Synthesis of silver nanoparticles using Plantago lanceolata extract and assessing their antibacterial and antioxidant activities
Status odvoláno Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace
PubMed
34675270
PubMed Central
PMC8531362
DOI
10.1038/s41598-021-00296-5
PII: 10.1038/s41598-021-00296-5
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- antioxidancia chemická syntéza chemie farmakologie MeSH
- Bacteria účinky léků MeSH
- bakteriální infekce farmakoterapie MeSH
- kovové nanočástice chemie ultrastruktura MeSH
- lidé MeSH
- nanotechnologie MeSH
- Plantago chemie MeSH
- stříbro chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- odvolaná publikace MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- antioxidancia MeSH
- stříbro MeSH
Silver nanoparticles (Ag. NPs) have shown a biological activity range, synthesized under different environment-friendly approaches. Ag. NPs were synthesized using aqueous crude extract (ACE) isolated from Plantago lanceolata. The ACE and Ag. NPs were characterized and assessed their biological and antioxidant activities. The existence of nanoparticles (NPs) was confirmed by color shift, atomic force microscopy (AFM), and UV-Vis's spectroscopy. The FT-IR analysis indicated the association of biomolecules (phenolic acid and flavonoids) to reduce silver (Ag+) ions. The SEM study demonstrated a sphere-shaped and mean size in the range of 30 ± 4 nm. The EDX spectrum revealed that the Ag. NPs were composed of 54.87% Ag with 20 nm size as identified by SEM and TEM. AFM has ended up being exceptionally useful in deciding morphological elements and the distance across of Ag. NPs in the scope of 23-30 nm. The TEM image showed aggregations of NPs and physical interaction. Ag. NPs formation also confirmed by XPS, DRS and BET studies. Ag. NPs showed efficient activity as compared to ACE, and finally, the bacterial growth was impaired by biogenic NPs. The lethal dose (LD50) of Ag. NPs against Agrobacterium tumefaciens, Proteus vulgaris, Staphylococcus aureus, and Escherichia coli were 45.66%, 139.71%, 332.87%, and 45.54%, with IC50 (08.02 ± 0.68), (55.78 ± 1.01), (12.34 ± 1.35) and (11.68 ± 1.42) respectively, suppressing the growth as compared to ACE. The antioxidant capacity, i.e., 2,2-diphenyl-1-picrylhydrazyl (DPPH) of Ag. NPs were assayed. ACE and Ag. NPs achieved a peak antioxidant capacity of 62.43 ± 2.4 and 16.85 ± 0.4 μg mL-1, compared to standard (69.60 ± 1.1 at 100 μg mL-1) with IC50 (369.5 ± 13.42 and 159.5 ± 10.52 respectively). Finally, the Ag. NPs synthesized by P. lanceolata extract have an excellent source of bioactive natural products (NP). Outstanding antioxidant, antibacterial activities have been shown by NPs and can be used in various biological techniques in future research.
Department of Agriculture University of Swabi Swabi Pakistan
Department of Agronomy Muhammad Nawaz Sharif University of Agriculture Multan 66000 Pakistan
Department of Agronomy The University of Haripur Haripur 22620 Khyber Pakhtunkhwa Pakistan
Department of Chemistry University of Buner Buner 17290 Pakistan
Department of Horticulture Northeast Agricultural University Harbin China
Department of Physics Riphah International University Islamabad 46000 Pakistan
Faculty of Tropical AgriSciences Czech University of Life Sciences Prague Prague Czech Republic
Zobrazit více v PubMed
Shanmugapriya, K. & Kang, H. W. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing. Mater. Sci. Eng.: C105, 110110 (2019). PubMed
Shu, M. et al. Biosynthesis and antibacterial activity of silver nanoparticles using yeast extract as reducing and capping agents. Nanoscale Res. Lett.10.1186/s11671-019-3244-z (2020). PubMed PMC
Velusamy, P., Das, J., Pachaiappan, R., Vaseeharan, B. & Pandian, K. Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachtaindica L.). Ind. Crops Prod.66, 103–109 (2015).
Varadavenkatesan, T., Selvaraj, R. & Vinayagam, R. Dye degradation and antibacterial activity of green synthesized silver nanoparticles using Ipomoea digitata Linn. flower extract. Int. J. Environ. Sci. Technol.16, 2395–2404 (2019).
Vishwasrao, C., Momin, B. & Ananthanarayan, L. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valorization10, 2353–2363 (2019).
Bharathi, D., Josebin, M. D., Vasantharaj, S. & Bhuvaneshwari, V. Biosynthesis of silver nanoparticles using stem bark extracts of Diospyrosmontana and their antioxidant and antibacterial activities. J. Nanostruct. Chem.8, 83–92 (2018).
Rai, M. et al. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol.98, 1951–1961 (2014). PubMed PMC
Daniel, S. K., Vinothini, G., Subramanian, N., Nehru, K. & Sivakumar, M. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaeaviscosa extract for antibacterial activity against human pathogens. J. Nanopart. Res.15, 1319 (2013).
Baláž, M. et al. Corrigendum to “Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity” [Adv. Powder Technol. 28(12) (2017) 3307–3312]. Adv. Powder Technol.30, 219–220. 10.1016/j.apt.2018.11.018 (2019).
Vigo, E., Cepeda, A., Gualillo, O. & Perez-Fernandez, R. In-vitro anti-inflammatory activity of Pinus sylvestris and Plantagolanceolata extracts: effect on inducible NOS, COX-1, COX-2 and their products in J774A. 1 murine macrophages. J. Pharm. Pharmacol.57, 383–391 (2005). PubMed
Dos Santos, C. A. et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci.103, 1931–1944 (2014). PubMed
Loizzo, M. et al. Antioxidant and antibacterial activities on foodborne pathogens of Artocarpusheterophyllus Lam. (Moraceae) leaves extracts. J. Food Sci.75, M291–M295 (2010). PubMed
Nayagam, V., Gabriel, M. & Palanisamy, K. Green synthesis of silver nanoparticles mediated by Cocciniagrandis and Phyllanthusemblica: a comparative comprehension. Appl. Nanosci.8, 205–219 (2018).
Ezer, N. & Arisan, Ö. M. Folk medicines in Merzifon (Amasya, Turkey). Turk. J. Bot.30, 223–230 (2006).
Srikar, S. K., Giri, D. D., Pal, D. B., Mishra, P. K. & Upadhyay, S. N. Green synthesis of silver nanoparticles: A review. Green Sustain. Chem.6, 34 (2016).
Beara, I. N. et al. Comparative analysis of phenolic profile, antioxidant, anti-inflammatory and cytotoxic activity of two closely-related Plantain species: Plantagoaltissima L. and Plantagolanceolata L. LWT-Food Sci. Technol.47, 64–70 (2012).
Dalar, A., Türker, M. & Konczak, I. Antioxidant capacity and phenolic constituents of Malvaneglecta Wallr. and Plantagolanceolata L. from Eastern Anatolia Region of Turkey. J. Herb. Med.2, 42–51 (2012).
Henglein, A. Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater.10, 444–450 (1998).
Song, J. Y. & Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng.32, 79 (2009). PubMed
Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R. & Singh, R. P. Biosynthesis of silver nanoparticles using Ocimumsanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res.13, 2981–2988 (2011).
Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H. & Nohi, A.-A. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochem.42, 919–923 (2007).
Sanghi, R. & Verma, P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Biores. Technol.100, 501–504 (2009). PubMed
Kumar, B., Smita, K., Cumbal, L. & Debut, A. Synthesis of silver nanoparticles using Sacha inchi (Plukenetiavolubilis L.) leaf extracts. Saudi J. Biol. Sci.21, 605–609 (2014). PubMed PMC
Ahmed, E.-H.M., Nour, B. Y., Mohammed, Y. G. & Khalid, H. S. Antiplasmodial activity of some medicinal plants used in Sudanese folk-medicine. Environ. Health Insights (EHI)4, S4108 (2010). PubMed PMC
Roopan, S. M. et al. Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocosnucifera coir extract and its larvicidal activity. Ind. Crops Prod.43, 631–635 (2013).
Gan, P. P. & Li, S. F. Y. Potential of plant as a biological factory to synthesize gold and silver nanoparticles and their applications. Rev. Environ. Sci. Bio/Technol.11, 169–206 (2012).
Girase, B., Depan, D., Shah, J., Xu, W. & Misra, R. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicrobial activity. Mater. Sci. Eng.: C31, 1759–1766 (2011).
Kelly, F. M. & Johnston, J. H. Colored and functional silver nanoparticle–wool fiber composites. ACS Appl. Mater. Interfaces.3, 1083–1092 (2011). PubMed
Dancer, S. J. Hospital cleaning in the 21st century. Eur. J. Clin. Microbiol. Infect. Dis.30, 1473–1481 (2011). PubMed
Gopinath, K., Gowri, S. & Arumugam, A. Phytosynthesis of silver nanoparticles using Pterocarpussantalinus leaf extract and their antibacterial properties. J. Nanostruct. Chem.3, 68 (2013).
Bajer, T. et al. Chemical composition of essential oils from Plantagolanceolata L. leaves extracted by hydrodistillation. J. Food Sci. Technol.53, 1576–1584 (2016). PubMed PMC
Usha, B., Venkataraman, G. & Parida, A. Heavy metal and abiotic stress inducible metallothionein isoforms from Prosopisjuliflora (SW) DC show differences in binding to heavy metals in vitro. Mol. Genet. Genom.281, 99–108 (2009). PubMed
Navrátilová, M. et al. Pharmaceuticals in environment: the effect of ivermectin on ribwort plantain (Plantago lanceolata L.). Environ. Sci. Pollut. Res.27, 31202–31210 (2020). PubMed
Sargin, S. A. Ethnobotanical survey of medicinal plants in Bozyazı district of Mersin, Turkey. J. Ethnopharmacol.173, 105–126 (2015). PubMed
Makarov, V. et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. (aнглoязычнaя вepcия)6, 35–44 (2014). PubMed PMC
Mazzutti, S., Riehl, C. A., Ibañez, E. & Ferreira, S. R. Green-based methods to obtain bioactive extracts from Plantago major and Plantagolanceolata. J. Supercrit. Fluids119, 211–220 (2017).
Nemereshina, O. N., Tinkov, A. A., Gritsenko, V. A. & Nikonorov, A. A. Influence of Plantaginaceae species on E. coli K12 growth in vitro: Possible relation to phytochemical properties. Pharm. Biol.53, 715–724 (2015). PubMed
Abd-Alla, H. I. et al. Efficacy of extracts and iridoid glucosides from Pentaslanceolata on humoral and cell-mediated immune response of viral vaccine. Med. Chem. Res.26, 2196–2204 (2017).
Sõukand, R. & Pieroni, A. The importance of a border: medical, veterinary, and wild food ethnobotany of the Hutsuls living on the Romanian and Ukrainian sides of Bukovina. J. Ethnopharmacol.185, 17–40 (2016). PubMed
Bachheti, R., Godebo, Y., Bachheti, A., Yassin, M. O. & Husen, A. Root-based fabrication of metal/metal-oxide nanomaterials and their various applications. In Nanomaterials for Agriculture and Forestry Applications (eds Husen, A. & Jawaid, M.) 135–166 (Elsevier, 2020).
Ahmad, M. et al. An ethnobotanical study of medicinal plants in high mountainous region of Chail valley (District Swat-Pakistan). J. Ethnobiol. Ethnomed.10, 36 (2014). PubMed PMC
Izhaki, I. Emodin—A secondary metabolite with multiple ecological functions in higher plants. New Phytol.155, 205–217 (2002).
Mazzutti, S., Ferreira, S. R. S., Herrero, M. & Ibañez, E. Intensified aqueous-based processes to obtain bioactive extracts from Plantago major and Plantagolanceolata. J. Supercrit. Fluids119, 64–71 (2017).
Chugh, H. et al. Role of gold and silver nanoparticles in cancer nano-medicine. Artif. Cells Nanomed. Biotechnol.46, 1210–1220 (2018). PubMed
Nikaeen, G., Yousefinejad, S., Rahmdel, S., Samari, F. & Mahdavinia, S. Central composite design for optimizing the biosynthesis of silver nanoparticles using Plantago major extract and investigating antibacterial, antifungal and antioxidant activity. Sci. Rep.10, 1–16 (2020). PubMed PMC
Hai, R. et al. Influenza A (H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat. Commun.4, 1–9 (2013). PubMed PMC
Marta, B. et al. Designing chitosan–silver nanoparticles–graphene oxide nanohybrids with enhanced antibacterial activity against Staphylococcusaureus. Colloids Surf., A487, 113–120 (2015).
Ibrahim, M. et al. Acetyl and butyryl cholinesterase inhibitory sesquiterpene lactones from Amberboaramosa. Chem. Cent. J.7, 116 (2013). PubMed PMC
Ibrahim, H. M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci.8, 265–275 (2015).
Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem.12, 908–931 (2019).
Sharma, D., Pramanik, A. & Agrawal, P. K. Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsisneglecta BAB-5510 isolated from leaves of Cupressustorulosa D. Don. 3 Biotech6, 210 (2016). PubMed PMC
Sharma, V. K., Yngard, R. A. & Lin, Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Coll. Interface. Sci.145, 83–96 (2009). PubMed
Venkatesan, J., Kim, S.-K. & Shim, M. S. Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae Ecklonia cava. Nanomaterials6, 235 (2016). PubMed PMC
Edison, T. J. I. & Sethuraman, M. Biogenic robust synthesis of silver nanoparticles using Punicagranatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.104, 262–264 (2013). PubMed
Nakkala, J. R., Mata, R., Bhagat, E. & Sadras, S. R. Green synthesis of silver and gold nanoparticles from Gymnemasylvestre leaf extract: study of antioxidant and anticancer activities. J. Nanopart. Res.17, 151 (2015).
Ibrahim, Y. et al. Unveiling fabrication and environmental remediation of MXene-based nanoarchitectures in toxic metals removal from wastewater: Strategy and mechanism. Nanomaterials10, 885 (2020). PubMed PMC
Eckhardt, S. et al. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem. Rev.113, 4708–4754 (2013). PubMed
Fabiyi, O. A., Alabi, R. O. & Ansari, R. A. Nanoparticles’ synthesis and their application in the management of phytonematodes: An overview. In Management of Phytonematodes: Recent Advances and Future Challenges (eds Ansari, R. et al.) 125–140 (Springer, 2020).
Al Aboody, M. S. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candidatropicalis. Artif. Cells Nanomed. Biotechnol.47, 2107–2113 (2019). PubMed
Puga, F., Navio, J. & Hidalgo, M. Enhanced UV and visible light photocatalytic properties of synthesized AgBr/SnO2 composites. Sep. Purif. Technol.257, 117948 (2021).
Ghosh, S., Molla, R. A., Kayal, U., Bhaumik, A. & Islam, S. M. Ag NPs decorated on a COF in the presence of DBU as an efficient catalytic system for the synthesis of tetramic acids via CO2 fixation into propargylic amines at atmospheric pressure. Dalton Trans.48, 4657–4666 (2019). PubMed
Taglietti, A. et al. Antibacterial activity of glutathione-coated silver nanoparticles against gram positive and gram negative bacteria. Langmuir28, 8140–8148 (2012). PubMed
Kannaiyan, S. & Gopal, A. Biogenic synthesized silver colloid for colorimetric sensing of dichromate ion and antidiabetic studies. Res. Chem. Intermed.43, 2693–2706 (2017).
Tomaino, A. et al. Antioxidant activity and phenolic profile of pistachio (Pistacia vera L., variety Bronte) seeds and skins. Biochimie92, 1115–1122 (2010). PubMed
Dara, P. K. et al. Synthesis and biochemical characterization of silver nanoparticles grafted chitosan (Chi-Ag-NPs): in vitro studies on antioxidant and antibacterial applications. SN Appl. Sci.2, 1–12 (2020).
Banerjee, P., Satapathy, M., Mukhopahayay, A. & Das, P. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour. Bioprocess.1, 3 (2014).
Tang, S. & Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthcare Mater.7, 1701503 (2018). PubMed
Beyene, H. D., Werkneh, A. A., Bezabh, H. K. & Ambaye, T. G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol.13, 18–23 (2017).
Adom, M. B. et al. Chemical constituents and medical benefits of Plantago major. Biomed. Pharmacother.96, 348–360 (2017). PubMed
Arshad, M. et al. An ethnobiological study in Kala Chitta hills of Pothwar region, Pakistan: Multinomial logit specification. J. Ethnobiol. Ethnomed.10, 13 (2014). PubMed PMC
Sultan-Ud-Din, A. H., Ali, H. & Ali, H. Floristic composition and life form classes of district Shangla, Khyber Pakhtunkhwa, Pakistan. J Bio Env Sci8, 187–206 (2016).
Hussain, W., Ullah, M., Dastagir, G. & Badshah, L. Quantitative ethnobotanical appraisal of medicinal plants used by inhabitants of lower Kurram, Kurram agency, Pakistan. Avicenna J. Phytomed.8, 313 (2018). PubMed PMC