Thermo Compression of Thermoplastic Agar-Xanthan Gum-Carboxymethyl Cellulose Blend

. 2021 Oct 10 ; 13 (20) : . [epub] 20211010

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34685232

Grantová podpora
DKRVO (RP/CPS/2020/005) Tomas Bata University in Zlín
DKRVO (RP/CPS/2020/003) Tomas Bata University in Zlín

There is a gap in the literature for the preparation of agar-xanthan gum-carboxymethyl cellulose-based films by thermo compression methods. The present work aims to fill this gap by blending the polysaccharides in a plastograph and preparation of films under high pressure and temperature for a short duration of time. The pivotal aim of this work is also to know the effect of different mixing conditions on the physical, chemical, mechanical and thermal properties of the films. The films are assessed based on results from microscopic, infrared spectroscopic, permeability (WVTR), transmittance, mechanical, rheological and thermogravimetric analysis. The results revealed that the mixing volume and mixing duration had negative effects on the films' transparency. WVTR was independent of the mixing conditions and ranged between 1078 and 1082 g/m2·d. The mixing RPM and mixing duration had a positive effect on the film tensile strength. The films from the blends mixed at higher RPM for a longer time gave elongation percentage up to 78%. Blending also altered the crystallinity and thermal behavior of the polysaccharides. The blend prepared at 80 RPM for 7 min and pressed at 140 °C showed better percent elongation and light barrier properties.

Zobrazit více v PubMed

Wilpiszewska K., Antosik A.K., Schmidt B., Janik J., Rokicka J. Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers. 2020;12:2447. doi: 10.3390/polym12112447. PubMed DOI PMC

Ncube L.K., Ude A.U., Ogunmuyiwa E.N., Zulkifli R., Beas I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials. 2020;13:4994. doi: 10.3390/ma13214994. PubMed DOI PMC

Mostafavi F.S., Zaeim D. Agar-Based Edible Films for Food Packaging Applications—A Review. Int. J. Biol. Macromol. 2020;159:1165–1176. doi: 10.1016/j.ijbiomac.2020.05.123. PubMed DOI

Martínez-Sanz M., Gómez-Mascaraque L.G., Ballester A.R., Martínez-Abad A., Brodkorb A., López-Rubio A. Production of Unpurified Agar-Based Extracts from Red Seaweed Gelidium Sesquipedale by Means of Simplified Extraction Protocols. Algal Res. 2019;38:101420. doi: 10.1016/j.algal.2019.101420. DOI

Patel J., Maji B., Moorthy N.S.H.N., Maiti S. Xanthan Gum Derivatives: Review of Synthesis, Properties and Diverse Applications. RSC Adv. 2020;10:27103–27136. doi: 10.1039/D0RA04366D. PubMed DOI PMC

Chaturvedi S., Kulshrestha S., Bhardwaj K., Jangir R. A Review on Properties and Applications of Xanthan Gum. In: Vaishnav A., Choudhary D.K., editors. Microbial Polymers: Applications and Ecological Perspectives. Springer; Singapore: 2021. pp. 87–107.

Demirkesen I., Kelkar S., Campanella O.H., Sumnu G., Sahin S., Okos M. Characterization of Structure of Gluten-Free Breads by Using X-Ray Microtomography. Food Hydrocoll. 2014;36:37–44. doi: 10.1016/j.foodhyd.2013.09.002. DOI

Marimuthu M., Ilansuriyan P., Yap T.N. Munisamy Shanmugam Interaction of Semi-Refined Carrageenan (E407a) with Nano Quanta of Some Food Hydrocolloids and Their Physiochemical, Functional and Rheological Properties. J. Microbiol. Biotechnol. Food Sci. 2021;2021:1049–1053.

Nagar M., Sharanagat V.S., Kumar Y., Singh L. Development and Characterization of Elephant Foot Yam Starch–Hydrocolloids Based Edible Packaging Film: Physical, Optical, Thermal and Barrier Properties. J. Food Sci. Technol. 2020;57:1331–1341. doi: 10.1007/s13197-019-04167-w. PubMed DOI PMC

Yaradoddi J.S., Banapurmath N.R., Ganachari S.V., Soudagar M.E.M., Mubarak N.M., Hallad S., Hugar S., Fayaz H. Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Sci. Rep. 2020;10:21960. doi: 10.1038/s41598-020-78912-z. PubMed DOI PMC

Roy S., Kim H.-J., Rhim J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int. J. Biol. Macromol. 2021;183:305–315. doi: 10.1016/j.ijbiomac.2021.04.162. PubMed DOI

Nur Hazirah M.A.S.P., Isa M.I.N., Sarbon N.M. Effect of Xanthan Gum on the Physical and Mechanical Properties of Gelatin-Carboxymethyl Cellulose Film Blends. Food Packag. Shelf Life. 2016;9:55–63. doi: 10.1016/j.fpsl.2016.05.008. DOI

Sousa A.M.M., Souza H.K.S., Liu L., Gonçalves M.P. Alternative Plasticizers for the Production of Thermo-Compressed Agar Films. Int. J. Biol. Macromol. 2015;76:138–145. doi: 10.1016/j.ijbiomac.2015.02.030. PubMed DOI

Lopez O., Garcia M.A., Villar M.A., Gentili A., Rodriguez M.S., Albertengo L. Thermo-Compression of Biodegradable Thermoplastic Corn Starch Films Containing Chitin and Chitosan. LWT Food Sci. Technol. 2014;57:106–115. doi: 10.1016/j.lwt.2014.01.024. DOI

Bandyopadhyay S., Saha N., Saha P. Characterization of Bacterial Cellulose Produced Using Media Containing Waste Apple Juice. Appl. Biochem. Microbiol. 2018;54:649–657. doi: 10.1134/S0003683818060042. DOI

Chen Y. Developing Solid Oral Dosage Forms. Elsevier; Amsterdam, The Netherlands: 2017. Packaging Selection for Solid Oral Dosage Forms; pp. 637–651.

Zhang R., Wang X., Cheng M. Preparation and Characterization of Potato Starch Film with Various Size of Nano-SiO2. Polymers. 2018;10:1172. doi: 10.3390/polym10101172. PubMed DOI PMC

Alias S.A., Mhd Sarbon N. Rheological, Physical, and Mechanical Properties of Chicken Skin Gelatin Films Incorporated with Potato Starch. NPJ Sci. Food. 2019;3:26. doi: 10.1038/s41538-019-0059-3. PubMed DOI PMC

Bao S., Xu S., Wang Z. Antioxidant Activity and Properties of Gelatin Films Incorporated with Tea Polyphenol-Loaded Chitosan Nanoparticles. J. Sci. Food Agric. 2009;89:2692–2700. doi: 10.1002/jsfa.3775. DOI

Bandyopadhyay S., Saha N., Zandraa O., Pummerová M., Sáha P. Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for ‘Cheese’: Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers. Foods. 2020;9:307. doi: 10.3390/foods9030307. PubMed DOI PMC

Pagano C., Puglia D., Luzi F., Michele A.D., Scuota S., Primavilla S., Ceccarini M.R., Beccari T., Iborra C.A.V., Ramella D., et al. Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics. 2021;13:324. doi: 10.3390/pharmaceutics13030324. PubMed DOI PMC

Wu Y., Geng F., Chang P.R., Yu J., Ma X. Effect of Agar on the Microstructure and Performance of Potato Starch Film. Carbohydr. Polym. 2009;76:299–304. doi: 10.1016/j.carbpol.2008.10.031. DOI

Chieng B.W., Ibrahim N., Yunus W., Hussein M. Effects of Graphene Nanopletelets on Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites. Polymers. 2013;6:93–104. doi: 10.3390/polym6010093. DOI

Kamyar S., Ahmad M., Jazayeri S.D., Sedaghat S., Shabanzadeh P., Jahangirian H. (kamran); Mahdavi, M.; Abdollahi, Y. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method. Int. J. Mol. Sci. 2012;13:6639–6650. doi: 10.3390/ijms13066639. PubMed DOI PMC

Kachel M., Matwijczuk A., Gagoś M. Analysis of the Physicochemical Properties of Post-Manufacturing Waste Derived from Production of Methyl Esters from Rapeseed Oil. Int. Agrophysics. 2017;31:1–8. doi: 10.1515/intag-2016-0042. DOI

Usha Rani G., Konreddy A.K., Mishra S., Sen G. Synthesis and Applications of Polyacrylamide Grafted Agar as a Matrix for Controlled Drug Release of 5-ASA. Int. J. Biol. Macromol. 2014;65:375–382. doi: 10.1016/j.ijbiomac.2014.01.034. PubMed DOI

Chiș A., Fetea F., Taoutaou A., Socaciu C. Application of FTIR Spectroscopy for a Rapid Determination of Some Hydrolytic Enzymes Activity on Sea Buckthorn Substrate. Rom. Biotechnol. Lett. 2010;15:5738–5744.

Bandyopadhyay S., Saha N., Brodnjak U.V., Saha P. Bacterial Cellulose Based Greener Packaging Material: A Bioadhesive Polymeric Film. Mater. Res. Express. 2018;5:115405. doi: 10.1088/2053-1591/aadb01. DOI

Shamsuri A., Daik R. Utilization of an Ionic Liquid/Urea Mixture as a Physical Coupling Agent for Agarose/Talc Composite Films. Materials. 2013;6:682–698. doi: 10.3390/ma6020682. PubMed DOI PMC

El-hefian E.A., Nasef M.M., Yahaya A.H. Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology. E-J. Chem. 2012;9:1431–1439. doi: 10.1155/2012/781206. DOI

Sharma K., Kumar V., Swart C., Chaudhary B., Swart H. Synthesis, Characterization and Anti-Microbial Activity of Superabsorbents Based on Agar-Poly(Methacrylic Acid-Glycine) J. Bioact. Compat. Polym. 2016;32 doi: 10.1177/0883911516653148. DOI

Sharma V., Pathak K. Modified Xanthan Gum as Rapidly Disintegrating Hydrophilic Excipient for Time-Controlled Disintegrating Tablets of Roxithromycin. Indian J. Pharm. Educ. Res. 2013;47:79–87. doi: 10.5530/ijper.47.4.11. DOI

Basu P., Uttamchand N.K., Arunachalam R., Devi S., Inderchand M. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS Omega. 2018;3:12622–12632. doi: 10.1021/acsomega.8b02015. PubMed DOI PMC

Ahmad M., Tay M., Kamyar S., Hussein M., Lim J. Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without Any Reducing Agent. Int. J. Mol. Sci. 2011;12:4872–4884. doi: 10.3390/ijms12084872. PubMed DOI PMC

Barron M., Young T., Johnston K., Williams R. Investigation of Processing Parameters of Spray Freezing into Liquid to Prepare Polyethylene Glycol Polymeric Particles for Drug Delivery. AAPS PharmSciTech. 2003;4:E12. doi: 10.1208/pt040212. PubMed DOI PMC

Guo Y., Zhang B., Zhao S., Qiao D., Xie F. Plasticized Starch/Agar Composite Films: Processing, Morphology, Structure, Mechanical Properties and Surface Hydrophilicity. Coatings. 2021;11:311. doi: 10.3390/coatings11030311. DOI

Rusli A., Mulyati M.T., Metusalach M., Salengke S. Physical and Mechanical Properties of Agar Based Edible Film with Glycerol Plasticizer. Int. Food Res. J. 2016;24:1669–1675. doi: 10.31227/osf.io/tq2pf. DOI

Rhim J.-W. Physical-Mechanical Properties of Agar/κ-Carrageenan Blend Film and Derived Clay Nanocomposite Film. J. Food Sci. 2012;77:N66–N73. doi: 10.1111/j.1750-3841.2012.02988.x. PubMed DOI

Setoyama M., Yamamoto K., Kadokawa J. Preparation of Cellulose/Xanthan Gum Composite Films and Hydrogels Using Ionic Liquid. J. Polym. Environ. 2014;22:298–303. doi: 10.1007/s10924-014-0642-2. DOI

Cazón P., Velazquez G., Ramírez J.A., Vázquez M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017;68:136–148. doi: 10.1016/j.foodhyd.2016.09.009. DOI

Madera-Santana T.J., Freile-Pelegrín Y., Azamar-Barrios J.A. Physicochemical and Morphological Properties of Plasticized Poly(Vinyl Alcohol)–Agar Biodegradable Films. Int. J. Biol. Macromol. 2014;69:176–184. doi: 10.1016/j.ijbiomac.2014.05.044. PubMed DOI

Łopusiewicz Ł., Kwiatkowski P., Drozłowska E., Trocer P., Kostek M., Śliwiński M., Polak-Śliwińska M., Kowalczyk E., Sienkiewicz M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymer. 2021;13:499. doi: 10.3390/polym13040499. PubMed DOI PMC

Bahmid N.A., Dekker M., Fogliano V., Heising J. Development of a Moisture-Activated Antimicrobial Film Containing Ground Mustard Seeds and Its Application on Meat in Active Packaging System. Food Packag. Shelf Life. 2021;30:100753. doi: 10.1016/j.fpsl.2021.100753. DOI

Calle A., Fernandez M., Montoya B., Schmidt M., Thompson J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods. 2021;10:1459. doi: 10.3390/foods10071459. PubMed DOI PMC

Debnath S. Low Cost Homemade System to Disinfect Food Items from SARS-CoV-2. J. Med. Syst. 2020;44:126. doi: 10.1007/s10916-020-01594-7. PubMed DOI PMC

Conder J.R., Fruitwala N.A., Shingari M.K. Thermal Decomposition of Polyethylene Glycol 20m and Essential Oils in Gas—Liquid Chromatography and the Effect of Traces of Oxygen. J. Chromatogr. A. 1983;269:171–178. doi: 10.1016/S0021-9673(01)90800-3. DOI

Ochoa-Yepes O., Di Giogio L., Goyanes S., Mauri A., Famá L. Influence of Process (Extrusion/Thermo-Compression, Casting) and Lentil Protein Content on Physicochemical Properties of Starch Films. Carbohydr. Polym. 2019;208:221–231. doi: 10.1016/j.carbpol.2018.12.030. PubMed DOI

Ouyang Q.-Q., Hu Z., Li S.-D., Quan W.-Y., Wen L.-L., Yang Z.-M., Li P.-W. Thermal Degradation of Agar: Mechanism and Toxicity of Products. Food Chem. 2018;264:277–283. doi: 10.1016/j.foodchem.2018.04.098. PubMed DOI

Srivastava A., Mishra V., Singh P., Srivastava A., Kumar R. Comparative Study of Thermal Degradation Behavior of Graft Copolymers of Polysaccharides and Vinyl Monomers. J. Therm. Anal. Calorim. 2012;107:211–223. doi: 10.1007/s10973-011-1921-y. DOI

de Britto D., Assis O.B.G. Thermal Degradation of Carboxymethylcellulose in Different Salty Forms. Thermochim. Acta. 2009;494:115–122. doi: 10.1016/j.tca.2009.04.028. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...