Tviblindi algorithm identifies branching developmental trajectories of human B-cell development and describes abnormalities in RAG-1 and WAS patients
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
23-05561S
The Czech Science Foundation
23-07-00170
Czech Health Research Council
LX22NPO5102
European Union - Next Generation EU (Czech Recovery Plan) - Project National Cancer Research Institute
1S40421N
FWO (Fonds Wetenschappelijk Onderzoek
PubMed
39235410
PubMed Central
PMC11628918
DOI
10.1002/eji.202451004
Knihovny.cz E-zdroje
- Klíčová slova
- B‐cell development, CD73, Mass cytometry, RAG‐1, Trajectory inference, WAS,
- MeSH
- algoritmy * MeSH
- B-lymfocyty * imunologie MeSH
- buněčná diferenciace * imunologie genetika MeSH
- homeodoménové proteiny * genetika metabolismus MeSH
- lidé MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- homeodoménové proteiny * MeSH
- RAG-1 protein MeSH Prohlížeč
Detailed knowledge of human B-cell development is crucial for the proper interpretation of inborn errors of immunity and malignant diseases. It is of interest to understand the kinetics of protein expression changes during development, but also to properly interpret the major and possibly alternative developmental trajectories. We have investigated human samples from healthy individuals with the aim of describing all B-cell developmental trajectories. We validated a 30-parameter mass cytometry panel and demonstrated the utility of "vaevictis" visualization of B-cell developmental stages. We used the trajectory inference tool "tviblindi" to exhaustively describe all trajectories leading to all developmental ends discovered in the data. Focusing on Natural Effector B cells, we demonstrated the dynamics of expression of nuclear factors (PAX-5, TdT, Ki-67, Bcl-2), cytokine and chemokine receptors (CD127, CXCR4, CXCR5) in relation to the canonical B-cell developmental stage markers. We observed branching of the memory development, where follicular memory formation was marked by CD73 expression. Lastly, we performed an analysis of two example cases of abnormal B-cell development caused by mutations in RAG-1 and Wiskott-Aldrich syndrome gene in patients with primary immunodeficiency. In conclusion, we developed, validated, and presented a comprehensive set of tools for the investigation of B-cell development in the bone marrow compartment.
Data Mining and Modeling for Biomedicine Center for Inflammation Research VIB UGent Ghent Belgium
Department of Applied Mathematics Computer Science and Statistics Ghent University Ghent Belgium
Department of Paediatric Haematology and Oncology University Hospital Motol Prague Czech Republic
Zobrazit více v PubMed
Lebien, T. W. and Tedder, T. F. , B lymphocytes: how they develop and function. Blood 2008. 112: 1570–1580. PubMed PMC
Bousfiha, A. , Moundir, A. , Tangye, S. G. , Picard, C. , Jeddane, L. , Al‐Herz, W. , Rundles, C. C. et al., The 2022 update of iuis phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 2022. 42: 1508–1520. PubMed
Sacks, D. , Baxter, B. , Campbell, B. C. V. et al., Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke 2018. 13: 612–632. PubMed
Park, L. M. , Lannigan, J. and Jaimes, M. C. , OMIP‐069: forty‐color full spectrum flow cytometry panel for deep immunophenotyping of major cell subsets in human peripheral blood. Cytometry Part A 2020. 97: 1044–1051. PubMed PMC
Koladiya, A. and Davis, K. L. , Advances in clinical mass cytometry. Clin. Lab. Med. 2023. 43: 507–519. PubMed
Bendall, S. C. , Nolan, G. P. , Roederer, M. and Chattopadhyay, P. K. , A deep profiler's guide to cytometry. Trends Immunol. 2012. 33: 323–332. PubMed PMC
Bendall, S. C. , Davis, K. L. , Amir, E. A. D. , Tadmor, M. D. , Simonds, E. F. , Chen, T J. , Shenfeld, D. K. et al., Single‐cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014. 157: 714–725. PubMed PMC
Wentink, M. W. J. , Kalina, T. , Perez‐Andres, M. , Molina, L. D. P. , IJspeert, H. , Kavelaars, F. G. , Lankester, A. C. et al., Delineating human B cell precursor development with genetically identified PID cases as a model. Front. Immunol. 2019. 10: 1–12. PubMed PMC
Saelens, W. , Cannoodt, R. , Todorov, H. and Saeys, Y. , A comparison of single‐cell trajectory inference methods. Nat. Biotechnol. 2019. 37: 547–554. PubMed
Kudlacova, J. , Kuzilkova, D. , Barta, F. , Brdičková, N. , Vávrová, A. , Kostka, L. , Hovorka, O. et al., Hybrid macromolecular constructs as a platform for spectral nanoprobes for advanced cellular barcoding in flow cytometry. Macromol. Biosci. 2023. 2300306: 1–12. PubMed
Mei, H. E. , Leipold, M. D. , Schulz, A. R. , Chester, C. and Maecker, H. T. , Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry. J. Immunol. 2015. 194: 2022–2031. PubMed PMC
Kuzilkova, D. , Bugarin, C. , Rejlova, K. , Schulz, A. R. , Mei, H. E. , Paganin, M. , Biffi, A. et al., Either IL‐7 activation of JAK‐STAT or BEZ inhibition of PI3K‐AKT‐mTOR pathways dominates the single‐cell phosphosignature of ex vivo treated pediatric T‐cell acute lymphoblastic leukemia cells. Haematologica 2022. 107: 1293–1310. PubMed PMC
Van Dongen, J. J. M. , Van Der Burg, M. , Kalina, T. , Perez‐Andres, M. , Mejstrikova, E. , Vlkova, M. , Lopez‐Granados, E. et al., EuroFlow‐based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system. Front. Immunol. 2019. 10: 1–21. PubMed PMC
Van Zelm, M. C. , Szczepański, T. , Van Der Burg, M. and Van Dongen, J. J. M. , Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen‐induced B cell expansion. J. Exp. Med. 2007. 204: 645–655. PubMed PMC
Stuchly, J. , Novak, D. , Brdickova, N. , Hadlova, P. , Iksi, A. , Kuzilkova, D. , Svaton, M. et al., Deconstructing complexity: a computational topology approach to trajectory inference in the human thymus with tviblindi. eLife 2024. 13: RP95861.
Kaiser, F. M. P. , Janowska, I. , Menafra, R. , de Gier, M. , Korzhenevich, J. , Pico‐Knijnenburg, I. , Khatri, I. et al., IL‐7 receptor signaling drives human B‐cell progenitor differentiation and expansion. Blood 2023. 142: 1113–1130. PubMed PMC
Amir, E. A. D. , Davis, K. L. , Tadmor, M. D. , Simonds, E. F. , Levine, J. H. , Bendall, S. C. , Shenfeld, D. K. et al., ViSNE enables visualization of high dimensional single‐cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 2013. 31: 545–552. PubMed PMC
McInnes, L. , Healy, J. , Saul, N. and Großberger, L. , UMAP: uniform manifold approximation and projection. J. Open Source Softw. 2018. 3: 861.
Vaskova, M. , Fronkova, E. , Starkova, J. , Kalina, T. , Mejstrikova, E. and Hrusak, O. , CD44 and CD27 delineate B‐precursor stages with different recombination status and with an uneven distribution in nonmalignant and malignant hematopoiesis. Tissue Antigens 2008. 71: 57–66. PubMed
Leung, K. T. , Chan, K. Y. Y. , Ng, P. C. , Lau T. K., Chiu W. M., Tsang K. S., Li C. K. et al., The tetraspanin CD9 regulates migration, adhesion, and homing of human cord blood CD34+ hematopoietic stem and progenitor cells. Blood 2011. 117: 1840–1850. PubMed
Carrion, C. , Guérin, E. , Gachard, N. , le Guyader, A. , Giraut, S. and Feuillard, J. , Adult bone marrow three‐dimensional phenotypic landscape of B‐cell differentiation. Cytometry B Clin. Cytom. 2019. 96: 30–38. PubMed
Mensah, F. F. K. , Armstrong, C. W. , Reddy, V. , Bansal, A. S. , Berkovitz, S. , Leandro, M. J. and Cambridge, G. , CD24 expression and B cell maturation shows a novel link with energy metabolism: potential implications for patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Immunol. 2018. 9. 10.3389/fimmu.2018.02421. PubMed DOI PMC
Reif, K. , Ekland, E. H. , Ohl, L. , Nakano, H. , Lipp, M. , Förster, R. and Cyster, J G. , Balanced responsiveness to chemoattractants from adjacent zones determines B‐cell position. Nature 2002. 416: 94–99. PubMed
Zehentmeier, S. and Pereira, J. P. , Cell circuits and niches controlling B cell development. Immunol. Rev. 2019. 289: 142–157. PubMed PMC
Schena, F. , Volpi, S. , Faliti, C. E. , Penco, F. , Santi, S. , Proietti, M. , Schenk, U. et al., Dependence of immunoglobulin class switch recombination in B cells on vesicular release of ATP and CD73 ectonucleotidase activity. Cell Rep. 2013. 3: 1824–1831. PubMed
Elsner, R. A. and Shlomchik, M. J. , Germinal center and extrafollicular B cell responses in vaccination, immunity, and autoimmunity. Immunity 2020. 53: 1136–1150. PubMed PMC
Setty, M. , Tadmor, M. D. , Reich‐Zeliger, S. , Angel, O. , Salame, T. M. , Kathail, P. , Choi, K. et al., Wishbone identifies bifurcating developmental trajectories from single‐cell data. Nat. Biotechnol. 2016. 34: 637–645. PubMed PMC
Catucci, M. , Castiello, M. , Pala, F. , Bosticardo, M. and Villa, A. , Autoimmunity in Wiskott‐Aldrich syndrome: an unsolved enigma. Front. Immunol. 2012. 3: 1–15. PubMed PMC
Yoshimi, A. , Kamachi, Y. , Imai, K. , Watanabe, N. , Nakadate, H. , Kanazawa, T. , Ozono, S. et al., Wiskott–Aldrich syndrome presenting with a clinical picture mimicking juvenile myelomonocytic leukaemia. Pediatr. Blood. Cancer 2013. 60: 836–841. PubMed
Castiello, M. , Bosticardo, M. , Pala, F. , Catucci, M. , Chamberlain, N. , van Zelm, M. C. , Driessen, G. J. et al., Wiskott‐Aldrich syndrome protein deficiency perturbs the homeostasis of B‐cell compartment in humans. J. Autoimmun. 2014. 50: 42–50. PubMed PMC
Rengan, R. , Ochs, H. , Sweet, L. , Keil, M. L. , Gunning, W. T. , Lachant, N. A. , Boxer, L. A. et al., Actin cytoskeletal function is spared, but apoptosis is increased, in WAS patient hematopoietic cells. Blood 2000. 95: 1283–1292. PubMed