Roadmap on Recent Progress in FINCH Technology
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
BJJWZYJH01201910007022
Beijing Outstanding Young Talents
61527821, 61521093, 61905257
National Natural Science Foundation of China (NSFC)
R21 GM134462
NIGMS NIH HHS - United States
20211086
Network Joint Research Center for Materials and Devices
161009
Fok Ying Tong Education Foundation
SPS-985048
North Atlantic Treaty Organization
(1669/16)
Israel Science Foundation
R21GM134462
NIH HHS - United States
project 21-01953S
Grantová Agentura České Republiky
61775019, 92050117, 61861136010
National Natural Science Foundation of China
JP18H01456 and JP19H03202
Japan Society for the Promotion of Science
456789
National Science Foundation
(PRESTO) (JPMJPR15P8, JPMJPR16P8, JPMJPR17P2)
Precursory Research for Embryonic Science and Technology
2017YFB1002900
National Key R&D Program of China
RO1 NS111749 to SA, NIH R21 DC017292 to JA
NIH HHS - United States
project FSI-S-20-6353
Brno University of Technology
PubMed
34677283
PubMed Central
PMC8539709
DOI
10.3390/jimaging7100197
PII: jimaging7100197
Knihovny.cz E-resources
- Keywords
- Fresnel incoherent correlation holography, color holography, computational coherent superposition, digital holographic microscopy, digital holography, fluorescence microscopy, incoherent holography, lattice light-sheet holography, metasurfaces, multiplexed imaging, phase-shifting interferometry, single-molecule localization microscopy,
- Publication type
- Journal Article MeSH
- Review MeSH
Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.
Department of Optics Palacký University 17 Listopadu 1192 12 771 46 Olomouc Czech Republic
Faculty of Systems Engineering Wakayama University Sakaedani 930 Wakayama 640 8510 Japan
PRESTO Japan Science and Technology Agency 4 1 8 Honcho Kawaguchi 332 0012 Saitama Japan
School of Electrical and Computer Engineering University of Georgia Athens GA 30602 USA
School of Physics Science and Engineering Tongji University Shanghai 200092 China
See more in PubMed
Rosen J., Brooker G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007;32:912–914. doi: 10.1364/OL.32.000912. PubMed DOI
Peters P.J. Incoherent Holograms with Mercury Light Source. Appl. Phys. Lett. 1966;8:209. doi: 10.1063/1.1754558. DOI
Sirat G., Psaltis D. Conoscopic holography. Opt. Lett. 1985;10:4–6. doi: 10.1364/OL.10.000004. PubMed DOI
Yamaguchi I., Zhang T. Phase-shifting digital holography. Opt. Lett. 1997;22:1268–1270. doi: 10.1364/OL.22.001268. PubMed DOI
Poon T.-C. Three-dimensional image processing and optical scanning holography. Adv. Imaging Electron Phys. 2003;126:329–350. doi: 10.1016/s1076-5670(03)80018-6. DOI
Abookasis D., Rosen J. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene. Appl. Opt. 2006;45:6533–6538. doi: 10.1364/AO.45.006533. PubMed DOI
Rosen J., Vijayakumar A., Kumar M., Rai M.R., Kelner R., Kashter Y., Bulbul A., Mukherjee S. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon. 2019;11:1–66. doi: 10.1364/AOP.11.000001. DOI
Rosen J., Kelner R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express. 2014;22:29048–29066. doi: 10.1364/OE.22.029048. PubMed DOI PMC
Goodman J. Introduction to Fourier Optics. 2nd ed. McGraw-Hill; New York, NY, USA: 1996. pp. 63–95. Chapter 4.
Brooker G., Siegel N., Wang V., Rosen J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt. Express. 2011;19:5047–5062. doi: 10.1364/OE.19.005047. PubMed DOI PMC
Kim M.K. Adaptive optics by incoherent digital holography. Opt. Lett. 2012;37:2694–2696. doi: 10.1364/OL.37.002694. PubMed DOI
Nobukawa T., Katano Y., Goto M., Muroi T., Kinoshita N., Iguchi Y., Ishii N. Incoherent digital holography simulation based on scalar diffraction theory. J. Opt. Soc. Am. A. 2021;38:924–932. doi: 10.1364/JOSAA.426579. PubMed DOI
Tahara T., Kanno T., Arai Y., Ozawa T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017;19:065705. doi: 10.1088/2040-8986/aa6e82. DOI
Anand V., Katkus T., Lundgaard S., Linklater D.P., Ivanova E.P., Ng S.H., Juodkazis S. Fresnel incoherent correlation holography with single camera shot. Opto-Electron. Adv. 2020;3:200004. doi: 10.29026/oea.2020.200004. DOI
Wu M., Tang M., Zhang Y., Du Y., Ma F., Liang E., Gong Q. Single-shot Fresnel incoherent correlation holography mi-croscopy with two-step phase-shifting. J. Mod. Opt. 2021;68:564–572. doi: 10.1080/09500340.2021.1936240. DOI
Siegel N., Brooker G. Single shot holographic super-resolution microscopy. Opt. Express. 2021;29:15953–15968. doi: 10.1364/OE.424175. PubMed DOI
Rosen J., Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon. 2008;2:190–195. doi: 10.1038/nphoton.2007.300. DOI
Brooker G., Siegel N., Rosen J., Hashimoto N., Kurihara M., Tanabe A. In-line FINCH super resolution digital holo-graphic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens. Opt. Lett. 2013;38:5264–5267. doi: 10.1364/OL.38.005264. PubMed DOI PMC
Kelner R., Katz B., Rosen J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging sys-tem. Optica. 2014;1:70–74. doi: 10.1364/OPTICA.1.000070. PubMed DOI PMC
Siegel N., Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy. Opt. Express. 2014;22:22298–22307. doi: 10.1364/OE.22.022298. PubMed DOI PMC
Kashter Y., Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture. Opt. Express. 2014;22:20551–20565. doi: 10.1364/OE.22.020551. PubMed DOI PMC
Kashter Y., Vijayakumar A., Miyamoto Y., Rosen J. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett. 2016;41:1558–1561. doi: 10.1364/OL.41.001558. PubMed DOI
Kashter Y., Vijayakumar A., Rosen J. Resolving images by blurring: Superresolution method with a scattering mask be-tween the observed objects and the hologram recorder. Optica. 2017;4:932–939. doi: 10.1364/OPTICA.4.000932. DOI
Rosen J., Brooker G. Fluorescence incoherent color holography. Opt. Express. 2007;15:2244–2250. doi: 10.1364/OE.15.002244. PubMed DOI
Kim M.K. Full color natural light holographic camera. Opt. Express. 2013;21:9636–9642. doi: 10.1364/OE.21.009636. PubMed DOI
Tahara T., Koujin T., Matsuda A., Ishii A., Ito T., Ichihashi Y., Oi R. Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited] Appl. Opt. 2021;60:A260–A267. doi: 10.1364/AO.406068. PubMed DOI
Kelner R., Rosen J. Spatially incoherent single channel digital Fourier holography. Opt. Lett. 2012;37:3723–3725. doi: 10.1364/OL.37.003723. PubMed DOI
Kelner R., Rosen J., Brooker G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express. 2013;21:20131–20144. doi: 10.1364/OE.21.020131. PubMed DOI
Vijayakumar A., Kashter Y., Kelner R., Rosen J. Coded aperture correlation holography—A new type of incoherent digital holograms. Opt. Express. 2016;24:12430–12441. doi: 10.1364/OE.24.012430. PubMed DOI
Bouchal P., Kapitán J., Chmelík R., Bouchal Z. Point spread function and two-point resolution in Fresnel incoherent cor-relation holography. Opt. Express. 2011;19:15603–15620. doi: 10.1364/OE.19.015603. PubMed DOI
Lai X., Zeng S., Lv X., Yuan J., Fu L. Violation of the Lagrange invariant in an optical imaging system. Opt. Lett. 2013;38:1896–1898. doi: 10.1364/OL.38.001896. PubMed DOI
Katz B., Rosen J., Kelner R., Brooker G. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM) Opt. Express. 2012;20:9109–9121. doi: 10.1364/OE.20.009109. PubMed DOI
Nobukawa T., Muroi T., Katano Y., Kinoshita N., Ishii N. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett. 2018;43:1698–1701. doi: 10.1364/OL.43.001698. PubMed DOI
Sakamaki S., Yoneda N., Nomura T. Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens. Appl. Opt. 2020;59:6612–6618. doi: 10.1364/AO.393176. PubMed DOI
Liang D., Zhang Q., Wang J., Liu J. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt. 2020;67:92–98. doi: 10.1080/09500340.2019.1695970. DOI
Anand V., Katkus T., Ng S.H., Juodkazis S. Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited] Chin. Opt. Lett. 2021;19:020501. doi: 10.3788/COL202119.020501. DOI
Zhou H., Huang L., Li X., Li X., Geng G., An K., Li Z., Wang Y. All-dielectric bifocal isotropic metalens for single-shot hologram generation device. Opt. Express. 2020;28:21549–21559. doi: 10.1364/OE.396372. PubMed DOI
Bouchal P., Bouchal Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Opt. Lett. 2012;37:2949–2951. doi: 10.1364/OL.37.002949. PubMed DOI
Kim N., Alam M.A., Bang L.T., Phan A.-H., Piao M.-L., Erdenebat M.-U. Advances in the light field displays based on integral imaging and holographic techniques (Invited Paper) Chin. Opt. Lett. 2014;12:60005–60009. doi: 10.3788/COL201412.060005. DOI
Marar A., Kner P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography. Opt. Lett. 2020;45:591–594. doi: 10.1364/OL.379047. PubMed DOI PMC
Potcoava M., Mann C., Art J., Alford S. Spatio-temporal performance in an incoherent holography lattice light-sheet mi-croscope (IHLLS) Opt. Express. 2021;29:23888–23901. doi: 10.1364/OE.425069. PubMed DOI PMC
Tahara T., Ito T., Ichihashi Y., Oi R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. Opt. Lett. 2020;45:2482–2485. doi: 10.1364/OL.386264. PubMed DOI
Bouchal P., Bouchal Z. Concept of coherence aperture and pathways toward white light hire-resolution correlation imaging. N. J. Phys. 2013;15:123002. doi: 10.1088/1367-2630/15/12/123002. DOI
Nobukawa T., Katano Y., Goto M., Muroi T., Kinoshita N., Iguchi Y., Ishii N. Coherence aperture restricted spatial reso-lution for an arbitrary depth plane in incoherent digital holography. Appl. Opt. 2021;60:5392–5398. doi: 10.1364/AO.426583. PubMed DOI
Nobukawa T., Katano Y., Muroi T., Kinoshita N., Ishii N. Sampling requirements and adaptive spatial averaging for in-coherent digital holography. Opt. Express. 2019;27:33634–33651. doi: 10.1364/OE.27.033634. PubMed DOI
Wan Y., Man T., Wu F., Kim M.K., Wang D. Parallel phase-shifting self-interference digital holography with faithful re-construction using compressive sensing. Opt. Lasers Eng. 2016;86:38–43. doi: 10.1016/j.optlaseng.2016.05.004. DOI
Quan X., Matoba O., Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett. 2017;42:383–386. doi: 10.1364/OL.42.000383. PubMed DOI
Nguyen C.M., Kwon H.-S. Common-path off-axis incoherent Fourier holography with a maximum overlapping interference are. Opt. Lett. 2019;44:3406–3409. doi: 10.1364/OL.44.003406. PubMed DOI
Weng J., Clark D.C., Kim M.K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography. Opt. Commun. 2016;366:88–93. doi: 10.1016/j.optcom.2015.12.039. DOI
Choi K., Joo K.-I., Lee T.-H., Kim H.-R., Yim J., Do H., Min S.-W. Compact self-interference incoherent digital holo-graphic camera system with real-time operation. Opt. Express. 2019;27:4814–4833. doi: 10.1364/OE.27.004818. PubMed DOI
Zhang Y., Wu M.-T., Tang M.-Y., Ma F.-Y., Liang E.-J., Du Y.-L., Duan Z.-Y., Gong Q.-X. Fresnel incoherent correlation hologram recording in real-time. Optik. 2021;241:166938. doi: 10.1016/j.ijleo.2021.166938. DOI
Hong J., Kim M.K. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett. 2013;38:5196–5199. doi: 10.1364/OL.38.005196. PubMed DOI PMC
Indebetouw G., El Maghnouji A., Foster R. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus. J. Opt. Soc. Am. A. 2005;22:892–898. doi: 10.1364/JOSAA.22.000892. PubMed DOI PMC
Zhu Z., Shi Z. Self-interference polarization holographic imaging of a three-dimensional incoherent scene. Appl. Phys. Lett. 2016;109:091104. doi: 10.1063/1.4962140. DOI
Choi K., Yim J., Yoo S., Min S.-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017;42:3940–3943. doi: 10.1364/OL.42.003940. PubMed DOI
Pancharatnam S. Generalized theory of interference, and its applications. Proc. Math. Sci. 1956;44:247–262. doi: 10.1007/BF03046050. DOI
Awatsuji Y., Sasada M., Kubota T. Parallel quasiphase-shifting digital holography. Appl. Phys. Lett. 2004;85:1069–1071. doi: 10.1063/1.1777796. DOI
Horner J.L., Gianino P.D. Phase-only matched filtering. Appl. Opt. 1984;23:812–816. doi: 10.1364/AO.23.000812. PubMed DOI
Vijayakumar A., Kashter Y., Kelner R., Rosen J. Coded aperture correlation holography system with improved performance [Invited] Appl. Opt. 2017;56:F67–F77. doi: 10.1364/AO.56.000F67. PubMed DOI
Rai M., Vijayakumar A., Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH) Opt. Express. 2018;26:18143–18154. doi: 10.1364/OE.26.018143. PubMed DOI
Anand V., Rosen J., Ng S., Katkus T., Linklater D., Ivanova E., Juodkazis S. Edge and Contrast Enhancement Using Spatially Incoherent Correlation Holography Techniques. Photon. 2021;8:224. doi: 10.3390/photonics8060224. DOI
Tahara T., Kozawa Y., Ishii A., Wakunami K., Ichihashi Y., Oi R. Two-step phase-shifting interferometry for self-interference digital holography. Opt. Lett. 2021;46:669–672. doi: 10.1364/OL.414083. PubMed DOI
Katz B., Wulich D., Rosen J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl. Opt. 2010;49:5757–5763. doi: 10.1364/AO.49.005757. PubMed DOI
Choi K.-H., Yim J., Min S.-W. Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography. Appl. Opt. 2017;56:F121–F127. doi: 10.1364/AO.56.00F121. PubMed DOI
Rai M., Rosen J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH) Opt. Express. 2019;27:24311–24323. doi: 10.1364/OE.27.024311. PubMed DOI
Bulbul A., Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photon. Res. 2021;9:1172. doi: 10.1364/PRJ.422381. DOI
Zhou H., Sain B., Wang Y., Schlickriede C., Zhao R., Zhang X., Wei Q., Li X., Huang L., Zentgraf T. Polariza-tion-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography. ACS Nano. 2020;14:5553–5559. doi: 10.1021/acsnano.9b09814. PubMed DOI PMC
Yu N., Capasso F. Flat optics with designer metasurfaces. Nat. Mater. 2014;13:139–150. doi: 10.1038/nmat3839. PubMed DOI
Ni X., Kildishev A., Shalaev V.M. Metasurface holograms for visible light. Nat. Commun. 2013;4:2807. doi: 10.1038/ncomms3807. DOI
Huang L., Chen X., Mühlenbernd H., Zhang H., Chen S., Bai B., Tan Q., Jin G., Cheah K.W., Qiu C.-W., et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013;4:2808. doi: 10.1038/ncomms3808. DOI
Chen W.T., Zhu A.Y., Sanjeev V., Khorasaninejad M., Shi Z., Lee E., Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018;13:220–226. doi: 10.1038/s41565-017-0034-6. PubMed DOI
Wang S., Wu P.C., Su V.-C., Lai Y.-C., Chen M.K., Kuo H.Y., Chen B.H., Chen Y.H., Huang T.-T., Wang J.-H., et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018;13:227–232. doi: 10.1038/s41565-017-0052-4. PubMed DOI
Wei Q., Sain B., Wang Y., Reineke B., Li X., Huang L., Zentgraf T. Simultaneous Spectral and Spatial Modulation for Color Printing and Holography Using All-Dielectric Metasurfaces. Nano Lett. 2019;19:8964–8971. doi: 10.1021/acs.nanolett.9b03957. PubMed DOI PMC
Jiang Q., Jin G., Cao L. When metasurface meets hologram: Principle and advances. Adv. Opt. Photon. 2019;11:518–576. doi: 10.1364/AOP.11.000518. DOI
Paniagua-Domínguez R., Yu Y.F., Khaidarov E., Choi S., Leong V., Bakker R.M., Liang X., Fu Y.H., Valuckas V., Krivitsky L.A., et al. A Metalens with a Near-Unity Numerical Aperture. Nano Lett. 2018;18:2124–2132. doi: 10.1021/acs.nanolett.8b00368. PubMed DOI
Zang X., Ding H., Intaravanne Y., Chen L., Peng Y., Xie J., Ke Q., Balakin A.V., Shkurinov A.P., Chen X., et al. A Multi-Foci Metalens with Polarization-Rotated Focal Points. Laser Photon. Rev. 2019;13:1900182. doi: 10.1002/lpor.201900182. DOI
Chen C., Song W., Chen J.-W., Wang J.-H., Chen Y.H., Xu B., Chen M.K., Li H., Fang B., Chen J., et al. Spectral tomographic imaging with aplanatic metalens. Light. Sci. Appl. 2019;8:99. doi: 10.1038/s41377-019-0208-0. PubMed DOI PMC
Gao S., Park C., Zhou C., Lee S., Choi D. Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light. Adv. Opt. Mater. 2019;7:1900883. doi: 10.1002/adom.201900883. DOI
Khorasaninejad M., Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358:eaam8100. doi: 10.1126/science.aam8100. PubMed DOI
Roy T., Zhang S., Jung I.W., Troccoli M., Capasso F., Lopez D. Dynamic metasurface lens based on MEMS technology. APL Photon. 2018;3:021302. doi: 10.1063/1.5018865. DOI
She A., Zhang S., Shian S., Clarke D.R., Capasso F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018;4:eaap9957. doi: 10.1126/sciadv.aap9957. PubMed DOI PMC
Rosen J., Brooker G. Fresnel incoherent correlation holography (FINCH)—A review of research. Adv. Opt. Technol. 2012;1:151. doi: 10.1515/aot-2012-0014. DOI
Bouchal P., Bouchal Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams. J. Eur. Opt. Soc. Rapid Publ. 2013;8:13011. doi: 10.2971/jeos.2013.13011. DOI
Siegel N., Lupashin V., Storrie B., Brooker G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat. Photon. 2016;10:802–808. doi: 10.1038/nphoton.2016.207. PubMed DOI PMC
Rosen J., Siegel N., Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express. 2011;19:26249–26268. doi: 10.1364/OE.19.026249. PubMed DOI
Lee H.-L.D., Sahl S.J., Lew M., Moerner W.E. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl. Phys. Lett. 2012;100:153701–1537013. doi: 10.1063/1.3700446. PubMed DOI PMC
Fürhapter S., Jesacher A., Bernet S., Ritsch-Marte M. Spiral phase contrast imaging in microscopy. Opt. Express. 2005;13:689–694. doi: 10.1364/OPEX.13.000689. PubMed DOI
Fürhapter S., Jesacher A., Maurer C., Bernet S., Ritsch-Marte M. Spiral Phase Microscopy. Adv. Imaging Electron Phys. 2007;146:56e–59e. doi: 10.1016/s1076-5670(06)46001-8. DOI
Bouchal P., Bouchal Z. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles. J. Opt. 2017;19:105606. doi: 10.1088/2040-8986/aa87fb. DOI
Greengard A., Schechner Y.Y., Piestun R. Depth from diffracted rotation. Opt. Lett. 2006;31:181–183. doi: 10.1364/OL.31.000181. PubMed DOI
Baránek M., Bouchal P., Šiler M., Bouchal Z. Aberration resistant axial localization using a self-imaging of vortices. Opt. Express. 2015;23:15316–15331. doi: 10.1364/OE.23.015316. PubMed DOI
Bouchal P., Bouchal Z. Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices. Opt. Express. 2014;22:30200–30216. doi: 10.1364/OE.22.030200. PubMed DOI
Castejón O.J. Confocal laser scanning microscope and immunohistochemistry of cerebellar Lugaro cells. Biocell. 2013;37:29–36. doi: 10.32604/biocell.2013.37.029. PubMed DOI
Denk W., Piston D., Webb W. Multi-photon molecular excitation in laser-scanning microscope. In: Pawley J.B., editor. Handbook of Biological Confocal Microscope. Springer Science & Business Media; Berlin, Germany: 1995. pp. 535–549.
Laperchia C., Mascaro A.L.A., Sacconi L., Andrioli A., Mattè A., Franceschi L.D., Grassi-Zucconi G., Bentivoglio M., Buffelli M., Pavone F.S. Two-photon microscope imaging of thy1GFP-M transgenic mice: A novel animal model to investigate brain dendritic cell subsets in vivo. PLoS ONE. 2013;8:005614. doi: 10.1371/journal.pone.0056144. PubMed DOI PMC
Jun C., Cheol K., Hun Y., Ki J., Hun S. Dual-wavelength digital holography microscope for BGA measurement using partial coherence sources. J. Opt. Soc. Korea. 2011;4:352–356.
Langecheneberg P., Kemper B., Dirksen D. Autofocusing in digital holographic phase contrast microscope on pure phase objects for live cell imaging. Appl. Opt. 2008;47:176–182. doi: 10.1364/AO.47.00D176. PubMed DOI
Mark A., David W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscope. Biophys. J. 2005;88:14–18. PubMed PMC
Toney T., Haro P., Sotillo B., Solis J. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett. 2013;38:5248–5251. doi: 10.1364/OL.38.005248. PubMed DOI
Le T.B., Piao M., Jeong J.-R., Jeon S.-H., Kim N. Improving Phase Contrast of Digital Holographic Microscope using Spatial Light Modulator. J. Opt. Soc. Korea. 2015;19:22–28. doi: 10.3807/JOSK.2015.19.1.022. DOI
Ritter G., Veith R., Siebrasse J., Kobitscheck U. High-contrast single-particle tracking by selective focal plane illumination microscope. Opt. Express. 2008;16:7142–7152. doi: 10.1364/OE.16.007142. PubMed DOI
Patterson G., Davidson M., Manley S., Lippincott-Schwartz J. Superresolution Imaging using Single-Molecule Localization. Ann. Rev. Phys. Chem. 2010;61:345–367. doi: 10.1146/annurev.physchem.012809.103444. PubMed DOI PMC
Huang B., Wang W., Bates M., Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. doi: 10.1126/science.1153529. PubMed DOI PMC
Pavani S.R.P., Thompson M.A., Biteen J.S., Lord S.J., Liu N., Twieg R.J., Piestun R., Moerner W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA. 2009;106:2995–2999. doi: 10.1073/pnas.0900245106. PubMed DOI PMC
Shechtman Y., Weiss L., Backer A.S., Sahl S.J., Moerner W.E. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. Nano Lett. 2015;15:4194–4199. doi: 10.1021/acs.nanolett.5b01396. PubMed DOI PMC
Shechtman Y., Weiss L., Backer A.S., Lee M.Y., Moerner W.E. Multicolour localization microscopy by point-spread-function engineering. Nat. Photon. 2016;10:590–594. doi: 10.1038/nphoton.2016.137. PubMed DOI PMC
Bon P., Maucort G., Wattellier B., Monneret S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express. 2009;17:13080–13094. doi: 10.1364/OE.17.013080. PubMed DOI
Bon P., Linarès-Loyez J., Feyeux M., Alessandri K., Lounis B., Nassoy P., Cognet L. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods. 2018;15:449–454. doi: 10.1038/s41592-018-0005-3. PubMed DOI
Liebel M., Ortega Arroyo J., Beltrán V.S., Osmond J., Jo A., Lee H., Quidant R., van Hulst N.F. 3D tracking of extracellular vesicles by holographic fluorescence imaging. Sci. Adv. 2020;6:eabc2508. doi: 10.1126/sciadv.abc2508. PubMed DOI PMC
Marar A., Kner P. Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography. Biomed. Opt. Express. 2021;12:20–40. doi: 10.1364/BOE.400712. PubMed DOI PMC
Smith C.S., Joseph N., Rieger B., Lidke K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods. 2010;7:373–375. doi: 10.1038/nmeth.1449. PubMed DOI PMC
Huang F., Schwartz S.L., Byars J.M., Lidke K.A. Simultaneous multiple-emitter fitting for single molecule su-per-resolution imaging. Biomed. Opt. Express. 2011;2:1377–1393. doi: 10.1364/BOE.2.001377. PubMed DOI PMC
Jang C., Clark D.C., Kim J., Lee B., Kim M.K. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction. Biomed. Opt. Express. 2016;7:1271–1283. doi: 10.1364/BOE.7.001271. PubMed DOI PMC
Keller P.J., Ahrens M.B. Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron. 2015;85:462–483. doi: 10.1016/j.neuron.2014.12.039. PubMed DOI
Ji N., Freeman N.J.J., Smith S.L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 2016;19:1154–1164. doi: 10.1038/nn.4358. PubMed DOI PMC
Gao L., Shao L., Chen B.-C., Betzig E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Prot. 2014;9:1083–1101. doi: 10.1038/nprot.2014.087. PubMed DOI
Chen B.-C., Legant W.R., Wang K., Shao L., Milkie D.E., Davidson M.W., Janetopoulos C., Wu X.S., Hammer J.A., Liu Z., et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346:1257998. doi: 10.1126/science.1257998. PubMed DOI PMC
Gabor D. A New Microscopic Principle. Nat. Cell Biol. 1948;161:777–778. doi: 10.1038/161777a0. PubMed DOI
Goodman J.W., Lawrence R.W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967;11:77–79. doi: 10.1063/1.1755043. DOI
Lohmann A.W. Reconstruction of Vectorial Wavefronts. Appl. Opt. 1965;4:1667–1668. doi: 10.1364/AO.4.001667. DOI
Dändliker R., Thalmann R., Prongué D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 1988;13:339–341. doi: 10.1364/OL.13.000339. PubMed DOI
Tahara T., Mori R., Arai Y., Takaki Y. Four-step phase-shifting digital holography simultaneously sensing du-al-wavelength information using a monochromatic image sensor. J. Opt. 2015;17:125707. doi: 10.1088/2040-8978/17/12/125707. DOI
Tahara T., Mori R., Kikunaga S., Arai Y., Takaki Y. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms. Opt. Lett. 2015;40:2810–2813. doi: 10.1364/OL.40.002810. PubMed DOI
Tahara T., Otani R., Omae K., Gotohda T., Arai Y., Takaki Y. Multiwavelength digital holography with wave-length-multiplexed holograms and arbitrary symmetric phase shifts. Opt. Express. 2017;25:11157–11172. doi: 10.1364/OE.25.011157. PubMed DOI
Lohmann A.W. Wavefront Reconstruction for Incoherent Objects. J. Opt. Soc. Am. 1965;55:1555_1–1556. doi: 10.1364/JOSA.55.1555_1. DOI
Schilling B.W., Poon T.-C., Indebetouw G., Storrie B., Shinoda K., Suzuki Y., Wu M.H. Three-dimensional holographic fluorescence microscopy. Opt. Lett. 1997;22:1506–1508. doi: 10.1364/OL.22.001506. PubMed DOI
Zhu B., Ueda K.-I. Real-time wavefront measurement based on diffraction grating holography. Opt. Commun. 2003;225:1–6. doi: 10.1016/j.optcom.2003.07.025. DOI
Millerd J., Brock N., Hayes J., Morris M.N., Novak M., Wyant J. Pixelated phase-mask dynamic interferometer. Proc. SPIE. 2004;5531:304.
Tahara T., Ishii A., Ito T., Ichihashi Y., Oi R. Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Appl. Phys. Lett. 2020;117:031102. doi: 10.1063/5.0011075. DOI
Hara T., Tahara T., Ichihashi Y., Oi R., Ito T. Multiwavelength-multiplexed phase-shifting incoherent color digital holog-raphy. Opt. Express. 2020;28:10078–10089. doi: 10.1364/OE.383692. PubMed DOI
Vijayakumar A., Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett. 2017;42:947–950. doi: 10.1364/OL.42.000947. PubMed DOI
Tahara T., Ito T., Ichihashi Y., Oi R. Single-shot incoherent color digital holographic microscopy system with static polar-ization-sensitive optical elements. J. Opt. 2020;22:105702. doi: 10.1088/2040-8986/abb007. DOI
Tahara T., Okamoto R., Ishii A., Ito T., Wakunami K., Ichihashi Y., Oi R. Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing. Proc. SPIE. 2020;11551:115510M.
Ueda K., Takuma H. A Novel Spectrometric Technique based on Fourier Transformation of Transmission Signal of Faraday Rotator. Rev. Laser Eng. 1984;12:652–659. doi: 10.2184/lsj.12.652. DOI
Yoshimori K. Interferometric spectral imaging for three-dimensional objects illuminated by a natural light source. J. Opt. Soc. Am. A. 2001;18:765–770. doi: 10.1364/JOSAA.18.000765. DOI