Single-Nucleotide Polymorphisms in MICA and MICB Genes Could Play a Role in the Outcome in AML Patients after HSCT

. 2021 Oct 09 ; 10 (20) : . [epub] 20211009

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34682758

Grantová podpora
NV18-03-00277 Ministerstvo Zdravotnictví Ceské Republiky

NKG2D and its ligands, MICA and MICB, are known as the key regulators of NK cells. NK cells are the first reconstituted cells after the allogeneic hematopoietic stem cell transplantation (HSCT); therefore, it is crucial to understand their role in HSCT outcome. In the presented study, we investigated the single amino acid changes across the exons 2-4 of MICA and MICB genes, and point mutations within the NKG2D gene, which defines the type of NKG2D haploblock (HNK/LNK) in the donors (n = 124), as well as in patients with acute myeloid leukemia (n = 78). In our cohort, we found that graft from a donor with at least one MICA allele containing glycine at position 14 (MICA-14Gly) is significantly associated with deterioration of a patient's overall survival (OS) (p < 0.05). We also observed a negative effect of MICB-58 (Lys → Glu) polymorphism on relapse-free survival (RFS), although it was not statistically significant in multivariate analysis (p = 0.069). To our knowledge, this is the first work describing the role of MICA-14 and MICB-58 polymorphisms on HSCT outcome.

Zobrazit více v PubMed

Gratwohl A., Brand R., Frassoni F., Rocha V., Niederwieser D., Reusser P., Einsele H., Cordonnier C., Parties A.a.C.L.W., Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation Cause of death after allogeneic haematopoietic stem cell transplantation (HSCT) in early leukaemias: An EBMT analysis of lethal infectious complications and changes over calendar time. Bone Marrow Transpl. 2005;36:757–769. doi: 10.1038/sj.bmt.1705140. PubMed DOI

Bosch M., Khan F.M., Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr. Opin. Hematol. 2012;19:324–335. doi: 10.1097/MOH.0b013e328353bc7d. PubMed DOI

Simonetta F., Alvarez M., Negrin R.S. Natural Killer Cells in Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation. Front. Immunol. 2017;8:465. doi: 10.3389/fimmu.2017.00465. PubMed DOI PMC

Olson J.A., Leveson-Gower D.B., Gill S., Baker J., Beilhack A., Negrin R.S. NK cells mediate reduction of GVHD by inhibiting activated, alloreactive T cells while retaining GVT effects. Blood. 2010;115:4293–4301. doi: 10.1182/blood-2009-05-222190. PubMed DOI PMC

Zhang P., Yang S., Zou Y., Yan X., Wu H., Zhou M., Sun Y.C., Zhang Y., Zhu H., Xu K., et al. NK cell predicts the severity of acute graft-versus-host disease in patients after allogeneic stem cell transplantation using antithymocyte globulin (ATG) in pretreatment scheme. BMC Immunol. 2019;20:46. doi: 10.1186/s12865-019-0326-8. PubMed DOI PMC

Lanier L.L. Up on the tightrope: Natural killer cell activation and inhibition. Nat. Immunol. 2008;9:495–502. doi: 10.1038/ni1581. PubMed DOI PMC

Gao F., Ye Y., Gao Y., Huang H., Zhao Y. Influence of KIR and NK Cell Reconstitution in the Outcomes of Hematopoietic Stem Cell Transplantation. Front. Immunol. 2020;11:2022. doi: 10.3389/fimmu.2020.02022. PubMed DOI PMC

Zingoni A., Molfetta R., Fionda C., Soriani A., Paolini R., Cippitelli M., Cerboni C., Santoni A. NKG2D and Its Ligands: “One for All, All for One”. Front. Immunol. 2018;9:476. doi: 10.3389/fimmu.2018.00476. PubMed DOI PMC

Wensveen F.M., Jelenčić V., Polić B. NKG2D: A Master Regulator of Immune Cell Responsiveness. Front. Immunol. 2018;9:441. doi: 10.3389/fimmu.2018.00441. PubMed DOI PMC

Hayashi T., Imai K., Morishita Y., Hayashi I., Kusunoki Y., Nakachi K. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 2006;66:563–570. doi: 10.1158/0008-5472.CAN-05-2776. PubMed DOI

Espinoza J.L., Takami A., Onizuka M., Sao H., Akiyama H., Miyamura K., Okamoto S., Inoue M., Kanda Y., Ohtake S., et al. NKG2D gene polymorphism has a significant impact on transplant outcomes after HLA-fully-matched unrelated bone marrow transplantation for standard risk hematologic malignancies. Haematologica. 2009;94:1427–1434. doi: 10.3324/haematol.2009.008318. PubMed DOI PMC

Bahram S. MIC genes: From genetics to biology. Adv. Immunol. 2000;76:1–60. doi: 10.1016/s0065-2776(01)76018-x. PubMed DOI

Machuldova A., Holubova M., Caputo V.S., Cedikova M., Jindra P., Houdova L., Pitule P. Role of Polymorphisms of NKG2D Receptor and Its Ligands in Acute Myeloid Leukemia and Human Stem Cell Transplantation. Front. Immunol. 2021;12:1010. doi: 10.3389/fimmu.2021.651751. PubMed DOI PMC

Isernhagen A., Malzahn D., Viktorova E., Elsner L., Monecke S., von Bonin F., Kilisch M., Wermuth J.M., Walther N., Balavarca Y., et al. The MICA-129 dimorphism affects NKG2D signaling and outcome of hematopoietic stem cell transplantation. EMBO Mol. Med. 2015;7:1480–1502. doi: 10.15252/emmm.201505246. PubMed DOI PMC

Boukouaci W., Busson M., de Latour R.P., Rocha V., Suberbielle C., Bengoufa D., Dulphy N., Haas P., Scieux C., Amroun H., et al. MICA-129 genotype, soluble MICA, and anti-MICA antibodies as biomarkers of chronic graft-versus-host disease. Blood. 2009;114:5216–5224. doi: 10.1182/blood-2009-04-217430. PubMed DOI

Fuerst D., Neuchel C., Niederwieser D., Bunjes D., Gramatzki M., Wagner E., Wulf G., Glass B., Pfreundschuh M., Einsele H., et al. Matching for the MICA-129 polymorphism is beneficial in unrelated hematopoietic stem cell transplantation. Blood. 2016;128:3169–3176. doi: 10.1182/blood-2016-05-716357. PubMed DOI

Parmar S., Del Lima M., Zou Y., Patah P.A., Liu P., Cano P., Rondon G., Pesoa S., de Padua Silva L., Qazilbash M.H., et al. Donor-recipient mismatches in MHC class I chain-related gene A in unrelated donor transplantation lead to increased incidence of acute graft-versus-host disease. Blood. 2009;114:2884–2887. doi: 10.1182/blood-2009-05-223172. PubMed DOI PMC

Carapito R., Aouadi I., Pichot A., Spinnhirny P., Morlon A., Kotova I., Macquin C., Rolli V., Cesbron A., Gagne K., et al. Compatibility at amino acid position 98 of MICB reduces the incidence of graft-versus-host disease in conjunction with the CMV status. Bone Marrow Transpl. 2020;55:1367–1378. doi: 10.1038/s41409-020-0886-5. PubMed DOI

Carapito R., Jung N., Kwemou M., Untrau M., Michel S., Pichot A., Giacometti G., Macquin C., Ilias W., Morlon A., et al. Matching for the nonconventional MHC-I MICA gene significantly reduces the incidence of acute and chronic GVHD. Blood. 2016;128:1979–1986. doi: 10.1182/blood-2016-05-719070. PubMed DOI PMC

Armand P., Kim H.T., Logan B.R., Wang Z., Alyea E.P., Kalaycio M.E., Maziarz R.T., Antin J.H., Soiffer R.J., Weisdorf D.J., et al. Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. Blood. 2014;123:3664–3671. doi: 10.1182/blood-2014-01-552984. PubMed DOI PMC

Sorror M.L., Maris M.B., Storb R., Baron F., Sandmaier B.M., Maloney D.G., Storer B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood. 2005;106:2912–2919. doi: 10.1182/blood-2005-05-2004. PubMed DOI PMC

Kabalak G., Thomas R.M., Martin J., Ortego-Centeno N., Jimenez-Alonso J., de Ramón E., Buyny S., Hamsen S., Gross W.L., Schnarr S., et al. Association of an NKG2D gene variant with systemic lupus erythematosus in two populations. Hum. Immunol. 2010;71:74–78. doi: 10.1016/j.humimm.2009.09.352. PubMed DOI

Asl A.A., Nezamdoust F.V., Fesahat F., Astani A., Barati M., Raee P., Asadi-Saghandi A. Association between rs1049174 NKG2D gene polymorphism and idiopathic recurrent spontaneous abortion in Iranian women: A case-control study. J. Obstet. Gynaecol. 2020;41:774–778. doi: 10.1080/01443615.2020.1798906. PubMed DOI

Field S.F., Nejentsev S., Walker N.M., Howson J.M.M., Godfrey L.M., Jolley J.D., Hardy M.P.A., Todd J.A. Sequencing-Based Genotyping and Association Analysis of the MICA and MICB Genes in Type 1 Diabetes. Diabetes. 2008;57:1753–1756. doi: 10.2337/db07-1402. PubMed DOI

Vazquez-Gonzalez W.G., Martinez-Alvarez J.C., Arrazola-Garcia A., Perez-Rodriguez M. Haplotype block 1 variant (HB-1v) of the NKG2 family of receptors. Hum. Immunol. 2019;80:842–847. doi: 10.1016/j.humimm.2019.07.276. PubMed DOI

Huang X., Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9:868–877. doi: 10.1101/gr.9.9.868. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Robinson J., Barker D.J., Georgiou X., Cooper M.A., Flicek P., Marsh S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2019;48:D948–D955. doi: 10.1093/nar/gkz950. PubMed DOI PMC

Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques. 2000;28:1102, 1104. doi: 10.2144/00286ir01. PubMed DOI

Consortium T.U. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2020;49:D480–D489. doi: 10.1093/nar/gkaa1100. PubMed DOI PMC

R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. 2018. [(accessed on 6 October 2021)]. Available online: https://www.R-project.org/

Gratwohl A. The EBMT risk score. Bone Marrow Transpl. 2012;47:749–756. doi: 10.1038/bmt.2011.110. PubMed DOI

Weisdorf D., Hakke R., Blazar B., Miller W., McGlave P., Ramsay N., Kersey J., Filipovich A. Risk factors for acute graft-versus-host disease in histocompatible donor bone marrow transplantation. Transplantation. 1991;51:1197–1203. doi: 10.1097/00007890-199106000-00010. PubMed DOI

Martin P.J., Levine D.M., Storer B.E., Nelson S.C., Dong X., Hansen J.A. Recipient and donor genetic variants associated with mortality after allogeneic hematopoietic cell transplantation. Blood Adv. 2020;4:3224–3233. doi: 10.1182/bloodadvances.2020001927. PubMed DOI PMC

Chen D., Gyllensten U. MICA polymorphism: Biology and importance in cancer. Carcinogenesis. 2014;35:2633–2642. doi: 10.1093/carcin/bgu215. PubMed DOI

Ashiru O., López-Cobo S., Fernández-Messina L., Pontes-Quero S., Pandolfi R., Reyburn H.T., Valés-Gómez M. A GPI anchor explains the unique biological features of the common NKG2D-ligand allele MICA*008. Biochem. J. 2013;454:295–302. doi: 10.1042/BJ20130194. PubMed DOI

Onyeaghala G., Lane J., Pankratz N., Nelson H.H., Thyagarajan B., Walcheck B., Anderson K.E., Prizment A.E. Association between MICA polymorphisms, s-MICA levels, and pancreatic cancer risk in a population-based case-control study. PLoS ONE. 2019;14:e0217868. doi: 10.1371/journal.pone.0217868. PubMed DOI PMC

Isernhagen A., Schilling D., Monecke S., Shah P., Elsner L., Walter L., Multhoff G., Dressel R. The MICA-129Met/Val dimorphism affects plasma membrane expression and shedding of the NKG2D ligand MICA. Immunogenetics. 2016;68:109–123. doi: 10.1007/s00251-015-0884-8. PubMed DOI PMC

Heinemann A., Zhao F., Pechlivanis S., Eberle J., Steinle A., Diederichs S., Schadendorf D., Paschen A. Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res. 2012;72:460–471. doi: 10.1158/0008-5472.CAN-11-1977. PubMed DOI

Nice T.J., Coscoy L., Raulet D.H. Posttranslational regulation of the NKG2D ligand Mult1 in response to cell stress. J. Exp. Med. 2009;206:287–298. doi: 10.1084/jem.20081335. PubMed DOI PMC

Apithy M.-J., Charbonnier A., Desoutter J., Diouf M., Morel P., Garçon L., Marolleau J.-P., Guillaume N. Impact of MICA and NKG2D polymorphisms in HLA-fully matched related and unrelated hematopoietic stem cell transplantation. Bone Marrow Transplant. 2018;53:918–922. doi: 10.1038/s41409-017-0083-3. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...