Deleterious Effect of Advanced CKD on Glyoxalase System Activity not Limited to Diabetes Aetiology
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29783710
PubMed Central
PMC5983829
DOI
10.3390/ijms19051517
PII: ijms19051517
Knihovny.cz E-zdroje
- Klíčová slova
- chronic kidney disease, diabetes, diabetic nephropathy, glyoxalase,
- MeSH
- chronická renální insuficience krev patologie MeSH
- diabetes mellitus krev patologie MeSH
- diabetické nefropatie krev patologie MeSH
- laktoylglutathionlyasa krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- pyruvaldehyd krev MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- GLO1 protein, human MeSH Prohlížeč
- laktoylglutathionlyasa MeSH
- pyruvaldehyd MeSH
Methylglyoxal production is increased in diabetes. Methylglyoxal is efficiently detoxified by enzyme glyoxalase 1 (GLO1). The aim was to study the effect of diabetic and CKD milieu on (a) GLO1 gene expression in peripheral blood mononuclear cells; (b) GLO1 protein levels in whole blood; and (c) GLO1 activity in RBCs in vivo in diabetic vs. non-diabetic subjects with normal or slightly reduced vs. considerably reduced renal function (CKD1-2 vs. CKD3-4). A total of 83 subjects were included in the study. Gene expression was measured using real-time PCR, and protein levels were quantified using Western blotting. Erythrocyte GLO1 activity was measured spectrophotometrically. GLO1 gene expression was significantly higher in subjects with CKD1-2 compared to CKD3-4. GLO1 protein level was lower in diabetics than in non-diabetics. GLO1 activity in RBCs differed between the four groups being significantly higher in diabetics with CKD1-2 vs. healthy subjects and vs. nondiabeticsfig with CKD3-4. GLO1 activity was significantly higher in diabetics compared to nondiabetics. In conclusion, both diabetes and CKD affects the glyoxalase system. It appears that CKD in advanced stages has prevailing and suppressive effects compared to hyperglycaemia. CKD decreases GLO1 gene expression and protein levels (together with diabetes) without concomitant changes of GLO1 activity.
Zobrazit více v PubMed
Phillips S.A., Thornalley P.J. The formation of methylglyoxal from triose phosphates. Investigation using a specific assay for methylglyoxal. Eur. J. Biochem. 1993;212:101–105. doi: 10.1111/j.1432-1033.1993.tb17638.x. PubMed DOI
Rabbani N., Thornalley P.J. Methylglyoxal, glyoxalase 1 and the dicarbonyl proteome. Amino Acids. 2012;42:1133–1142. doi: 10.1007/s00726-010-0783-0. PubMed DOI
Rabbani N., Thornalley P.J. Dicarbonyl stress in cell and tissue dysfunction contributing to ageing and disease. Biochem. Biophys. Res. Commun. 2015;458:221–226. doi: 10.1016/j.bbrc.2015.01.140. PubMed DOI
Nigro C., Leone A., Raciti G.A., Longo M., Mirra P., Formisano P., Beguinot F., Miele C. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017;18:188. doi: 10.3390/ijms18010188. PubMed DOI PMC
Rabbani N., Thornalley P.J. The critical role of methylglyoxal and glyoxalase 1 in diabetic nephropathy. Diabetes. 2014;63:50–52. doi: 10.2337/db13-1606. PubMed DOI
Rabbani N., Thornalley P.J. Glyoxalase 1 modulation in obesity and diabetes. Antioxid. Redox Signal. 2018 doi: 10.1089/ars.2017.7424. PubMed DOI
Giacco F., Du X., D’Agati V.D., Milne R., Sui G., Geoffrion M., Brownlee M. Knockdown of glyoxalase 1 mimics diabetic nephropathy in nondiabetic mice. Diabetes. 2014;63:291–299. doi: 10.2337/db13-0316. PubMed DOI PMC
Inagi R. Glycative stress and glyoxalase in kidney disease and aging. Biochem. Soc. Trans. 2014;42:457–460. doi: 10.1042/BST20140007. PubMed DOI
McLellan A.C., Thornalley P.J., Benn J., Sonksen P.H. Glyoxalase system in clinical diabetes mellitus and correlation with diabetic complications. Clin. Sci. (Lond.) 1994;87:21–29. doi: 10.1042/cs0870021. PubMed DOI
Kumagai T., Nangaku M., Kojima I., Nagai R., Ingelfinger J.R., Miyata T., Fujita T., Inagi R. Glyoxalase I overexpression ameliorates renal ischemia-reperfusion injury in rats. Am. J. Physiol. Ren. Physiol. 2009;296:F912–F921. doi: 10.1152/ajprenal.90575.2008. PubMed DOI
Brouwers O., Niessen P.M., Ferreira I., Miyata T., Scheffer P.G., Teerlink T., Schrauwen P., Brownlee M., Stehouwer C.D., Schalkwijk C.G. Overexpression of glyoxalase-I reduces hyperglycemia-induced levels of advanced glycation end products and oxidative stress in diabetic rats. J. Biol. Chem. 2011;286:1374–1380. doi: 10.1074/jbc.M110.144097. PubMed DOI PMC
Kim K.M., Kim Y.S., Jung D.H., Lee J., Kim J.S. Increased glyoxalase I levels inhibit accumulation of oxidative stress and an advanced glycation end product in mouse mesangial cells cultured in high glucose. Exp. Cell Res. 2012;318:152–159. doi: 10.1016/j.yexcr.2011.10.013. PubMed DOI
Harjutsalo V., Groop P.H. Epidemiology and risk factors for diabetic kidney disease. Adv. Chronic Kidney Dis. 2014;21:260–266. doi: 10.1053/j.ackd.2014.03.009. PubMed DOI
Kronenberg F. Emerging risk factors and markers of chronic kidney disease progression. Nat. Rev. Nephrol. 2009;5:677–689. doi: 10.1038/nrneph.2009.173. PubMed DOI
Brouwers O., Niessen P.M., Miyata T., Østergaard J.A., Flyvbjerg A., Peutz-Kootstra C.J., Sieber J., Mundel P.H., Brownlee M., Janssen B.J., et al. Glyoxalase-1 overexpression reduces endothelial dysfunction and attenuates early renal impairment in a rat model of diabetes. Diabetologia. 2014;57:224–235. doi: 10.1007/s00125-013-3088-5. PubMed DOI
Tikellis C., Pickering R.J., Tsorotes D., Huet O., Cooper M.E., Jandeleit-Dahm K., Thomas M.C. Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes. 2014;63:3915–3925. doi: 10.2337/db13-0932. PubMed DOI
Chalásová K., Pácal L., Pleskačová A., Knopfová L., Řehořová J., Tomandlová M., Tomandl J., Kaňková K. Transketolase activity but not thiamine membrane transport change in response to hyperglycaemia and kidney dysfunction. Exp. Clin. Endocrinol. Diabetes. 2018;126:255–262. doi: 10.1055/s-0043-115009. PubMed DOI
Pacal L., Tomandl J., Svojanovsky J., Krusova D., Stepankova S., Rehorova J., Olsovsky J., Belobradkova J., Tanhaeuserova V., Tomandlova M., et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol. Dialysis Transplant. 2011;26:1229–1236. doi: 10.1093/ndt/gfq550. PubMed DOI
Miyata T., van Ypersele de Strihou C., Imasawa T., Yoshino A., Ueda Y., Ogura H., Kominami K., Onogi H., Inagi R., Nangaku M., et al. Glyoxalase I deficiency is associated with an unusual level of advanced glycation end products in a hemodialysis patient. Kidney Int. 2001;60:2351–2359. doi: 10.1046/j.1523-1755.2001.00051.x. PubMed DOI
Nakayama K., Nakayama M., Iwabuchi M., Terawaki H., Sato T., Kohno M., Ito S. Plasma α-oxoaldehyde levels in diabetic and nondiabetic chronic kidney disease patients. Am. J. Nephrol. 2008;28:871–878. doi: 10.1159/000139653. PubMed DOI
Nemet I., Turk Z., Duvnjak L., Car N., Varga-Defterdarović L. Humoral methylglyoxal level reflects glycemic fluctuation. Clin. Biochem. 2005;38:379–383. doi: 10.1016/j.clinbiochem.2004.12.008. PubMed DOI
Rabbani N., Thornalley P.J. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93:803–813. doi: 10.1016/j.kint.2017.11.034. PubMed DOI
McLellan A.C., Thornalley P.J. Glyoxalase activity in human red blood cells fractioned by age. Mech. Ageing Dev. 1989;48:63–71. doi: 10.1016/0047-6374(89)90026-2. PubMed DOI
Taylor S.C., Posch A. The design of a quantitative western blot experiment. Biomed. Res. Int. 2014;2014:361590. doi: 10.1155/2014/361590. PubMed DOI PMC