Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for 'Cheese': Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NPU Program I (LO1504)
Ministerstvo Školství, Mládeže a Tělovýchovy
Project No. IGA/CPS/2019/008
Univerzita Tomáše Bati ve Zlíně
PubMed
32182750
PubMed Central
PMC7143344
DOI
10.3390/foods9030307
PII: foods9030307
Knihovny.cz E-zdroje
- Klíčová slova
- Gouda cheese, PVP-CMC-BC-GG hydrogel film, active, anthocyanin, bioactive packaging, essential oil, food quality, intelligent, red cabbage extract, shelf life,
- Publikační typ
- časopisecké články MeSH
'Gouda cheese' is one of the most popular varieties of cheese eaten worldwide. The preservation problem of gouda arises due to microbial contamination and infestation. Therefore, essential oil (EO) based PVP-CMC-BC-GG hydrogel film was prepared to solve the problem and to extend the shelf-life of 'Gouda cheese'. Anthocyanin (isolated from red cabbage) based pH stickers are integrated into the packaging system to recognize the spoilage of 'cheese'. EOs (clove and/or cinnamon) are added to PVP-CMC-BC-GG hydrogel film to improve its antimicrobial, physical, mechanical, and thermal properties as well as shelf-life of cheese. The films are assessed based on their physical, structural, and functional properties, real-time assessment on cheese, and biodegradability. The results revealed that although the addition of oils to the PVP-CMC-BC-GG hydrogel films enhanced its mechanical, hydrophobic, and antimicrobial properties, the biodegradability of PVP-CMC-BC-GG films declined with the addition of EOs. The thermal properties remained the same irrespective of the addition of EOs. The shelf life of cheese was extended for more than 10-12 days, inside the PVP-CMC-BC-GG hydrogel sachet compared to the conventional PE packaging system. Hence the use of the PVP-CMC-BC-GG sachet (containing EO or without EO) is recommended for cheese packaging along with the use of PVP-CMC-BC-GG anthocyanin bio stickers for monitoring the quality of cheese.
Zobrazit více v PubMed
Huang T., Qian Y., Wei J., Zhou C. Polymeric Antimicrobial Food Packaging and Its Applications. Polymers. 2019;11:560. doi: 10.3390/polym11030560. PubMed DOI PMC
Bandyopadhyay S., Saha N., Brodnjak U.V., Sáha P. Bacterial cellulose and guar gum based modified PVP-CMC hydrogel films: Characterized for packaging fresh berries. Food Packag. Shelf Life. 2019;22:100402. doi: 10.1016/j.fpsl.2019.100402. DOI
Wang Y., Li R., Lu R., Xu J., Hu K., Liu Y. Preparation of Chitosan/Corn Starch/Cinnamaldehyde Films for Strawberry Preservation. Foods. 2019;8:423. doi: 10.3390/foods8090423. PubMed DOI PMC
Quesada J., Sendra E., Navarro C., Sayas-Barberá E. Antimicrobial Active Packaging including Chitosan Films with Thymus vulgaris L. Essential Oil for Ready-to-Eat Meat. Foods. 2016;5:57. doi: 10.3390/foods5030057. PubMed DOI PMC
Saeed F., Afzaal M., Tufail T., Ahmad A. Use of Natural Antimicrobial Agents: A Safe Preservation Approach. Act. Antimicrob. Food Packag. :2019. doi: 10.5772/intechopen.80869. DOI
Atarés L., Chiralt A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016;48:51–62. doi: 10.1016/j.tifs.2015.12.001. DOI
Hoque M.M., Bari M.L., Juneja V.K., Kawamoto S. Antimicrobial activity of cloves and cinnamon extracts against food borne pathogens and spoilage bacteria, and inactivation of Listeria monocytogenes in ground chicken meat with their essential oils. Rep. Natl. Food Res. Inst. Jpn. 2008;72:9–21.
Peralta J., Bitencourt-Cervi C.M., Maciel V.B.V., Yoshida C.M.P., Carvalho R.A. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag. Shelf Life. 2019;19:47–55. doi: 10.1016/j.fpsl.2018.11.017. DOI
Pourjavaher S., Almasi H., Meshkini S., Pirsa S., Parandi E. Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydr. Polym. 2017;156:193–201. doi: 10.1016/j.carbpol.2016.09.027. PubMed DOI
Costa M.J., Maciel L.C., Teixeira J.A., Vicente A.A., Cerqueira M.A. Use of edible films and coatings in cheese preservation: Opportunities and challenges. Food Res. Int. 2018;107:84–92. doi: 10.1016/j.foodres.2018.02.013. PubMed DOI
Guitián M.V., Ibarguren C., Soria M.C., Hovanyecz P., Banchio C., Audisio M.C. Anti-Listeria monocytogenes effect of bacteriocin-incorporated agar edible coatings applied on cheese. Int. Dairy J. 2019;97:92–98. doi: 10.1016/j.idairyj.2019.05.016. DOI
Lin L., Gu Y., Cui H. Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese. Food Packag. Shelf Life. 2019;19:86–93. doi: 10.1016/j.fpsl.2018.12.005. DOI
Küçük G.S., Çelik Ö.F., Mazi B.G., Türe H. Evaluation of alginate and zein films as a carrier of natamycin to increase the shelf life of kashar cheese. Packag. Technol. Sci. 2020;33:39–48. doi: 10.1002/pts.2483. DOI
Incoronato A.L., Conte A., Buonocore G.G., Del Nobile M.A. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J. Dairy Sci. 2011;94:1697–1704. doi: 10.3168/jds.2010-3823. PubMed DOI
Khorshidian N., Yousefi M., Khanniri E., Mortazavian A.M. Potential application of essential oils as antimicrobial preservatives in cheese. Innov. Food Sci. Emerg. Technol. 2018;45:62–72. doi: 10.1016/j.ifset.2017.09.020. DOI
Bandyopadhyay S., Saha N., Saha P. Characterization of Bacterial Cellulose Produced using Media Containing Waste Apple Juice. Appl. Biochem. Microbiol. 2018;54:649–657. doi: 10.1134/S0003683818060042. DOI
Fuleki T., Francis F.J. Quantitative Methods for Anthocyanins. J. Food Sci. 1968;33:72–77. doi: 10.1111/j.1365-2621.1968.tb00887.x. DOI
Rizk E.M., Azouz A., Lobna A.M.H. Evaluation of red cabbage anthocyanin pigments and its potential uses as antioxidant and natural food colorants. Arab Univ. J. Agric. Sci. 2009;17:361–372.
Kuswandi B., Oktaviana R., Abdullah A., Heng L.Y. A Novel On-Package Sticker Sensor Based on Methyl Red for Real-Time Monitoring of Broiler Chicken Cut Freshness. Packag. Technol. Sci. 2013;27:69–81. doi: 10.1002/pts.2016. DOI
Souza A.C., Goto G.E.O., Mainardi J.A., Coelho A.C.V., Tadini C.C. Cassava starch composite films incorporated with cinnamon essential oil: Antimicrobial activity, microstructure, mechanical and barrier properties. LWT Food Sci. Technol. 2013;54:346–352. doi: 10.1016/j.lwt.2013.06.017. DOI
Malhotra B., Keshwani A., Kharkwal H. Antimicrobial food packaging: Potential and pitfalls. Front. Microbiol. 2015;6:611. doi: 10.3389/fmicb.2015.00611. PubMed DOI PMC
Yu Z., Li B., Chu J., Zhang P. Silica in situ enhanced PVA/chitosan biodegradable films for food packages. Carbohydr. Polym. 2018;184:214–220. doi: 10.1016/j.carbpol.2017.12.043. PubMed DOI
Krki N., Lazi V., Savati S., Šoji B., Petrovi L., Šuput D. Application of chitosan coating with oregano essential oil on dry fermented sausage. J. Food Nutr. Res. 2012;51:60–68.
Villegas C., Torres A., Rios M., Rojas A., Romero J., de Dicastillo C.L., Valenzuela X., Galotto M.J., Guarda A. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Res. Int. 2017;99:650–659. doi: 10.1016/j.foodres.2017.06.031. PubMed DOI
Rodríguez J.D.W., Peyron S., Rigou P., Chalier P. Rapid quantification of clove (Syzygium aromaticum) and spearmint (Mentha spicata) essential oils encapsulated in a complex organic matrix using an ATR-FTIR spectroscopic method. PLoS ONE. 2018;13:e0207401. doi: 10.1371/journal.pone.0207401. PubMed DOI PMC
Lu F., Ding Y., Ye X., Ding Y. Antibacterial Effect of Cinnamon Oil Combined with Thyme or Clove Oil. Agric. Sci. China. 2011;10:1482–1487. doi: 10.1016/S1671-2927(11)60142-9. DOI
Salari M., Sowti Khiabani M., Rezaei Mokarram R., Ghanbarzadeh B., Samadi Kafil H. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll. 2018;84:414–423. doi: 10.1016/j.foodhyd.2018.05.037. DOI
Rawat S. Food Spoilage: Microorganisms and their prevention. Asian J. Plant Sci. 2015;5:47–56.
Banjara N., Suhr M.J., Hallen-Adams H.E. Diversity of Yeast and Mold Species from a Variety of Cheese Types. Curr. Microbiol. 2015;70:792–800. doi: 10.1007/s00284-015-0790-1. PubMed DOI
Wang L., Liu F., Jiang Y., Chai Z., Li P., Cheng Y., Jing H., Leng X. Synergistic Antimicrobial Activities of Natural Essential Oils with Chitosan Films. J. Agric. Food Chem. 2011;59:12411–12419. doi: 10.1021/jf203165k. PubMed DOI
Cava R., Nowak E., Taboada A., Marin-Iniesta F. Antimicrobial activity of clove and cinnamon essential oils against Listeria monocytogenes in pasteurized milk. J. Food Prot. 2007;70:2757–2763. doi: 10.4315/0362-028X-70.12.2757. PubMed DOI
Ahmed J., Hiremath N., Jacob H. Efficacy of antimicrobial properties of polylactide/cinnamon oil film with and without high-pressure treatment against Listeria monocytogenes and Salmonella typhimurium inoculated in chicken sample. Food Packag. Shelf Life. 2016;10:72–78. doi: 10.1016/j.fpsl.2016.10.003. DOI
Frank K., Garcia C.V., Shin G.H., Kim J.T. Alginate Biocomposite Films Incorporated with Cinnamon Essential Oil Nanoemulsions: Physical, Mechanical, and Antibacterial Properties. [(accessed on 25 February 2020)]; Available online: https://www.hindawi.com/journals/ijps/2018/1519407/
da Silva R., Sierakowski M.R., Bassani H.P., Zawadzki S.F., Pirich C.L., Ono L., de Freitas R.A. Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft. Int. J. Biol. Macromol. 2016;86:599–605. doi: 10.1016/j.ijbiomac.2016.01.115. PubMed DOI
da Silva C.F., de Oliveira F.S.M., Caetano V.F., Vinhas G.M., Cardoso S.A., da Silva C.F., de Oliveira F.S.M., Caetano V.F., Vinhas G.M., Cardoso S.A. Orange essential oil as antimicrobial additives in poly(vinyl chloride) films. Polímeros. 2018;28:332–338. doi: 10.1590/0104-1428.16216. DOI
Ghosh T., Teramoto Y., Katiyar V. Influence of Nontoxic Magnetic Cellulose Nanofibers on Chitosan Based Edible Nanocoating: A Candidate for Improved Mechanical, Thermal, Optical, and Texture Properties. J. Agric. Food Chem. 2019;67:4289–4299. doi: 10.1021/acs.jafc.8b05905. PubMed DOI
Bandyopadhyay S., Saha N., Brodnjak U.V., Saha P. Bacterial cellulose based greener packaging material: A bioadhesive polymeric film. Mater. Res. Express. 2018;5:115405. doi: 10.1088/2053-1591/aadb01. DOI
Lee J.-W., Son S.-M., Hong S.-I. Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application. J. Food Eng. 2008;86:484–493. doi: 10.1016/j.jfoodeng.2007.10.025. DOI
Siracusa V., Romani S., Gigli M., Mannozzi C., Cecchini J., Tylewicz U., Lotti N. Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials. 2018;11:1980. doi: 10.3390/ma11101980. PubMed DOI PMC
Taqi A., Mutihac L., Stamatin I. Physical and Barrier Properties of Apple Pectin/Cassava Starch Composite Films Incorporating Laurus nobilis L. Oil and Oleic Acid. J. Food Process. Preserv. 2014;38:1982–1993. doi: 10.1111/jfpp.12174. DOI
Drake M.A., Delahunty C.M. Chapter 20—Sensory Character of Cheese and Its Evaluation. In: McSweeney P.L.H., Fox P.F., Cotter P.D., Everett D.W., editors. Cheese. 4th ed. Academic Press; San Diego, CA, USA: 2017. pp. 517–545.
Insider E.B. Business Ignore Expiry Dates—Here Are 12 Science-Backed Ways to Tell if Your Food Has Really Gone off. [(accessed on 10 January 2020)]; Available online: https://www.sciencealert.com/how-to-tell-if-food-s-really-gone-bad-to-avoid-wasting-it.
Saravani M., Ehsani A., Aliakbarlu J., Ghasempour Z. Gouda cheese spoilage prevention: Biodegradable coating induced by Bunium persicum essential oil and lactoperoxidase system. Food Sci. Nutr. 2019;7:959–968. doi: 10.1002/fsn3.888. PubMed DOI PMC
Oliveira R.B.A., Margalho L.P., Nascimento J.S., Costa L.E.O., Portela J.B., Cruz A.G., Sant’Ana A.S. Processed cheese contamination by spore-forming bacteria: A review of sources, routes, fate during processing and control. Trends Food Sci. Technol. 2016;57:11–19. doi: 10.1016/j.tifs.2016.09.008. DOI
Ahmadiani N., Robbins R.J., Collins T.M., Giusti M.M. Anthocyanins Contents, Profiles, and Color Characteristics of Red Cabbage Extracts from Different Cultivars and Maturity Stages. J. Agric. Food Chem. 2014;62:7524–7531. doi: 10.1021/jf501991q. PubMed DOI
Ehsannia S., Sanjabi M.R. Physicochemical, microbiological and spoilage analysis of probiotic processed cheese analogues with reduced emulsifying salts during refrigerated storage. J. Food Sci. Technol. 2016;53:996–1003. doi: 10.1007/s13197-015-2159-7. PubMed DOI PMC
Viljoen B.C. The interaction between yeasts and bacteria in dairy environments. Int. J. Food Microbiol. 2001;69:37–44. doi: 10.1016/S0168-1605(01)00570-0. PubMed DOI
Darnay L., Németh Á., Koncz K., Monspart-Sényi J., Pásztor-Huszár K., Friedrich L., Laczay P. Effect of different O2/CO2 permeable foils on aging of semi-hard goat cheese. Int. Dairy J. 2019;90:114–118. doi: 10.1016/j.idairyj.2018.11.010. DOI
Stone B.A., Svensson B., Collins M.E., Rastall R.A. Polysaccharide Degradation. In: Fraser-Reid B.O., Tatsuta K., Thiem J., editors. Glycoscience: Chemistry and Chemical Biology. Springer; Berlin/Heidelberg, Germany: 2008. pp. 2325–2375.
Abdalla A.L., Regitano J.B., Tornisielo V.L., Marchese L., Peçanha M.R.S.R., Vitti D.M.S.S., Smith T. Biodegradation of polyethylene glycol (PEG) in three tropical soils using radio labelled PEG. Anim. Feed Sci. Technol. 2005;122:187–193. doi: 10.1016/j.anifeedsci.2005.04.006. DOI
Polyvinylpyrrolidone Safety Data Sheet. [(accessed on 26 September 2019)]; Available online: http://www.ampolymer.com/SDS/PolyvinylpyrrolidoneSDS.html.
Othman M., Rashid H., Jamal N.A., Shaharuddin S.I.S., Sulaiman S., Hairil H.S., Khalid K., Zakaria M.N. Effect of Cinnamon Extraction Oil (CEO) for Algae Biofilm Shelf-Life Prolongation. Polymers. 2018;11:4. doi: 10.3390/polym11010004. PubMed DOI PMC
Benkerroum H., Patel K. Antimicrobial Activity of Garlic, Cinnamon, and Clove against a Complex Mixture of Soil Bacteria. [(accessed on 15 January 2020)]; Available online: http://esrjournal.org/ojs/index.php/esrjournal/article/view/315.