Deleterious Effect of Advanced CKD on Glyoxalase System Activity not Limited to Diabetes Aetiology

. 2018 May 18 ; 19 (5) : . [epub] 20180518

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29783710

Methylglyoxal production is increased in diabetes. Methylglyoxal is efficiently detoxified by enzyme glyoxalase 1 (GLO1). The aim was to study the effect of diabetic and CKD milieu on (a) GLO1 gene expression in peripheral blood mononuclear cells; (b) GLO1 protein levels in whole blood; and (c) GLO1 activity in RBCs in vivo in diabetic vs. non-diabetic subjects with normal or slightly reduced vs. considerably reduced renal function (CKD1-2 vs. CKD3-4). A total of 83 subjects were included in the study. Gene expression was measured using real-time PCR, and protein levels were quantified using Western blotting. Erythrocyte GLO1 activity was measured spectrophotometrically. GLO1 gene expression was significantly higher in subjects with CKD1-2 compared to CKD3-4. GLO1 protein level was lower in diabetics than in non-diabetics. GLO1 activity in RBCs differed between the four groups being significantly higher in diabetics with CKD1-2 vs. healthy subjects and vs. nondiabeticsfig with CKD3-4. GLO1 activity was significantly higher in diabetics compared to nondiabetics. In conclusion, both diabetes and CKD affects the glyoxalase system. It appears that CKD in advanced stages has prevailing and suppressive effects compared to hyperglycaemia. CKD decreases GLO1 gene expression and protein levels (together with diabetes) without concomitant changes of GLO1 activity.

Zobrazit více v PubMed

Phillips S.A., Thornalley P.J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 1993;212:101–105. doi: 10.1111/j.1432-1033.1993.tb17638.x. PubMed DOI

Rabbani N., Thornalley P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 2012;42:1133–1142. doi: 10.1007/s00726-010-0783-0. PubMed DOI

Rabbani N., Thornalley P.J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 2015;458:221–226. doi: 10.1016/j.bbrc.2015.01.140. PubMed DOI

Nigro C., Leone A., Raciti G.A., Longo M., Mirra P., Formisano P., Beguinot F., Miele C. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017;18:188. doi: 10.3390/ijms18010188. PubMed DOI PMC

Rabbani N., Thornalley P.J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes. 2014;63:50–52. doi: 10.2337/db13-1606. PubMed DOI

Rabbani N., Thornalley P.J. Glyoxalase 1 modulation in obesity and diabetes. Antioxid. Redox Signal. 2018 doi: 10.1089/ars.2017.7424. PubMed DOI

Giacco F., Du X., D’Agati V.D., Milne R., Sui G., Geoffrion M., Brownlee M. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes. 2014;63:291–299. doi: 10.2337/db13-0316. PubMed DOI PMC

Inagi R. Glycative stress and glyoxalase in kidney disease and aging. Biochem. Soc. Trans. 2014;42:457–460. doi: 10.1042/BST20140007. PubMed DOI

McLellan A.C., Thornalley P.J., Benn J., Sonksen P.H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.) 1994;87:21–29. doi: 10.1042/cs0870021. PubMed DOI

Kumagai T., Nangaku M., Kojima I., Nagai R., Ingelfinger J.R., Miyata T., Fujita T., Inagi R. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Ren. Physiol. 2009;296:F912–F921. doi: 10.1152/ajprenal.90575.2008. PubMed DOI

Brouwers O., Niessen P.M., Ferreira I., Miyata T., Scheffer P.G., Teerlink T., Schrauwen P., Brownlee M., Stehouwer C.D., Schalkwijk C.G. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem. 2011;286:1374–1380. doi: 10.1074/jbc.M110.144097. PubMed DOI PMC

Kim K.M., Kim Y.S., Jung D.H., Lee J., Kim J.S. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp. Cell Res. 2012;318:152–159. doi: 10.1016/j.yexcr.2011.10.013. PubMed DOI

Harjutsalo V., Groop P.H. Epidemiology and risk factors for diabetic kidney disease. Adv. Chronic Kidney Dis. 2014;21:260–266. doi: 10.1053/j.ackd.2014.03.009. PubMed DOI

Kronenberg F. Emerging risk factors and markers of chronic kidney disease progression. Nat. Rev. Nephrol. 2009;5:677–689. doi: 10.1038/nrneph.2009.173. PubMed DOI

Brouwers O., Niessen P.M., Miyata T., Østergaard J.A., Flyvbjerg A., Peutz-Kootstra C.J., Sieber J., Mundel P.H., Brownlee M., Janssen B.J., et al. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia. 2014;57:224–235. doi: 10.1007/s00125-013-3088-5. PubMed DOI

Tikellis C., Pickering R.J., Tsorotes D., Huet O., Cooper M.E., Jandeleit-Dahm K., Thomas M.C. Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes. 2014;63:3915–3925. doi: 10.2337/db13-0932. PubMed DOI

Chalásová K., Pácal L., Pleskačová A., Knopfová L., Řehořová J., Tomandlová M., Tomandl J., Kaňková K. Transketolase activity but not thiamine membrane transport change in response to hyperglycaemia and kidney dysfunction. Exp. Clin. Endocrinol. Diabetes. 2018;126:255–262. doi: 10.1055/s-0043-115009. PubMed DOI

Pacal L., Tomandl J., Svojanovsky J., Krusova D., Stepankova S., Rehorova J., Olsovsky J., Belobradkova J., Tanhaeuserova V., Tomandlova M., et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol. Dialysis Transplant. 2011;26:1229–1236. doi: 10.1093/ndt/gfq550. PubMed DOI

Miyata T., van Ypersele de Strihou C., Imasawa T., Yoshino A., Ueda Y., Ogura H., Kominami K., Onogi H., Inagi R., Nangaku M., et al. Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int. 2001;60:2351–2359. doi: 10.1046/j.1523-1755.2001.00051.x. PubMed DOI

Nakayama K., Nakayama M., Iwabuchi M., Terawaki H., Sato T., Kohno M., Ito S. Plasma α-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 2008;28:871–878. doi: 10.1159/000139653. PubMed DOI

Nemet I., Turk Z., Duvnjak L., Car N., Varga-Defterdarović L. Humoral methylglyoxal level reflects glycemic fluctuation. Clin. Biochem. 2005;38:379–383. doi: 10.1016/j.clinbiochem.2004.12.008. PubMed DOI

Rabbani N., Thornalley P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93:803–813. doi: 10.1016/j.kint.2017.11.034. PubMed DOI

McLellan A.C., Thornalley P.J. Glyoxalase activity in human red blood cells fractioned by age. Mech. Ageing Dev. 1989;48:63–71. doi: 10.1016/0047-6374(89)90026-2. PubMed DOI

Taylor S.C., Posch A. The design of a quantitative western blot experiment. Biomed. Res. Int. 2014;2014:361590. doi: 10.1155/2014/361590. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...