPO5102 European Union - Next Generation EU (Czech Recovery Plan) - Project National Cancer Research Institute
1S40421N FWO (Fonds Wetenschappelijk Onderzoek

Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immunity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during development, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated a 30-parameter mass cytometry panel and demonstrated the utility of "vaevictis" visualization of B-cell developmental stages. We used the trajectory inference tool "tviblindi" to exhaustively describe all trajectories leading to all developmental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCR5) in relation to the canonical B-cell developmental stage markers. We observed branching of the memory development, where follicular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with primary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the investigation of B-cell development in the bone marrow compartment.

Zobrazit více v PubMed

Lebien, T. W. and Tedder, T. F. , B lymphocytes: how they develop and function. Blood 2008. 112: 1570–1580. PubMed PMC

Bousfiha, A. , Moundir, A. , Tangye, S. G. , Picard, C. , Jeddane, L. , Al‐Herz, W. , Rundles, C. C. et al., The 2022 update of iuis phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 2022. 42: 1508–1520. PubMed

Sacks, D. , Baxter, B. , Campbell, B. C. V. et al., Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 2018. 13: 612–632. PubMed

Park, L. M. , Lannigan, J. and Jaimes, M. C. , OMIP‐069: forty‐color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry Part A 2020. 97: 1044–1051. PubMed PMC

Koladiya, A. and Davis, K. L. , Advances in clinical mass cytometry. Clin. Lab. Med. 2023. 43: 507–519. PubMed

Bendall, S. C. , Nolan, G. P. , Roederer, M. and Chattopadhyay, P. K. , A deep profiler's guide to cytometry. Trends Immunol. 2012. 33: 323–332. PubMed PMC

Bendall, S. C. , Davis, K. L. , Amir, E. A. D. , Tadmor, M. D. , Simonds, E. F. , Chen, T J. , Shenfeld, D. K. et al., Single‐cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014. 157: 714–725. PubMed PMC

Wentink, M. W. J. , Kalina, T. , Perez‐Andres, M. , Molina, L. D. P. , IJspeert, H. , Kavelaars, F. G. , Lankester, A. C. et al., Delineating human B cell precursor development with genetically identified PID cases as a model. Front. Immunol. 2019. 10: 1–12. PubMed PMC

Saelens, W. , Cannoodt, R. , Todorov, H. and Saeys, Y. , A comparison of single‐cell trajectory inference methods. Nat. Biotechnol. 2019. 37: 547–554. PubMed

Kudlacova, J. , Kuzilkova, D. , Barta, F. , Brdičková, N. , Vávrová, A. , Kostka, L. , Hovorka, O. et al., Hybrid macromolecular constructs as a platform for spectral nanoprobes for advanced cellular barcoding in flow cytometry. Macromol. Biosci. 2023. 2300306: 1–12. PubMed

Mei, H. E. , Leipold, M. D. , Schulz, A. R. , Chester, C. and Maecker, H. T. , Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 2015. 194: 2022–2031. PubMed PMC

Kuzilkova, D. , Bugarin, C. , Rejlova, K. , Schulz, A. R. , Mei, H. E. , Paganin, M. , Biffi, A. et al., Either IL‐7 activation of JAK‐STAT or BEZ inhibition of PI3K‐AKT‐mTOR pathways dominates the single‐cell phosphosignature of ex vivo treated pediatric T‐cell acute lymphoblastic leukemia cells. Haematologica 2022. 107: 1293–1310. PubMed PMC

Van Dongen, J. J. M. , Van Der Burg, M. , Kalina, T. , Perez‐Andres, M. , Mejstrikova, E. , Vlkova, M. , Lopez‐Granados, E. et al., EuroFlow‐based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system. Front. Immunol. 2019. 10: 1–21. PubMed PMC

Van Zelm, M. C. , Szczepański, T. , Van Der Burg, M. and Van Dongen, J. J. M. , Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen‐induced B cell expansion. J. Exp. Med. 2007. 204: 645–655. PubMed PMC

Stuchly, J. , Novak, D. , Brdickova, N. , Hadlova, P. , Iksi, A. , Kuzilkova, D. , Svaton, M. et al., Deconstructing complexity: a computational topology approach to trajectory inference in the human thymus with tviblindi. eLife 2024. 13: RP95861.

Kaiser, F. M. P. , Janowska, I. , Menafra, R. , de Gier, M. , Korzhenevich, J. , Pico‐Knijnenburg, I. , Khatri, I. et al., IL‐7 receptor signaling drives human B‐cell progenitor differentiation and expansion. Blood 2023. 142: 1113–1130. PubMed PMC

Amir, E. A. D. , Davis, K. L. , Tadmor, M. D. , Simonds, E. F. , Levine, J. H. , Bendall, S. C. , Shenfeld, D. K. et al., ViSNE enables visualization of high dimensional single‐cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013. 31: 545–552. PubMed PMC

McInnes, L. , Healy, J. , Saul, N. and Großberger, L. , UMAP: uniform manifold approximation and projection. J. Open Source Softw. 2018. 3: 861.

Vaskova, M. , Fronkova, E. , Starkova, J. , Kalina, T. , Mejstrikova, E. and Hrusak, O. , CD44 and CD27 delineate B‐precursor stages with different recombination status and with an uneven distribution in nonmalignant and malignant hematopoiesis. Tissue Antigens 2008. 71: 57–66. PubMed

Leung, K. T. , Chan, K. Y. Y. , Ng, P. C. , Lau T. K., Chiu W. M., Tsang K. S., Li C. K. et al., The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. Blood 2011. 117: 1840–1850. PubMed

Carrion, C. , Guérin, E. , Gachard, N. , le Guyader, A. , Giraut, S. and Feuillard, J. , Adult bone marrow three‐dimensional phenotypic landscape of B‐cell differentiation. Cytometry B Clin. Cytom. 2019. 96: 30–38. PubMed

Mensah, F. F. K. , Armstrong, C. W. , Reddy, V. , Bansal, A. S. , Berkovitz, S. , Leandro, M. J. and Cambridge, G. , CD24 expression and B cell maturation shows a novel link with energy metabolism: potential implications for patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2018. 9. 10.3389/fimmu.2018.02421. PubMed DOI PMC

Reif, K. , Ekland, E. H. , Ohl, L. , Nakano, H. , Lipp, M. , Förster, R. and Cyster, J G. , Balanced responsiveness to chemoattractants from adjacent zones determines B‐cell position. Nature 2002. 416: 94–99. PubMed

Zehentmeier, S. and Pereira, J. P. , Cell circuits and niches controlling B cell development. Immunol. Rev. 2019. 289: 142–157. PubMed PMC

Schena, F. , Volpi, S. , Faliti, C. E. , Penco, F. , Santi, S. , Proietti, M. , Schenk, U. et al., Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep. 2013. 3: 1824–1831. PubMed

Elsner, R. A. and Shlomchik, M. J. , Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 2020. 53: 1136–1150. PubMed PMC

Setty, M. , Tadmor, M. D. , Reich‐Zeliger, S. , Angel, O. , Salame, T. M. , Kathail, P. , Choi, K. et al., Wishbone identifies bifurcating developmental trajectories from single‐cell data. Nat. Biotechnol. 2016. 34: 637–645. PubMed PMC

Catucci, M. , Castiello, M. , Pala, F. , Bosticardo, M. and Villa, A. , Autoimmunity in Wiskott‐Aldrich syndrome: an unsolved enigma. Front. Immunol. 2012. 3: 1–15. PubMed PMC

Yoshimi, A. , Kamachi, Y. , Imai, K. , Watanabe, N. , Nakadate, H. , Kanazawa, T. , Ozono, S. et al., Wiskott–Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatr. Blood. Cancer 2013. 60: 836–841. PubMed

Castiello, M. , Bosticardo, M. , Pala, F. , Catucci, M. , Chamberlain, N. , van Zelm, M. C. , Driessen, G. J. et al., Wiskott‐Aldrich syndrome protein deficiency perturbs the homeostasis of B‐cell compartment in humans. J. Autoimmun. 2014. 50: 42–50. PubMed PMC

Rengan, R. , Ochs, H. , Sweet, L. , Keil, M. L. , Gunning, W. T. , Lachant, N. A. , Boxer, L. A. et al., Actin cytoskeletal function is spared, but apoptosis is increased, in WAS patient hematopoietic cells. Blood 2000. 95: 1283–1292. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...