Thermo Compression of Thermoplastic Agar-Xanthan Gum-Carboxymethyl Cellulose Blend
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2020/005)
Tomas Bata University in Zlín
DKRVO (RP/CPS/2020/003)
Tomas Bata University in Zlín
PubMed
34685232
PubMed Central
PMC8541485
DOI
10.3390/polym13203472
PII: polym13203472
Knihovny.cz E-zdroje
- Klíčová slova
- DTG, XRD, agar, blend, carboxymethyl cellulose, films, food packaging, plastograph, rheology, thermo compression, xanthan gum,
- Publikační typ
- časopisecké články MeSH
There is a gap in the literature for the preparation of agar-xanthan gum-carboxymethyl cellulose-based films by thermo compression methods. The present work aims to fill this gap by blending the polysaccharides in a plastograph and preparation of films under high pressure and temperature for a short duration of time. The pivotal aim of this work is also to know the effect of different mixing conditions on the physical, chemical, mechanical and thermal properties of the films. The films are assessed based on results from microscopic, infrared spectroscopic, permeability (WVTR), transmittance, mechanical, rheological and thermogravimetric analysis. The results revealed that the mixing volume and mixing duration had negative effects on the films' transparency. WVTR was independent of the mixing conditions and ranged between 1078 and 1082 g/m2·d. The mixing RPM and mixing duration had a positive effect on the film tensile strength. The films from the blends mixed at higher RPM for a longer time gave elongation percentage up to 78%. Blending also altered the crystallinity and thermal behavior of the polysaccharides. The blend prepared at 80 RPM for 7 min and pressed at 140 °C showed better percent elongation and light barrier properties.
Zobrazit více v PubMed
Wilpiszewska K., Antosik A.K., Schmidt B., Janik J., Rokicka J. Hydrophilic Films Based on Carboxymethylated Derivatives of Starch and Cellulose. Polymers. 2020;12:2447. doi: 10.3390/polym12112447. PubMed DOI PMC
Ncube L.K., Ude A.U., Ogunmuyiwa E.N., Zulkifli R., Beas I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials. 2020;13:4994. doi: 10.3390/ma13214994. PubMed DOI PMC
Mostafavi F.S., Zaeim D. Agar-Based Edible Films for Food Packaging Applications—A Review. Int. J. Biol. Macromol. 2020;159:1165–1176. doi: 10.1016/j.ijbiomac.2020.05.123. PubMed DOI
Martínez-Sanz M., Gómez-Mascaraque L.G., Ballester A.R., Martínez-Abad A., Brodkorb A., López-Rubio A. Production of Unpurified Agar-Based Extracts from Red Seaweed Gelidium Sesquipedale by Means of Simplified Extraction Protocols. Algal Res. 2019;38:101420. doi: 10.1016/j.algal.2019.101420. DOI
Patel J., Maji B., Moorthy N.S.H.N., Maiti S. Xanthan Gum Derivatives: Review of Synthesis, Properties and Diverse Applications. RSC Adv. 2020;10:27103–27136. doi: 10.1039/D0RA04366D. PubMed DOI PMC
Chaturvedi S., Kulshrestha S., Bhardwaj K., Jangir R. A Review on Properties and Applications of Xanthan Gum. In: Vaishnav A., Choudhary D.K., editors. Microbial Polymers: Applications and Ecological Perspectives. Springer; Singapore: 2021. pp. 87–107.
Demirkesen I., Kelkar S., Campanella O.H., Sumnu G., Sahin S., Okos M. Characterization of Structure of Gluten-Free Breads by Using X-Ray Microtomography. Food Hydrocoll. 2014;36:37–44. doi: 10.1016/j.foodhyd.2013.09.002. DOI
Marimuthu M., Ilansuriyan P., Yap T.N. Munisamy Shanmugam Interaction of Semi-Refined Carrageenan (E407a) with Nano Quanta of Some Food Hydrocolloids and Their Physiochemical, Functional and Rheological Properties. J. Microbiol. Biotechnol. Food Sci. 2021;2021:1049–1053.
Nagar M., Sharanagat V.S., Kumar Y., Singh L. Development and Characterization of Elephant Foot Yam Starch–Hydrocolloids Based Edible Packaging Film: Physical, Optical, Thermal and Barrier Properties. J. Food Sci. Technol. 2020;57:1331–1341. doi: 10.1007/s13197-019-04167-w. PubMed DOI PMC
Yaradoddi J.S., Banapurmath N.R., Ganachari S.V., Soudagar M.E.M., Mubarak N.M., Hallad S., Hugar S., Fayaz H. Biodegradable Carboxymethyl Cellulose Based Material for Sustainable Packaging Application. Sci. Rep. 2020;10:21960. doi: 10.1038/s41598-020-78912-z. PubMed DOI PMC
Roy S., Kim H.-J., Rhim J.-W. Effect of Blended Colorants of Anthocyanin and Shikonin on Carboxymethyl Cellulose/Agar-Based Smart Packaging Film. Int. J. Biol. Macromol. 2021;183:305–315. doi: 10.1016/j.ijbiomac.2021.04.162. PubMed DOI
Nur Hazirah M.A.S.P., Isa M.I.N., Sarbon N.M. Effect of Xanthan Gum on the Physical and Mechanical Properties of Gelatin-Carboxymethyl Cellulose Film Blends. Food Packag. Shelf Life. 2016;9:55–63. doi: 10.1016/j.fpsl.2016.05.008. DOI
Sousa A.M.M., Souza H.K.S., Liu L., Gonçalves M.P. Alternative Plasticizers for the Production of Thermo-Compressed Agar Films. Int. J. Biol. Macromol. 2015;76:138–145. doi: 10.1016/j.ijbiomac.2015.02.030. PubMed DOI
Lopez O., Garcia M.A., Villar M.A., Gentili A., Rodriguez M.S., Albertengo L. Thermo-Compression of Biodegradable Thermoplastic Corn Starch Films Containing Chitin and Chitosan. LWT Food Sci. Technol. 2014;57:106–115. doi: 10.1016/j.lwt.2014.01.024. DOI
Bandyopadhyay S., Saha N., Saha P. Characterization of Bacterial Cellulose Produced Using Media Containing Waste Apple Juice. Appl. Biochem. Microbiol. 2018;54:649–657. doi: 10.1134/S0003683818060042. DOI
Chen Y. Developing Solid Oral Dosage Forms. Elsevier; Amsterdam, The Netherlands: 2017. Packaging Selection for Solid Oral Dosage Forms; pp. 637–651.
Zhang R., Wang X., Cheng M. Preparation and Characterization of Potato Starch Film with Various Size of Nano-SiO2. Polymers. 2018;10:1172. doi: 10.3390/polym10101172. PubMed DOI PMC
Alias S.A., Mhd Sarbon N. Rheological, Physical, and Mechanical Properties of Chicken Skin Gelatin Films Incorporated with Potato Starch. NPJ Sci. Food. 2019;3:26. doi: 10.1038/s41538-019-0059-3. PubMed DOI PMC
Bao S., Xu S., Wang Z. Antioxidant Activity and Properties of Gelatin Films Incorporated with Tea Polyphenol-Loaded Chitosan Nanoparticles. J. Sci. Food Agric. 2009;89:2692–2700. doi: 10.1002/jsfa.3775. DOI
Bandyopadhyay S., Saha N., Zandraa O., Pummerová M., Sáha P. Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for ‘Cheese’: Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers. Foods. 2020;9:307. doi: 10.3390/foods9030307. PubMed DOI PMC
Pagano C., Puglia D., Luzi F., Michele A.D., Scuota S., Primavilla S., Ceccarini M.R., Beccari T., Iborra C.A.V., Ramella D., et al. Development and Characterization of Xanthan Gum and Alginate Based Bioadhesive Film for Pycnogenol Topical Use in Wound Treatment. Pharmaceutics. 2021;13:324. doi: 10.3390/pharmaceutics13030324. PubMed DOI PMC
Wu Y., Geng F., Chang P.R., Yu J., Ma X. Effect of Agar on the Microstructure and Performance of Potato Starch Film. Carbohydr. Polym. 2009;76:299–304. doi: 10.1016/j.carbpol.2008.10.031. DOI
Chieng B.W., Ibrahim N., Yunus W., Hussein M. Effects of Graphene Nanopletelets on Poly(Lactic Acid)/Poly(Ethylene Glycol) Polymer Nanocomposites. Polymers. 2013;6:93–104. doi: 10.3390/polym6010093. DOI
Kamyar S., Ahmad M., Jazayeri S.D., Sedaghat S., Shabanzadeh P., Jahangirian H. (kamran); Mahdavi, M.; Abdollahi, Y. Synthesis and Characterization of Polyethylene Glycol Mediated Silver Nanoparticles by the Green Method. Int. J. Mol. Sci. 2012;13:6639–6650. doi: 10.3390/ijms13066639. PubMed DOI PMC
Kachel M., Matwijczuk A., Gagoś M. Analysis of the Physicochemical Properties of Post-Manufacturing Waste Derived from Production of Methyl Esters from Rapeseed Oil. Int. Agrophysics. 2017;31:1–8. doi: 10.1515/intag-2016-0042. DOI
Usha Rani G., Konreddy A.K., Mishra S., Sen G. Synthesis and Applications of Polyacrylamide Grafted Agar as a Matrix for Controlled Drug Release of 5-ASA. Int. J. Biol. Macromol. 2014;65:375–382. doi: 10.1016/j.ijbiomac.2014.01.034. PubMed DOI
Chiș A., Fetea F., Taoutaou A., Socaciu C. Application of FTIR Spectroscopy for a Rapid Determination of Some Hydrolytic Enzymes Activity on Sea Buckthorn Substrate. Rom. Biotechnol. Lett. 2010;15:5738–5744.
Bandyopadhyay S., Saha N., Brodnjak U.V., Saha P. Bacterial Cellulose Based Greener Packaging Material: A Bioadhesive Polymeric Film. Mater. Res. Express. 2018;5:115405. doi: 10.1088/2053-1591/aadb01. DOI
Shamsuri A., Daik R. Utilization of an Ionic Liquid/Urea Mixture as a Physical Coupling Agent for Agarose/Talc Composite Films. Materials. 2013;6:682–698. doi: 10.3390/ma6020682. PubMed DOI PMC
El-hefian E.A., Nasef M.M., Yahaya A.H. Preparation and Characterization of Chitosan/Agar Blended Films: Part 1. Chemical Structure and Morphology. E-J. Chem. 2012;9:1431–1439. doi: 10.1155/2012/781206. DOI
Sharma K., Kumar V., Swart C., Chaudhary B., Swart H. Synthesis, Characterization and Anti-Microbial Activity of Superabsorbents Based on Agar-Poly(Methacrylic Acid-Glycine) J. Bioact. Compat. Polym. 2016;32 doi: 10.1177/0883911516653148. DOI
Sharma V., Pathak K. Modified Xanthan Gum as Rapidly Disintegrating Hydrophilic Excipient for Time-Controlled Disintegrating Tablets of Roxithromycin. Indian J. Pharm. Educ. Res. 2013;47:79–87. doi: 10.5530/ijper.47.4.11. DOI
Basu P., Uttamchand N.K., Arunachalam R., Devi S., Inderchand M. Characterization and Evaluation of Carboxymethyl Cellulose-Based Films for Healing of Full-Thickness Wounds in Normal and Diabetic Rats. ACS Omega. 2018;3:12622–12632. doi: 10.1021/acsomega.8b02015. PubMed DOI PMC
Ahmad M., Tay M., Kamyar S., Hussein M., Lim J. Green Synthesis and Characterization of Silver/Chitosan/Polyethylene Glycol Nanocomposites without Any Reducing Agent. Int. J. Mol. Sci. 2011;12:4872–4884. doi: 10.3390/ijms12084872. PubMed DOI PMC
Barron M., Young T., Johnston K., Williams R. Investigation of Processing Parameters of Spray Freezing into Liquid to Prepare Polyethylene Glycol Polymeric Particles for Drug Delivery. AAPS PharmSciTech. 2003;4:E12. doi: 10.1208/pt040212. PubMed DOI PMC
Guo Y., Zhang B., Zhao S., Qiao D., Xie F. Plasticized Starch/Agar Composite Films: Processing, Morphology, Structure, Mechanical Properties and Surface Hydrophilicity. Coatings. 2021;11:311. doi: 10.3390/coatings11030311. DOI
Rusli A., Mulyati M.T., Metusalach M., Salengke S. Physical and Mechanical Properties of Agar Based Edible Film with Glycerol Plasticizer. Int. Food Res. J. 2016;24:1669–1675. doi: 10.31227/osf.io/tq2pf. DOI
Rhim J.-W. Physical-Mechanical Properties of Agar/κ-Carrageenan Blend Film and Derived Clay Nanocomposite Film. J. Food Sci. 2012;77:N66–N73. doi: 10.1111/j.1750-3841.2012.02988.x. PubMed DOI
Setoyama M., Yamamoto K., Kadokawa J. Preparation of Cellulose/Xanthan Gum Composite Films and Hydrogels Using Ionic Liquid. J. Polym. Environ. 2014;22:298–303. doi: 10.1007/s10924-014-0642-2. DOI
Cazón P., Velazquez G., Ramírez J.A., Vázquez M. Polysaccharide-Based Films and Coatings for Food Packaging: A Review. Food Hydrocoll. 2017;68:136–148. doi: 10.1016/j.foodhyd.2016.09.009. DOI
Madera-Santana T.J., Freile-Pelegrín Y., Azamar-Barrios J.A. Physicochemical and Morphological Properties of Plasticized Poly(Vinyl Alcohol)–Agar Biodegradable Films. Int. J. Biol. Macromol. 2014;69:176–184. doi: 10.1016/j.ijbiomac.2014.05.044. PubMed DOI
Łopusiewicz Ł., Kwiatkowski P., Drozłowska E., Trocer P., Kostek M., Śliwiński M., Polak-Śliwińska M., Kowalczyk E., Sienkiewicz M. Preparation and Characterization of Carboxymethyl Cellulose-Based Bioactive Composite Films Modified with Fungal Melanin and Carvacrol. Polymer. 2021;13:499. doi: 10.3390/polym13040499. PubMed DOI PMC
Bahmid N.A., Dekker M., Fogliano V., Heising J. Development of a Moisture-Activated Antimicrobial Film Containing Ground Mustard Seeds and Its Application on Meat in Active Packaging System. Food Packag. Shelf Life. 2021;30:100753. doi: 10.1016/j.fpsl.2021.100753. DOI
Calle A., Fernandez M., Montoya B., Schmidt M., Thompson J. UV-C LED Irradiation Reduces Salmonella on Chicken and Food Contact Surfaces. Foods. 2021;10:1459. doi: 10.3390/foods10071459. PubMed DOI PMC
Debnath S. Low Cost Homemade System to Disinfect Food Items from SARS-CoV-2. J. Med. Syst. 2020;44:126. doi: 10.1007/s10916-020-01594-7. PubMed DOI PMC
Conder J.R., Fruitwala N.A., Shingari M.K. Thermal Decomposition of Polyethylene Glycol 20m and Essential Oils in Gas—Liquid Chromatography and the Effect of Traces of Oxygen. J. Chromatogr. A. 1983;269:171–178. doi: 10.1016/S0021-9673(01)90800-3. DOI
Ochoa-Yepes O., Di Giogio L., Goyanes S., Mauri A., Famá L. Influence of Process (Extrusion/Thermo-Compression, Casting) and Lentil Protein Content on Physicochemical Properties of Starch Films. Carbohydr. Polym. 2019;208:221–231. doi: 10.1016/j.carbpol.2018.12.030. PubMed DOI
Ouyang Q.-Q., Hu Z., Li S.-D., Quan W.-Y., Wen L.-L., Yang Z.-M., Li P.-W. Thermal Degradation of Agar: Mechanism and Toxicity of Products. Food Chem. 2018;264:277–283. doi: 10.1016/j.foodchem.2018.04.098. PubMed DOI
Srivastava A., Mishra V., Singh P., Srivastava A., Kumar R. Comparative Study of Thermal Degradation Behavior of Graft Copolymers of Polysaccharides and Vinyl Monomers. J. Therm. Anal. Calorim. 2012;107:211–223. doi: 10.1007/s10973-011-1921-y. DOI
de Britto D., Assis O.B.G. Thermal Degradation of Carboxymethylcellulose in Different Salty Forms. Thermochim. Acta. 2009;494:115–122. doi: 10.1016/j.tca.2009.04.028. DOI