• This record comes from PubMed

Roadmap on Recent Progress in FINCH Technology

. 2021 Sep 29 ; 7 (10) : . [epub] 20210929

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
BJJWZYJH01201910007022 Beijing Outstanding Young Talents
61527821, 61521093, 61905257 National Natural Science Foundation of China (NSFC)
R21 GM134462 NIGMS NIH HHS - United States
20211086 Network Joint Research Center for Materials and Devices
161009 Fok Ying Tong Education Foundation
SPS-985048 North Atlantic Treaty Organization
(1669/16) Israel Science Foundation
R21GM134462 NIH HHS - United States
project 21-01953S Grantová Agentura České Republiky
61775019, 92050117, 61861136010 National Natural Science Foundation of China
JP18H01456 and JP19H03202 Japan Society for the Promotion of Science
456789 National Science Foundation
(PRESTO) (JPMJPR15P8, JPMJPR16P8, JPMJPR17P2) Precursory Research for Embryonic Science and Technology
2017YFB1002900 National Key R&D Program of China
RO1 NS111749 to SA, NIH R21 DC017292 to JA NIH HHS - United States
project FSI-S-20-6353 Brno University of Technology

Fresnel incoherent correlation holography (FINCH) was a milestone in incoherent holography. In this roadmap, two pathways, namely the development of FINCH and applications of FINCH explored by many prominent research groups, are discussed. The current state-of-the-art FINCH technology, challenges, and future perspectives of FINCH technology as recognized by a diverse group of researchers contributing to different facets of research in FINCH have been presented.

Advanced ICT Research Institute Kobe National Institute of Information and Communications Technology 588 2 Iwaoka Iwaoka cho Nishi ku Kobe 651 2492 Japan

Applied Electromagnetic Research Center Radio Research Institute National Institute of Information and Communications Technology 4 2 1 Nukuikitamachi Koganei Tokyo 184 8795 Japan

Beijing Engineering Research Center of Mixed Reality and Advanced Display School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China

Center for Materials Interfaces in Research and Development Northern Arizona University Flagstaff AZ 86011 USA

Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

Central European Institute of Technology Brno University of Technology Purkyňova 656 123 612 00 Brno Czech Republic

Department of Anatomy and Cell Biology University of Illinois at Chicago 808 South Wood Street Chicago IL 60612 USA

Department of Applied Physics and Materials Science Northern Arizona University Flagstaff AZ 86011 USA

Department of Optics Palacký University 17 Listopadu 1192 12 771 46 Olomouc Czech Republic

Faculty of Life and Environmental Sciences Teikyo University of Science 2525 Yatsuzawa Uenohara Yamanashi 409 0193 Japan

Faculty of Systems Engineering Wakayama University Sakaedani 930 Wakayama 640 8510 Japan

Institute of Multidisciplinary Research for Advanced Materials Tohoku University 2 1 1 Katahira Aoba ku Sendai 980 8577 Japan

Institute of Physical Engineering Faculty of Mechanical Engineering Brno University of Technology Tech nická 2 619 69 Brno Czech Republic

Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials School of Science Swinburne University of Technology Hawthorn VIC 3122 Australia

PRESTO Japan Science and Technology Agency 4 1 8 Honcho Kawaguchi 332 0012 Saitama Japan

School of Electrical and Computer Engineering Ben Gurion University of the Negev P O Box 653 Beer Sheva 8410501 Israel

School of Electrical and Computer Engineering University of Georgia Athens GA 30602 USA

School of Information and Communication Engineering Chungbuk National University 1 Chungdae ro Seowon gu Cheongju 28644 Chungbuk Korea

School of Physics Science and Engineering Tongji University Shanghai 200092 China

Science and Technology Research Laboratories Japan Broadcasting Corporation 1 10 11 Kinuta Setagaya ku Tokyo 157 8510 Japan

State Key Laboratory of High Field Laser Physics Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China

Tokyo Tech World Research Hub Initiative School of Materials and Chemical Technology Tokyo Institute of Technology 2 12 1 Ookayama Meguro ku Tokyo 152 8550 Japan

Viettel High Technology Industries Corporation 380 Lac Long Quan Street Hoan Kiem Hanoi 100000 Vietnam

Wallace H Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA

See more in PubMed

Rosen J., Brooker G. Digital spatially incoherent Fresnel holography. Opt. Lett. 2007;32:912–914. doi: 10.1364/OL.32.000912. PubMed DOI

Peters P.J. Incoherent Holograms with Mercury Light Source. Appl. Phys. Lett. 1966;8:209. doi: 10.1063/1.1754558. DOI

Sirat G., Psaltis D. Conoscopic holography. Opt. Lett. 1985;10:4–6. doi: 10.1364/OL.10.000004. PubMed DOI

Yamaguchi I., Zhang T. Phase-shifting digital holography. Opt. Lett. 1997;22:1268–1270. doi: 10.1364/OL.22.001268. PubMed DOI

Poon T.-C. Three-dimensional image processing and optical scanning holography. Adv. Imaging Electron Phys. 2003;126:329–350. doi: 10.1016/s1076-5670(03)80018-6. DOI

Abookasis D., Rosen J. Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene. Appl. Opt. 2006;45:6533–6538. doi: 10.1364/AO.45.006533. PubMed DOI

Rosen J., Vijayakumar A., Kumar M., Rai M.R., Kelner R., Kashter Y., Bulbul A., Mukherjee S. Recent advances in self-interference incoherent digital holography. Adv. Opt. Photon. 2019;11:1–66. doi: 10.1364/AOP.11.000001. DOI

Rosen J., Kelner R. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems. Opt. Express. 2014;22:29048–29066. doi: 10.1364/OE.22.029048. PubMed DOI PMC

Goodman J. Introduction to Fourier Optics. 2nd ed. McGraw-Hill; New York, NY, USA: 1996. pp. 63–95. Chapter 4.

Brooker G., Siegel N., Wang V., Rosen J. Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy. Opt. Express. 2011;19:5047–5062. doi: 10.1364/OE.19.005047. PubMed DOI PMC

Kim M.K. Adaptive optics by incoherent digital holography. Opt. Lett. 2012;37:2694–2696. doi: 10.1364/OL.37.002694. PubMed DOI

Nobukawa T., Katano Y., Goto M., Muroi T., Kinoshita N., Iguchi Y., Ishii N. Incoherent digital holography simulation based on scalar diffraction theory. J. Opt. Soc. Am. A. 2021;38:924–932. doi: 10.1364/JOSAA.426579. PubMed DOI

Tahara T., Kanno T., Arai Y., Ozawa T. Single-shot phase-shifting incoherent digital holography. J. Opt. 2017;19:065705. doi: 10.1088/2040-8986/aa6e82. DOI

Anand V., Katkus T., Lundgaard S., Linklater D.P., Ivanova E.P., Ng S.H., Juodkazis S. Fresnel incoherent correlation holography with single camera shot. Opto-Electron. Adv. 2020;3:200004. doi: 10.29026/oea.2020.200004. DOI

Wu M., Tang M., Zhang Y., Du Y., Ma F., Liang E., Gong Q. Single-shot Fresnel incoherent correlation holography mi-croscopy with two-step phase-shifting. J. Mod. Opt. 2021;68:564–572. doi: 10.1080/09500340.2021.1936240. DOI

Siegel N., Brooker G. Single shot holographic super-resolution microscopy. Opt. Express. 2021;29:15953–15968. doi: 10.1364/OE.424175. PubMed DOI

Rosen J., Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy. Nat. Photon. 2008;2:190–195. doi: 10.1038/nphoton.2007.300. DOI

Brooker G., Siegel N., Rosen J., Hashimoto N., Kurihara M., Tanabe A. In-line FINCH super resolution digital holo-graphic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens. Opt. Lett. 2013;38:5264–5267. doi: 10.1364/OL.38.005264. PubMed DOI PMC

Kelner R., Katz B., Rosen J. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging sys-tem. Optica. 2014;1:70–74. doi: 10.1364/OPTICA.1.000070. PubMed DOI PMC

Siegel N., Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy. Opt. Express. 2014;22:22298–22307. doi: 10.1364/OE.22.022298. PubMed DOI PMC

Kashter Y., Rosen J. Enhanced-resolution using modified configuration of Fresnel incoherent holographic recorder with synthetic aperture. Opt. Express. 2014;22:20551–20565. doi: 10.1364/OE.22.020551. PubMed DOI PMC

Kashter Y., Vijayakumar A., Miyamoto Y., Rosen J. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett. 2016;41:1558–1561. doi: 10.1364/OL.41.001558. PubMed DOI

Kashter Y., Vijayakumar A., Rosen J. Resolving images by blurring: Superresolution method with a scattering mask be-tween the observed objects and the hologram recorder. Optica. 2017;4:932–939. doi: 10.1364/OPTICA.4.000932. DOI

Rosen J., Brooker G. Fluorescence incoherent color holography. Opt. Express. 2007;15:2244–2250. doi: 10.1364/OE.15.002244. PubMed DOI

Kim M.K. Full color natural light holographic camera. Opt. Express. 2013;21:9636–9642. doi: 10.1364/OE.21.009636. PubMed DOI

Tahara T., Koujin T., Matsuda A., Ishii A., Ito T., Ichihashi Y., Oi R. Incoherent color digital holography with computational coherent superposition for fluorescence imaging [Invited] Appl. Opt. 2021;60:A260–A267. doi: 10.1364/AO.406068. PubMed DOI

Kelner R., Rosen J. Spatially incoherent single channel digital Fourier holography. Opt. Lett. 2012;37:3723–3725. doi: 10.1364/OL.37.003723. PubMed DOI

Kelner R., Rosen J., Brooker G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express. 2013;21:20131–20144. doi: 10.1364/OE.21.020131. PubMed DOI

Vijayakumar A., Kashter Y., Kelner R., Rosen J. Coded aperture correlation holography—A new type of incoherent digital holograms. Opt. Express. 2016;24:12430–12441. doi: 10.1364/OE.24.012430. PubMed DOI

Bouchal P., Kapitán J., Chmelík R., Bouchal Z. Point spread function and two-point resolution in Fresnel incoherent cor-relation holography. Opt. Express. 2011;19:15603–15620. doi: 10.1364/OE.19.015603. PubMed DOI

Lai X., Zeng S., Lv X., Yuan J., Fu L. Violation of the Lagrange invariant in an optical imaging system. Opt. Lett. 2013;38:1896–1898. doi: 10.1364/OL.38.001896. PubMed DOI

Katz B., Rosen J., Kelner R., Brooker G. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM) Opt. Express. 2012;20:9109–9121. doi: 10.1364/OE.20.009109. PubMed DOI

Nobukawa T., Muroi T., Katano Y., Kinoshita N., Ishii N. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings. Opt. Lett. 2018;43:1698–1701. doi: 10.1364/OL.43.001698. PubMed DOI

Sakamaki S., Yoneda N., Nomura T. Single-shot in-line Fresnel incoherent holography using a dual-focus checkerboard lens. Appl. Opt. 2020;59:6612–6618. doi: 10.1364/AO.393176. PubMed DOI

Liang D., Zhang Q., Wang J., Liu J. Single-shot Fresnel incoherent digital holography based on geometric phase lens. J. Mod. Opt. 2020;67:92–98. doi: 10.1080/09500340.2019.1695970. DOI

Anand V., Katkus T., Ng S.H., Juodkazis S. Review of Fresnel incoherent correlation holography with linear and non-linear correlations [Invited] Chin. Opt. Lett. 2021;19:020501. doi: 10.3788/COL202119.020501. DOI

Zhou H., Huang L., Li X., Li X., Geng G., An K., Li Z., Wang Y. All-dielectric bifocal isotropic metalens for single-shot hologram generation device. Opt. Express. 2020;28:21549–21559. doi: 10.1364/OE.396372. PubMed DOI

Bouchal P., Bouchal Z. Selective edge enhancement in three-dimensional vortex imaging with incoherent light. Opt. Lett. 2012;37:2949–2951. doi: 10.1364/OL.37.002949. PubMed DOI

Kim N., Alam M.A., Bang L.T., Phan A.-H., Piao M.-L., Erdenebat M.-U. Advances in the light field displays based on integral imaging and holographic techniques (Invited Paper) Chin. Opt. Lett. 2014;12:60005–60009. doi: 10.3788/COL201412.060005. DOI

Marar A., Kner P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography. Opt. Lett. 2020;45:591–594. doi: 10.1364/OL.379047. PubMed DOI PMC

Potcoava M., Mann C., Art J., Alford S. Spatio-temporal performance in an incoherent holography lattice light-sheet mi-croscope (IHLLS) Opt. Express. 2021;29:23888–23901. doi: 10.1364/OE.425069. PubMed DOI PMC

Tahara T., Ito T., Ichihashi Y., Oi R. Multiwavelength three-dimensional microscopy with spatially incoherent light, based on computational coherent superposition. Opt. Lett. 2020;45:2482–2485. doi: 10.1364/OL.386264. PubMed DOI

Bouchal P., Bouchal Z. Concept of coherence aperture and pathways toward white light hire-resolution correlation imaging. N. J. Phys. 2013;15:123002. doi: 10.1088/1367-2630/15/12/123002. DOI

Nobukawa T., Katano Y., Goto M., Muroi T., Kinoshita N., Iguchi Y., Ishii N. Coherence aperture restricted spatial reso-lution for an arbitrary depth plane in incoherent digital holography. Appl. Opt. 2021;60:5392–5398. doi: 10.1364/AO.426583. PubMed DOI

Nobukawa T., Katano Y., Muroi T., Kinoshita N., Ishii N. Sampling requirements and adaptive spatial averaging for in-coherent digital holography. Opt. Express. 2019;27:33634–33651. doi: 10.1364/OE.27.033634. PubMed DOI

Wan Y., Man T., Wu F., Kim M.K., Wang D. Parallel phase-shifting self-interference digital holography with faithful re-construction using compressive sensing. Opt. Lasers Eng. 2016;86:38–43. doi: 10.1016/j.optlaseng.2016.05.004. DOI

Quan X., Matoba O., Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings. Opt. Lett. 2017;42:383–386. doi: 10.1364/OL.42.000383. PubMed DOI

Nguyen C.M., Kwon H.-S. Common-path off-axis incoherent Fourier holography with a maximum overlapping interference are. Opt. Lett. 2019;44:3406–3409. doi: 10.1364/OL.44.003406. PubMed DOI

Weng J., Clark D.C., Kim M.K. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography. Opt. Commun. 2016;366:88–93. doi: 10.1016/j.optcom.2015.12.039. DOI

Choi K., Joo K.-I., Lee T.-H., Kim H.-R., Yim J., Do H., Min S.-W. Compact self-interference incoherent digital holo-graphic camera system with real-time operation. Opt. Express. 2019;27:4814–4833. doi: 10.1364/OE.27.004818. PubMed DOI

Zhang Y., Wu M.-T., Tang M.-Y., Ma F.-Y., Liang E.-J., Du Y.-L., Duan Z.-Y., Gong Q.-X. Fresnel incoherent correlation hologram recording in real-time. Optik. 2021;241:166938. doi: 10.1016/j.ijleo.2021.166938. DOI

Hong J., Kim M.K. Single-shot self-interference incoherent digital holography using off-axis configuration. Opt. Lett. 2013;38:5196–5199. doi: 10.1364/OL.38.005196. PubMed DOI PMC

Indebetouw G., El Maghnouji A., Foster R. Scanning holographic microscopy with transverse resolution exceeding the Rayleigh limit and extended depth of focus. J. Opt. Soc. Am. A. 2005;22:892–898. doi: 10.1364/JOSAA.22.000892. PubMed DOI PMC

Zhu Z., Shi Z. Self-interference polarization holographic imaging of a three-dimensional incoherent scene. Appl. Phys. Lett. 2016;109:091104. doi: 10.1063/1.4962140. DOI

Choi K., Yim J., Yoo S., Min S.-W. Self-interference digital holography with a geometric-phase hologram lens. Opt. Lett. 2017;42:3940–3943. doi: 10.1364/OL.42.003940. PubMed DOI

Pancharatnam S. Generalized theory of interference, and its applications. Proc. Math. Sci. 1956;44:247–262. doi: 10.1007/BF03046050. DOI

Awatsuji Y., Sasada M., Kubota T. Parallel quasiphase-shifting digital holography. Appl. Phys. Lett. 2004;85:1069–1071. doi: 10.1063/1.1777796. DOI

Horner J.L., Gianino P.D. Phase-only matched filtering. Appl. Opt. 1984;23:812–816. doi: 10.1364/AO.23.000812. PubMed DOI

Vijayakumar A., Kashter Y., Kelner R., Rosen J. Coded aperture correlation holography system with improved performance [Invited] Appl. Opt. 2017;56:F67–F77. doi: 10.1364/AO.56.000F67. PubMed DOI

Rai M., Vijayakumar A., Rosen J. Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH) Opt. Express. 2018;26:18143–18154. doi: 10.1364/OE.26.018143. PubMed DOI

Anand V., Rosen J., Ng S., Katkus T., Linklater D., Ivanova E., Juodkazis S. Edge and Contrast Enhancement Using Spatially Incoherent Correlation Holography Techniques. Photon. 2021;8:224. doi: 10.3390/photonics8060224. DOI

Tahara T., Kozawa Y., Ishii A., Wakunami K., Ichihashi Y., Oi R. Two-step phase-shifting interferometry for self-interference digital holography. Opt. Lett. 2021;46:669–672. doi: 10.1364/OL.414083. PubMed DOI

Katz B., Wulich D., Rosen J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl. Opt. 2010;49:5757–5763. doi: 10.1364/AO.49.005757. PubMed DOI

Choi K.-H., Yim J., Min S.-W. Optical defocus noise suppressing by using a pinhole-polarizer in Fresnel incoherent correlation holography. Appl. Opt. 2017;56:F121–F127. doi: 10.1364/AO.56.00F121. PubMed DOI

Rai M., Rosen J. Noise suppression by controlling the sparsity of the point spread function in interferenceless coded aperture correlation holography (I-COACH) Opt. Express. 2019;27:24311–24323. doi: 10.1364/OE.27.024311. PubMed DOI

Bulbul A., Rosen J. Super-resolution imaging by optical incoherent synthetic aperture with one channel at a time. Photon. Res. 2021;9:1172. doi: 10.1364/PRJ.422381. DOI

Zhou H., Sain B., Wang Y., Schlickriede C., Zhao R., Zhang X., Wei Q., Li X., Huang L., Zentgraf T. Polariza-tion-Encrypted Orbital Angular Momentum Multiplexed Metasurface Holography. ACS Nano. 2020;14:5553–5559. doi: 10.1021/acsnano.9b09814. PubMed DOI PMC

Yu N., Capasso F. Flat optics with designer metasurfaces. Nat. Mater. 2014;13:139–150. doi: 10.1038/nmat3839. PubMed DOI

Ni X., Kildishev A., Shalaev V.M. Metasurface holograms for visible light. Nat. Commun. 2013;4:2807. doi: 10.1038/ncomms3807. DOI

Huang L., Chen X., Mühlenbernd H., Zhang H., Chen S., Bai B., Tan Q., Jin G., Cheah K.W., Qiu C.-W., et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013;4:2808. doi: 10.1038/ncomms3808. DOI

Chen W.T., Zhu A.Y., Sanjeev V., Khorasaninejad M., Shi Z., Lee E., Capasso F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 2018;13:220–226. doi: 10.1038/s41565-017-0034-6. PubMed DOI

Wang S., Wu P.C., Su V.-C., Lai Y.-C., Chen M.K., Kuo H.Y., Chen B.H., Chen Y.H., Huang T.-T., Wang J.-H., et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 2018;13:227–232. doi: 10.1038/s41565-017-0052-4. PubMed DOI

Wei Q., Sain B., Wang Y., Reineke B., Li X., Huang L., Zentgraf T. Simultaneous Spectral and Spatial Modulation for Color Printing and Holography Using All-Dielectric Metasurfaces. Nano Lett. 2019;19:8964–8971. doi: 10.1021/acs.nanolett.9b03957. PubMed DOI PMC

Jiang Q., Jin G., Cao L. When metasurface meets hologram: Principle and advances. Adv. Opt. Photon. 2019;11:518–576. doi: 10.1364/AOP.11.000518. DOI

Paniagua-Domínguez R., Yu Y.F., Khaidarov E., Choi S., Leong V., Bakker R.M., Liang X., Fu Y.H., Valuckas V., Krivitsky L.A., et al. A Metalens with a Near-Unity Numerical Aperture. Nano Lett. 2018;18:2124–2132. doi: 10.1021/acs.nanolett.8b00368. PubMed DOI

Zang X., Ding H., Intaravanne Y., Chen L., Peng Y., Xie J., Ke Q., Balakin A.V., Shkurinov A.P., Chen X., et al. A Multi-Foci Metalens with Polarization-Rotated Focal Points. Laser Photon. Rev. 2019;13:1900182. doi: 10.1002/lpor.201900182. DOI

Chen C., Song W., Chen J.-W., Wang J.-H., Chen Y.H., Xu B., Chen M.K., Li H., Fang B., Chen J., et al. Spectral tomographic imaging with aplanatic metalens. Light. Sci. Appl. 2019;8:99. doi: 10.1038/s41377-019-0208-0. PubMed DOI PMC

Gao S., Park C., Zhou C., Lee S., Choi D. Twofold Polarization-Selective All-Dielectric Trifoci Metalens for Linearly Polarized Visible Light. Adv. Opt. Mater. 2019;7:1900883. doi: 10.1002/adom.201900883. DOI

Khorasaninejad M., Capasso F. Metalenses: Versatile multifunctional photonic components. Science. 2017;358:eaam8100. doi: 10.1126/science.aam8100. PubMed DOI

Roy T., Zhang S., Jung I.W., Troccoli M., Capasso F., Lopez D. Dynamic metasurface lens based on MEMS technology. APL Photon. 2018;3:021302. doi: 10.1063/1.5018865. DOI

She A., Zhang S., Shian S., Clarke D.R., Capasso F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 2018;4:eaap9957. doi: 10.1126/sciadv.aap9957. PubMed DOI PMC

Rosen J., Brooker G. Fresnel incoherent correlation holography (FINCH)—A review of research. Adv. Opt. Technol. 2012;1:151. doi: 10.1515/aot-2012-0014. DOI

Bouchal P., Bouchal Z. Wide-field common-path incoherent correlation microscopy with a perfect overlapping of interfering beams. J. Eur. Opt. Soc. Rapid Publ. 2013;8:13011. doi: 10.2971/jeos.2013.13011. DOI

Siegel N., Lupashin V., Storrie B., Brooker G. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers. Nat. Photon. 2016;10:802–808. doi: 10.1038/nphoton.2016.207. PubMed DOI PMC

Rosen J., Siegel N., Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging. Opt. Express. 2011;19:26249–26268. doi: 10.1364/OE.19.026249. PubMed DOI

Lee H.-L.D., Sahl S.J., Lew M., Moerner W.E. The double-helix microscope super-resolves extended biological structures by localizing single blinking molecules in three dimensions with nanoscale precision. Appl. Phys. Lett. 2012;100:153701–1537013. doi: 10.1063/1.3700446. PubMed DOI PMC

Fürhapter S., Jesacher A., Bernet S., Ritsch-Marte M. Spiral phase contrast imaging in microscopy. Opt. Express. 2005;13:689–694. doi: 10.1364/OPEX.13.000689. PubMed DOI

Fürhapter S., Jesacher A., Maurer C., Bernet S., Ritsch-Marte M. Spiral Phase Microscopy. Adv. Imaging Electron Phys. 2007;146:56e–59e. doi: 10.1016/s1076-5670(06)46001-8. DOI

Bouchal P., Bouchal Z. Flexible non-diffractive vortex microscope for three-dimensional depth-enhanced super-localization of dielectric, metal and fluorescent nanoparticles. J. Opt. 2017;19:105606. doi: 10.1088/2040-8986/aa87fb. DOI

Greengard A., Schechner Y.Y., Piestun R. Depth from diffracted rotation. Opt. Lett. 2006;31:181–183. doi: 10.1364/OL.31.000181. PubMed DOI

Baránek M., Bouchal P., Šiler M., Bouchal Z. Aberration resistant axial localization using a self-imaging of vortices. Opt. Express. 2015;23:15316–15331. doi: 10.1364/OE.23.015316. PubMed DOI

Bouchal P., Bouchal Z. Non-iterative holographic axial localization using complex amplitude of diffraction-free vortices. Opt. Express. 2014;22:30200–30216. doi: 10.1364/OE.22.030200. PubMed DOI

Castejón O.J. Confocal laser scanning microscope and immunohistochemistry of cerebellar Lugaro cells. Biocell. 2013;37:29–36. doi: 10.32604/biocell.2013.37.029. PubMed DOI

Denk W., Piston D., Webb W. Multi-photon molecular excitation in laser-scanning microscope. In: Pawley J.B., editor. Handbook of Biological Confocal Microscope. Springer Science & Business Media; Berlin, Germany: 1995. pp. 535–549.

Laperchia C., Mascaro A.L.A., Sacconi L., Andrioli A., Mattè A., Franceschi L.D., Grassi-Zucconi G., Bentivoglio M., Buffelli M., Pavone F.S. Two-photon microscope imaging of thy1GFP-M transgenic mice: A novel animal model to investigate brain dendritic cell subsets in vivo. PLoS ONE. 2013;8:005614. doi: 10.1371/journal.pone.0056144. PubMed DOI PMC

Jun C., Cheol K., Hun Y., Ki J., Hun S. Dual-wavelength digital holography microscope for BGA measurement using partial coherence sources. J. Opt. Soc. Korea. 2011;4:352–356.

Langecheneberg P., Kemper B., Dirksen D. Autofocusing in digital holographic phase contrast microscope on pure phase objects for live cell imaging. Appl. Opt. 2008;47:176–182. doi: 10.1364/AO.47.00D176. PubMed DOI

Mark A., David W. High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscope. Biophys. J. 2005;88:14–18. PubMed PMC

Toney T., Haro P., Sotillo B., Solis J. Ion migration assisted inscription of high refractive index contrast waveguides by femtosecond laser pulses in phosphate glass. Opt. Lett. 2013;38:5248–5251. doi: 10.1364/OL.38.005248. PubMed DOI

Le T.B., Piao M., Jeong J.-R., Jeon S.-H., Kim N. Improving Phase Contrast of Digital Holographic Microscope using Spatial Light Modulator. J. Opt. Soc. Korea. 2015;19:22–28. doi: 10.3807/JOSK.2015.19.1.022. DOI

Ritter G., Veith R., Siebrasse J., Kobitscheck U. High-contrast single-particle tracking by selective focal plane illumination microscope. Opt. Express. 2008;16:7142–7152. doi: 10.1364/OE.16.007142. PubMed DOI

Patterson G., Davidson M., Manley S., Lippincott-Schwartz J. Superresolution Imaging using Single-Molecule Localization. Ann. Rev. Phys. Chem. 2010;61:345–367. doi: 10.1146/annurev.physchem.012809.103444. PubMed DOI PMC

Huang B., Wang W., Bates M., Zhuang X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science. 2008;319:810–813. doi: 10.1126/science.1153529. PubMed DOI PMC

Pavani S.R.P., Thompson M.A., Biteen J.S., Lord S.J., Liu N., Twieg R.J., Piestun R., Moerner W.E. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc. Natl. Acad. Sci. USA. 2009;106:2995–2999. doi: 10.1073/pnas.0900245106. PubMed DOI PMC

Shechtman Y., Weiss L., Backer A.S., Sahl S.J., Moerner W.E. Precise Three-Dimensional Scan-Free Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. Nano Lett. 2015;15:4194–4199. doi: 10.1021/acs.nanolett.5b01396. PubMed DOI PMC

Shechtman Y., Weiss L., Backer A.S., Lee M.Y., Moerner W.E. Multicolour localization microscopy by point-spread-function engineering. Nat. Photon. 2016;10:590–594. doi: 10.1038/nphoton.2016.137. PubMed DOI PMC

Bon P., Maucort G., Wattellier B., Monneret S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express. 2009;17:13080–13094. doi: 10.1364/OE.17.013080. PubMed DOI

Bon P., Linarès-Loyez J., Feyeux M., Alessandri K., Lounis B., Nassoy P., Cognet L. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods. 2018;15:449–454. doi: 10.1038/s41592-018-0005-3. PubMed DOI

Liebel M., Ortega Arroyo J., Beltrán V.S., Osmond J., Jo A., Lee H., Quidant R., van Hulst N.F. 3D tracking of extracellular vesicles by holographic fluorescence imaging. Sci. Adv. 2020;6:eabc2508. doi: 10.1126/sciadv.abc2508. PubMed DOI PMC

Marar A., Kner P. Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography. Biomed. Opt. Express. 2021;12:20–40. doi: 10.1364/BOE.400712. PubMed DOI PMC

Smith C.S., Joseph N., Rieger B., Lidke K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods. 2010;7:373–375. doi: 10.1038/nmeth.1449. PubMed DOI PMC

Huang F., Schwartz S.L., Byars J.M., Lidke K.A. Simultaneous multiple-emitter fitting for single molecule su-per-resolution imaging. Biomed. Opt. Express. 2011;2:1377–1393. doi: 10.1364/BOE.2.001377. PubMed DOI PMC

Jang C., Clark D.C., Kim J., Lee B., Kim M.K. Signal enhanced holographic fluorescence microscopy with guide-star reconstruction. Biomed. Opt. Express. 2016;7:1271–1283. doi: 10.1364/BOE.7.001271. PubMed DOI PMC

Keller P.J., Ahrens M.B. Visualizing Whole-Brain Activity and Development at the Single-Cell Level Using Light-Sheet Microscopy. Neuron. 2015;85:462–483. doi: 10.1016/j.neuron.2014.12.039. PubMed DOI

Ji N., Freeman N.J.J., Smith S.L. Technologies for imaging neural activity in large volumes. Nat. Neurosci. 2016;19:1154–1164. doi: 10.1038/nn.4358. PubMed DOI PMC

Gao L., Shao L., Chen B.-C., Betzig E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat. Prot. 2014;9:1083–1101. doi: 10.1038/nprot.2014.087. PubMed DOI

Chen B.-C., Legant W.R., Wang K., Shao L., Milkie D.E., Davidson M.W., Janetopoulos C., Wu X.S., Hammer J.A., Liu Z., et al. Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346:1257998. doi: 10.1126/science.1257998. PubMed DOI PMC

Gabor D. A New Microscopic Principle. Nat. Cell Biol. 1948;161:777–778. doi: 10.1038/161777a0. PubMed DOI

Goodman J.W., Lawrence R.W. Digital image formation from electronically detected holograms. Appl. Phys. Lett. 1967;11:77–79. doi: 10.1063/1.1755043. DOI

Lohmann A.W. Reconstruction of Vectorial Wavefronts. Appl. Opt. 1965;4:1667–1668. doi: 10.1364/AO.4.001667. DOI

Dändliker R., Thalmann R., Prongué D. Two-wavelength laser interferometry using superheterodyne detection. Opt. Lett. 1988;13:339–341. doi: 10.1364/OL.13.000339. PubMed DOI

Tahara T., Mori R., Arai Y., Takaki Y. Four-step phase-shifting digital holography simultaneously sensing du-al-wavelength information using a monochromatic image sensor. J. Opt. 2015;17:125707. doi: 10.1088/2040-8978/17/12/125707. DOI

Tahara T., Mori R., Kikunaga S., Arai Y., Takaki Y. Dual-wavelength phase-shifting digital holography selectively extracting wavelength information from wavelength-multiplexed holograms. Opt. Lett. 2015;40:2810–2813. doi: 10.1364/OL.40.002810. PubMed DOI

Tahara T., Otani R., Omae K., Gotohda T., Arai Y., Takaki Y. Multiwavelength digital holography with wave-length-multiplexed holograms and arbitrary symmetric phase shifts. Opt. Express. 2017;25:11157–11172. doi: 10.1364/OE.25.011157. PubMed DOI

Lohmann A.W. Wavefront Reconstruction for Incoherent Objects. J. Opt. Soc. Am. 1965;55:1555_1–1556. doi: 10.1364/JOSA.55.1555_1. DOI

Schilling B.W., Poon T.-C., Indebetouw G., Storrie B., Shinoda K., Suzuki Y., Wu M.H. Three-dimensional holographic fluorescence microscopy. Opt. Lett. 1997;22:1506–1508. doi: 10.1364/OL.22.001506. PubMed DOI

Zhu B., Ueda K.-I. Real-time wavefront measurement based on diffraction grating holography. Opt. Commun. 2003;225:1–6. doi: 10.1016/j.optcom.2003.07.025. DOI

Millerd J., Brock N., Hayes J., Morris M.N., Novak M., Wyant J. Pixelated phase-mask dynamic interferometer. Proc. SPIE. 2004;5531:304.

Tahara T., Ishii A., Ito T., Ichihashi Y., Oi R. Single-shot wavelength-multiplexed digital holography for 3D fluorescent microscopy and other imaging modalities. Appl. Phys. Lett. 2020;117:031102. doi: 10.1063/5.0011075. DOI

Hara T., Tahara T., Ichihashi Y., Oi R., Ito T. Multiwavelength-multiplexed phase-shifting incoherent color digital holog-raphy. Opt. Express. 2020;28:10078–10089. doi: 10.1364/OE.383692. PubMed DOI

Vijayakumar A., Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt. Lett. 2017;42:947–950. doi: 10.1364/OL.42.000947. PubMed DOI

Tahara T., Ito T., Ichihashi Y., Oi R. Single-shot incoherent color digital holographic microscopy system with static polar-ization-sensitive optical elements. J. Opt. 2020;22:105702. doi: 10.1088/2040-8986/abb007. DOI

Tahara T., Okamoto R., Ishii A., Ito T., Wakunami K., Ichihashi Y., Oi R. Multidimensional digital holographic microscopy based on computational coherent superposition for coherent and incoherent light sensing. Proc. SPIE. 2020;11551:115510M.

Ueda K., Takuma H. A Novel Spectrometric Technique based on Fourier Transformation of Transmission Signal of Faraday Rotator. Rev. Laser Eng. 1984;12:652–659. doi: 10.2184/lsj.12.652. DOI

Yoshimori K. Interferometric spectral imaging for three-dimensional objects illuminated by a natural light source. J. Opt. Soc. Am. A. 2001;18:765–770. doi: 10.1364/JOSAA.18.000765. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...