The invasive cactus Opuntia stricta creates fertility islands in African savannas and benefits from those created by native trees

. 2021 Oct 21 ; 11 (1) : 20748. [epub] 20211021

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34675315
Odkazy

PubMed 34675315
PubMed Central PMC8531129
DOI 10.1038/s41598-021-99857-x
PII: 10.1038/s41598-021-99857-x
Knihovny.cz E-zdroje

The patchy distribution of trees typical of savannas often results in a discontinuous distribution of water, nutrient resources, and microbial communities in soil, commonly referred to as "islands of fertility". We assessed how this phenomenon may affect the establishment and impact of invasive plants, using the invasion of Opuntia stricta in South Africa's Kruger National Park as case study. We established uninvaded and O. stricta-invaded plots under the most common woody tree species in the study area (Vachellia nilotica subsp. kraussiana and Spirostachys africana) and in open patches with no tree cover. We then compared soil characteristics, diversity and composition of the soil bacterial communities, and germination performance of O. stricta and native trees between soils collected in each of the established plots. We found that the presence of native trees and invasive O. stricta increases soil water content and nutrients, and the abundance and diversity of bacterial communities, and alters soil bacterial composition. Moreover, the percentage and speed of germination of O. stricta were higher in soils conditioned by native trees compared to soils collected from open patches. Finally, while S. africana and V. nilotica trees appear to germinate equally well in invaded and uninvaded soils, O. stricta had lower and slower germination in invaded soils, suggesting the potential release of phytochemicals by O. stricta to avoid intraspecific competition. These results suggest that the presence of any tree or shrub in savanna ecosystems, regardless of origin (i.e. native or alien), can create favourable conditions for the establishment and growth of other plants.

Zobrazit více v PubMed

Pyšek P, et al. Naturalized alien flora of the world. Preslia. 2017;89:203–274. doi: 10.23855/preslia.2017.203. DOI

Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. (2020). PubMed PMC

Vilà M, et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 2011;14:702–708. doi: 10.1111/j.1461-0248.2011.01628.x. PubMed DOI

Pyšek P, et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Chang. Biol. 2012;18:1725–1737. doi: 10.1111/j.1365-2486.2011.02636.x. PubMed DOI

Le Roux JJ, et al. Recent anthropogenic plant extinctions differ in biodiversity hotspots and coldspots. Curr. Biol. 2019;29:2912–2918.e2. doi: 10.1016/j.cub.2019.07.063. PubMed DOI

Hulme PE, et al. Greater focus needed on alien plant impacts in protected areas. Conserv. Lett. 2014;7:459–466. doi: 10.1111/conl.12061. DOI

Foxcroft LC, Pyšek P, Richardson DM, Genovesi P, MacFadyen S. Plant invasion science in protected areas: progress and priorities. Biol. Invasions. 2017;19:1353–1378. doi: 10.1007/s10530-016-1367-z. DOI

Novoa A, et al. Invasion syndromes: A systematic approach for predicting biological invasions and facilitating effective management. Biol. Invasions. 2020;22:1801–1820. doi: 10.1007/s10530-020-02220-w. DOI

Foxcroft LC, Pickett STA, Cadenasso ML. Expanding the conceptual frameworks of plant invasion ecology. Perspect. Plant Ecol. Evol. Syst. 2011;13:89–100. doi: 10.1016/j.ppees.2011.03.004. DOI

Scholes RJ, Archer SR. Tree-grass interactions in savannas. Annu. Rev. Ecol. Syst. 1997;28:517–544. doi: 10.1146/annurev.ecolsys.28.1.517. DOI

Millennium Ecosystem Assessment . Ecosystems and Human Well-Being: Biodiversity Synthesis. Island Press; 2005.

Foxcroft LC, Richardson DM, Rejmánek M, Pyšek P. Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biol. Invasions. 2010;12:3913–3933. doi: 10.1007/s10530-010-9823-7. DOI

Rejmánek M, Huntley BJ, Le Roux JJ, Richardson DM. A rapid survey of the invasive plant species in western Angola. Afr. J. Ecol. 2017;55:56–69. doi: 10.1111/aje.12315. DOI

Shackleton RT, Foxcroft LC, Pyšek P, Wood LE, Richardson DM. Assessing biological invasions in protected areas after 30 years: Revisiting nature reserves targeted by the 1980s SCOPE programme. Biol. Conserv. 2020;243:108424. doi: 10.1016/j.biocon.2020.108424. DOI

Skarpe C. Dynamics of savanna ecosystems. J. Veg. Sci. 1992;3:293–300. doi: 10.2307/3235754. DOI

Okin GS, et al. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 2008;113:G2. doi: 10.1029/2007JF000758. DOI

Ridolfi L, Laio F, D’Odorico P. Fertility island formation and evolution in dryland ecosystems. Ecol. Soc. 2008;13:5. doi: 10.5751/ES-02302-130105. DOI

Perroni-Ventura Y, Montaña C, Garcí-a-Oliva F. Carbon-nitrogen interactions in fertility island soil from a tropical semi-arid ecosystem. Funct. Ecol. 2010;24:233–242. doi: 10.1111/j.1365-2435.2009.01610.x. DOI

Belnap J, Susan LP. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl. 2001;51:1261–1275. doi: 10.1890/1051-0761(2001)011[1261:SBIAUG]2.0.CO;2. DOI

Ludwig F, Kroon H, Prins HHT, Berendse F. Effects of nutrients and shade on tree-grass interactions in an East African savanna. J. Veg. Sci. 2001;12:579–588. doi: 10.2307/3237009. DOI

Reinhart KO, Callaway RM. Soil biota and invasive plants. New Phytol. 2006;170:445–457. doi: 10.1111/j.1469-8137.2006.01715.x. PubMed DOI

Weidenhamer JD, Callaway RM. Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. J. Chem. Ecol. 2010;36:59–69. doi: 10.1007/s10886-009-9735-0. PubMed DOI

Levine JM, Pachepsky E, Kendall BE, Yelenik SG, Lambers JHR. Plant-soil feedbacks and invasive spread. Ecol. Lett. 2006;9:1005–1014. doi: 10.1111/j.1461-0248.2006.00949.x. PubMed DOI

du Toit, J. T., Rogers, K. H. & Biggs, H. C. The Kruger Experience: Ecology and Management of Savanna Heterogeneity. (Island Press, 2003).

Foxcroft LC, Van Wilgen NJ, Baard JA, Cole NS. Biological invasions in South African National Parks. Bothalia. 2017;47:11. doi: 10.4102/abc.v47i2.2158. DOI

Pyšek P, et al. Into the great wide open: do alien plants spread from rivers to dry savanna in the Kruger National Park? NeoBiota. 2020;60:61–77. doi: 10.3897/neobiota.60.54608. DOI

Kueffer C, Pyšek P, Richardson DM. Integrative invasion science: Model systems, multi-site studies, focused meta-analysis and invasion syndromes. New Phytol. 2013;200:615–633. doi: 10.1111/nph.12415. PubMed DOI

Lotter WD, Hoffmann JH. An integrated management plan for the control of Opuntia stricta (Cactaceae) in the Kruger National Park, South Africa. Koedoe. 1998;41:63–68. doi: 10.4102/koedoe.v41i1.247. DOI

Hoffmann JH, Moran VC, Zimmermann HG, Impson FAC. Biocontrol of a prickly pear cactus in South Africa: Reinterpreting the analogous, renowned case in Australia. J. Appl. Ecol. 2020;13737:1365–2664.

Foxcroft LC, Rouget M, Richardson DM, MacFadyen S. Reconstructing 50 years of Opuntia stricta invasion in the Kruger National Park, South Africa: Environmental determinants and propagule pressure. Divers. Distrib. 2004;10:427–437. doi: 10.1111/j.1366-9516.2004.00117.x. DOI

Novoa A, Le Roux JJ, Robertson MP, Wilson JRU, Richardson DM. Introduced and invasive cactus species: A global review. AoB Plants. 2015;7:1. doi: 10.1093/aobpla/plu078. PubMed DOI PMC

Foxcroft LC, Hoffmann JH, Viljoen JJ, Kotze JJ. Environmental factors influencing the distribution of Opuntia stricta, an invasive alien plant in the Kruger National Park, South Africa. S. Afr. J. Bot. 2007;73:109–112. doi: 10.1016/j.sajb.2006.09.008. DOI

Foxcroft LC, Rejmánek M. What helps Opuntia stricta invade Kruger National Park, South Africa: Baboons or elephants? Appl. Veg. Sci. 2007;10:265–270. doi: 10.1111/j.1654-109X.2007.tb00525.x. DOI

Anderson, E. F. The Cactus Family. (Timber Press, 2001).

Reyes-Agüero JA, Aguirre RJR, Valiente-Banuet A. Reproductive biology of Opuntia: A review. J. Arid Environ. 2006;64:549–585. doi: 10.1016/j.jaridenv.2005.06.018. DOI

Robertson MP, et al. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr. Zool. 2011;46:205–223. doi: 10.3377/004.046.0202. DOI

Butterfield BJ, Briggs JM. Patch dynamics of soil biotic feedbacks in the Sonoran Desert. J. Arid Environ. 2009;73:96–102. doi: 10.1016/j.jaridenv.2008.09.012. DOI

Neffar, S., Chenchouni, H., Beddiar, A. & Redjel, N. Rehabilitation of degraded rangeland in drylands by Prickly Pear (Opuntia ficus-indica L.) plantations: Effect on soil and spontaneous vegetation. Ecol. Balk.5, 63–76 (2013).

Garner W, Steinberger Y. A proposed mechanism for the formation of ‘Fertile Islands’ in the desert ecosystem. J. Arid Environ. 1989;16:257–262. doi: 10.1016/S0140-1963(18)30941-8. DOI

Marchante, H., Elizabete M, & Helena, F. Invasion of the Portuguese dune ecosystems by the exotic species Acacia longifolia (Andrews) Willd.: effects at the community level. Plant invasions: ecological threats and management solutions. pp. 75–85 (2003).

Marchante E, et al. Short-and long-term impacts of Acacia longifolia invasion on the belowground processes of a Mediterranean coastal dune ecosystem. Appl. Soil Ecol. 2008;40(2):210–217. doi: 10.1016/j.apsoil.2008.04.004. DOI

Yelenik SG, Stock WD, Richardson DM. Ecosystem level impacts of invasive Acacia saligna in the South African fynbos. Restor. Ecol. 2004;12(1):44–51. doi: 10.1111/j.1061-2971.2004.00289.x. DOI

Werner C, et al. High competitiveness of a resource demanding invasive acacia under low resource supply. Plant. Ecol. 2010;206(1):83–96. doi: 10.1007/s11258-009-9625-0. DOI

Le Maitre DC, et al. Impacts of invasive Australian acacias: implications for management and restoration. Divers. Distrib. 2011;17(5):1015–1029. doi: 10.1111/j.1472-4642.2011.00816.x. DOI

Bargali K, Bargali SS. Acacia nilotica: a multipurpose leguminous plant. Nat. Sci. 2009;7:11–19.

Rughöft S, et al. Community composition and abundance of bacterial, archaeal and nitrifying populations in savanna soils on contrasting bedrock material in Kruger National Park, South Africa. Front. Microbiol. 2016;7:1638. PubMed PMC

Neilson JW, et al. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012;16:553–566. doi: 10.1007/s00792-012-0454-z. PubMed DOI

de Vos, P. et al. The Firmicutes. Bergey’s Manual of Systematic Bacteriology. (Springer, 2009).

Brockett BFT, Prescott CE, Grayston SJ. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 2012;44:9–20. doi: 10.1016/j.soilbio.2011.09.003. DOI

Yang Y, Dou Y, An S. Testing association between soil bacterial diversity and soil carbon storage on the Loess Plateau. Sci. Total Environ. 2018;626:48–58. doi: 10.1016/j.scitotenv.2018.01.081. PubMed DOI

Rajaniemi TK, Allison VJ. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biol. Biochem. 2009;41:102–109. doi: 10.1016/j.soilbio.2008.10.001. DOI

Novoa, A., Rodríguez, R., Richardson, D. & González, L. Soil quality: A key factor in understanding plant invasion? The case of Carpobrotus edulis (L.) N.E.Br. Biol. Invasions16, 429–443 (2014).

Penfield S. Seed dormancy and germination. Curr. Biol. 2017;27:R874–R878. doi: 10.1016/j.cub.2017.05.050. PubMed DOI

Tielbörger K, Prasse R. Do seeds sense each other? Testing for density-dependent germination in desert perennial plants. Oikos. 2009;118:792–800. doi: 10.1111/j.1600-0706.2008.17175.x. DOI

Renne IJ, et al. Eavesdropping in plants: delayed germination via biochemical recognition. J. Ecol. 2014;102:86–94. doi: 10.1111/1365-2745.12189. DOI

Yannelli FA, Novoa A, Lorenzo P, Rodríguez J, Le Roux JJ. No evidence for novel weapons: biochemical recognition modulates early ontogenetic processes in native species and invasive acacias. Biol. Invasions. 2020;22:549–562. doi: 10.1007/s10530-019-02110-w. DOI

Al-Wakeel SAM, Gabr MA, Hamid AA, Abu-El-Soud WM. Allelopathic effects of Acacia nilotica leaf residue on Pisum sativum L. Allelopath. J. 2007;19:411.

Scholes, M. C., Scholes, R. J., Otter, L. B. & Woghiren, A. J. Biogeochemistry: The cycling of elements. in The Kruger Experience: Ecology and Management of Savanna Heterogeneity (eds. du Toit, J. T., Rogers, K. H. & Biggs, H. C.) 130–148 (Island Press, 2003).

Kyalangalilwa B, Boatwright JS, Daru BH, Maurin O, van der Bank M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia. Bot. J. Linn. Soc. 2013;172:500–523. doi: 10.1111/boj.12047. DOI

van Wyk, B. & van Wyk, P. Field Guide to Trees of Southern Africa. (Struik Nature, 2013).

Coates Palgrave, K. & Coates Palgrave, M. Palgrave’s Trees of Southern Africa. (Struik Publishers, 2002).

Novoa A, Kumschick S, Richardson DM, Rouget M, Wilson JRU. Native range size and growth form in Cactaceae predict invasiveness and impact. NeoBiota. 2016;30:75–90. doi: 10.3897/neobiota.30.7253. DOI

Allen, S. E. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1989).

Tabatabai MA, Bremner JM. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969;1:301–307. doi: 10.1016/0038-0717(69)90012-1. DOI

Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils. 1988;6:68–72. doi: 10.1007/BF00257924. DOI

Allison SD, Vitousek PM. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition. Biotropica. 2004;36:285–296.

German DP, Chacon SS, Allison SD. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology. 2011;92:1471–1480. doi: 10.1890/10-2028.1. PubMed DOI

Lane DJ, et al. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. 1985;82:6955–6959. doi: 10.1073/pnas.82.20.6955. PubMed DOI PMC

Tringe SG, Hugenholtz P. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 2008;11:442–446. doi: 10.1016/j.mib.2008.09.011. PubMed DOI

Bukin YS, et al. The effect of 16s rRNA region choice on bacterial community metabarcoding results. Sci. Data. 2019;6:1–14. doi: 10.1038/sdata.2019.7. PubMed DOI PMC

Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J. Microbiol. Methods. 2007;69:330–339. doi: 10.1016/j.mimet.2007.02.005. PubMed DOI PMC

Beckers B, et al. Performance of 16s rDNA primer pairs in the study of rhizosphere and endosphere bacterial microbiomes in metabarcoding studies. Front. Microbiol. 2016;7:1–15. doi: 10.3389/fmicb.2016.00650. PubMed DOI PMC

Thijs S, et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front. Microbiol. 2017;8:1–15. doi: 10.3389/fmicb.2017.00494. PubMed DOI PMC

Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 2011;77(10):3219–3226. doi: 10.1128/AEM.02810-10. PubMed DOI PMC

Schloss PD, et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC

Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07. PubMed DOI PMC

McMurdie PJ, Holmes S. Waste not, want not: Why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014;10:e1003531. doi: 10.1371/journal.pcbi.1003531. PubMed DOI PMC

Weiss S, et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome. 2017;5:1–18. doi: 10.1186/s40168-017-0237-y. PubMed DOI PMC

de Cárcer DA, Denman SE, McSweeney C, Morrison M. Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl. Environ. Microbiol. 2011;77:8795–8798. doi: 10.1128/AEM.05491-11. PubMed DOI PMC

Chiapusio G, Sánchez AM, Reigosa MJ, González L, Pellissier F. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 1997;23:2445–2453. doi: 10.1023/B:JOEC.0000006658.27633.15. DOI

Oksanen, J. F. et al.vegan: Community Ecology Package. R package version 2.3-3. (2016).

Jost L. Entropy and diversity. Oikos. 2006;113:363–375. doi: 10.1111/j.2006.0030-1299.14714.x. DOI

Jost L. The relation between evenness and diversity. Diversity. 2010;2:207–232. doi: 10.3390/d2020207. DOI

Jost L. Partitioning diversity into independent alpha and beta components. Ecology. 2007;88:2427–2439. doi: 10.1890/06-1736.1. PubMed DOI

Charney, N. & Record, S. vegetarian: Jost Diversity Measures for Community Data. R package version 1.2. (2012).

Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 2001;26:32–46.

Segata N, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12:1–18. doi: 10.1186/1465-6906-12-S1-P1. PubMed DOI PMC

Clarke KR. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...