Chitosan Modified by Kombucha-Derived Bacterial Cellulose: Rheological Behavior and Properties of Convened Biopolymer Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO RP/CPS/2022/005
The Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36365566
PubMed Central
PMC9658712
DOI
10.3390/polym14214572
PII: polym14214572
Knihovny.cz E-zdroje
- Klíčová slova
- bacterial cellulose, biocomposite, chitosan, film, kombucha-derived bacterial cellulose, rheological properties, viscosity,
- Publikační typ
- časopisecké články MeSH
This work investigates the rheological behavior and characteristics of solutions and convened biopolymer films from Chitosan (Chi) modified by kombucha-derived bacterial cellulose (KBC). The Arrhenius equation and the Ostwald de Waele model (power-law) revealed that the Chi/KBC solutions exhibited non-Newtonian behavior. Both temperature and KBC concentration strongly affected their solution viscosity. With the selection of a proper solvent for chitosan solubilization, it may be possible to improve the performances of chitosan films for specific applications. The elasticity of the prepared films containing KBC 10% w/w was preferable when compared to the controls. FTIR analysis has confirmed the presence of bacterial cellulose, chitosan acetate, and chitosan lactate as the corresponding components in the produced biopolymer films. The thermal behaviors of the Chi (lactic acid)/KBC samples showed slightly higher stability than Chi (acetic acid)/KBC. Generally, these results will be helpful in the preparation processes of the solutions and biopolymer films of Chi dissolved in acetic or lactic acid modified by KBC powder to fabricate food packaging, scaffolds, and bioprinting inks, or products related to injection or direct extrusion through a needle.
Zobrazit více v PubMed
Zhao H., Zhang L., Zheng S., Chai S.N., Wei J.L., Zhong L.L., He Y., Xue J. Bacteriostatic activity and cytotoxicity of bacterial cellulose-chitosan film loaded with in-situ synthesized silver nanoparticles. Carbohydr. Polym. 2022;281:11907. doi: 10.1016/j.carbpol.2021.119017. PubMed DOI
Kim S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018;2018:1708172. doi: 10.1155/2018/1708172. DOI
Phatchayawat P.P., Khamkeaw A., Yodmuang S., Phisalaphong M. 3D bacterial cellulose-chitosan-alginate-gelatin hydrogel scaffold for cartilage tissue engineering. Biochem. Eng. J. 2022;184:108476. doi: 10.1016/j.bej.2022.108476. DOI
Liu X., Xu Y., Guo C., Zhang C., Liu S., Gao J., Lin G., Yang H., Xia W. Effect of chitosan grafting oxidized bacterial cellulose on dispersion stability and modulability of biodegradable films. Int. J. Biol. Macromol. 2022;204:510–519. doi: 10.1016/j.ijbiomac.2022.02.004. PubMed DOI
Ashrafi A., Jokar M., Nafchi A.M. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018;108:444–454. doi: 10.1016/j.ijbiomac.2017.12.028. PubMed DOI
Chen X., Cui J., Xu X.R., Sun B.J., Zhang L., Dong W., Chen C., Sun D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020;229:115512. doi: 10.1016/j.carbpol.2019.115512. PubMed DOI
Li D.W., Tian X.J., Wang Z.Q., Guan Z., Li X.Q., Qiao H., Ke Z., Luo L., Wi Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020;383:123127. doi: 10.1016/j.cej.2019.123127. DOI
Lin W.C., Lien C.C., Yeh H.J., Yu C.M., Hsu S.H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013;94:603–611. doi: 10.1016/j.carbpol.2013.01.076. PubMed DOI
Siqueira G., Bras J., Follain N., Belbekhouche S., Marais S., Dufresne A. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr. Polym. 2013;91:711–717. doi: 10.1016/j.carbpol.2012.08.057. PubMed DOI
Amorim L.F.A., Mouro C., Riool M., Gouveia I.C. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers. 2022;14:315. doi: 10.3390/polym14020315. PubMed DOI PMC
Hosseini S.F., Rezaei M., Zandi M., Ghavi F.F. Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem. 2013;136:1490–1495. doi: 10.1016/j.foodchem.2012.09.081. PubMed DOI
Pavoni J.M.F., Luchese C.L., Tessaro I.C. Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int. J. Biol. Macromol. 2019;138:693–703. doi: 10.1016/j.ijbiomac.2019.07.089. PubMed DOI
Qiao C.D., Ma X.G., Wang X.J., Liu L.B. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT-Food Sci. Technol. 2021;135:109984. doi: 10.1016/j.lwt.2020.109984. DOI
Shrivastav P., Pramanik S., Vaidya G., Abdelgawad M.A., Ghoneim M.M., Singh A., Abualsoud B.M., Amaral L.S., Abourehab M.A.S. Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. J. Mater. Chem. B. 2022;10:3199–3241. doi: 10.1039/D1TB02709C. PubMed DOI
Roman M., Haring A.P., Bertucio T.J. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr. Opin. Chem. Eng. 2019;24:98–106. doi: 10.1016/j.coche.2019.03.006. DOI
Villarreal-Soto S.A., Beaufort S., Bouajila J., Souchard J.P., Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018;83:580–588. doi: 10.1111/1750-3841.14068. PubMed DOI
Jang W.D., Hwang J.H., Kim H.U., Ryu J.Y., Lee S.Y. Bacterial cellulose as an example product for sustainable production and consumption. Microb. Biotechnol. 2017;10:1181–1185. doi: 10.1111/1751-7915.12744. PubMed DOI PMC
Andriani D., Apriyana A.Y., Karina M. The optimization of bacterial cellulose production and its applications: A review. Cellulose. 2020;27:6747–6766. doi: 10.1007/s10570-020-03273-9. DOI
Coseri S. Insights on Cellulose Research in the Last Two Decades in Romania. Polymers. 2021;13:689. doi: 10.3390/polym13050689. PubMed DOI PMC
Dutta S.D., Patel D.K., Lim K.T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J. Biol. Eng. 2019;13:55. doi: 10.1186/s13036-019-0177-0. PubMed DOI PMC
Wang J., Tavakoli J., Tang Y.H. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019;219:63–76. doi: 10.1016/j.carbpol.2019.05.008. PubMed DOI
Halib N., Ahmad I., Grassi M., Grassi G. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int. J. Pharm. 2019;566:631–640. doi: 10.1016/j.ijpharm.2019.06.017. PubMed DOI
Wang B., Lin F., Li X., Ji X., Liu S., Han X., Yuah Z., Luo J. Transcrystallization of isotactic polypropylene/bacterial cellulose hamburger composite. Polymers. 2019;11:508. doi: 10.3390/polym11030508. PubMed DOI PMC
Ullah M.W., Ul-Islam M., Khana S., Kim Y., Park J.K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr. Polym. 2015;132:286–294. doi: 10.1016/j.carbpol.2015.06.037. PubMed DOI
Augimeri R.V., Varley A.J., Strap J.L. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front. Microbiol. 2015;6:1282. doi: 10.3389/fmicb.2015.01282. PubMed DOI PMC
Kim Y., Ullah M.W., Ul-Islam M., Khan S., Jang J.H., Park J.K. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 2019;142:135–144. doi: 10.1016/j.bej.2018.11.017. DOI
Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954;58:345–352. doi: 10.1042/bj0580345. PubMed DOI PMC
Bandyopadhyay S., Saha N., Zandraa O., Pummerova M., Saha P. Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for ‘Cheese’: Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers. Foods. 2020;9:307. doi: 10.3390/foods9030307. PubMed DOI PMC
Hussain Z., Sajjad W., Khan T., Wahid F. Production of bacterial cellulose from industrial wastes: A review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI
Ul-Islam M., Ullah M.W., Khan S., Park J.K. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean J. Chem. Eng. 2020;37:925–937. doi: 10.1007/s11814-020-0524-3. DOI
Jozala A.F., Pertile R.A.N., dos Santos C.A., Santos-Ebinuma V.D., Seckler M.M., Gama F.M., Pessoa A., Jr. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2015;99:1181–1190. doi: 10.1007/s00253-014-6232-3. PubMed DOI
Rastogi A., Banerjee R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem. 2020;91:297–302. doi: 10.1016/j.procbio.2019.12.021. DOI
Rodrigues A.C., Fontao A.I., Coelho A., Leal M., da Silva F., Wan Y.Z., Dourado F., Gama M. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnol. 2019;49:19–27. doi: 10.1016/j.nbt.2018.12.002. PubMed DOI
Barshan S., Rezazadeh-Bari M., Almasi H., Amiri S. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 2019;136:1188–1195. doi: 10.1016/j.ijbiomac.2019.06.192. PubMed DOI
Sperotto G., Stasiak L.G., Godoi J., Gabiatti N.C., De Souza S.S. A review of culture media for bacterial cellulose production: Complex, chemically defined and minimal media modulations. Cellulose. 2021;28:2649–2673. doi: 10.1007/s10570-021-03754-5. DOI
Jahan F., Kumar V., Saxena R.K. Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresour. Technol. 2018;250:922–926. doi: 10.1016/j.biortech.2017.09.094. PubMed DOI
Coelho R.M.D., e Almeida A.L., do Amaral R.Q.G., da Mota R.N., de Sousa P.H.M. Kombucha: Review. Int. J. Gastron. Food Sci. 2020;22:100272. doi: 10.1016/j.ijgfs.2020.100272. DOI
Nguyen H.T., Saha N., Ngwabebhoh F.A., Zandraa O., Saha T., Saha P. Kombucha-derived bacterial cellulose from diverse wastes: A prudent leather alternative. Cellulose. 2021;28:9335–9353. doi: 10.1007/s10570-021-04100-5. DOI
Villarreal-Soto S.A., Bouajila J., Beaufort S., Bonneaud D., Souchard J.P., Taillandier P. Physicochemical properties of bacterial cellulose obtained from different Kombucha fermentation conditions. J. Vinyl Addit. Technol. 2021;27:183–190. doi: 10.1002/vnl.21795. DOI
Leonarski E., Cesca K., Borges O.M.A., de Oliveira D., Poletto P. Typical kombucha fermentation: Kinetic evaluation of beverage and morphological characterization of bacterial cellulose. J. Food Process. Preserv. 2021;45:e16100. doi: 10.1111/jfpp.16100. DOI
Stumpf T.R., Yang X.Y., Zhang J.C., Cao X.D. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater. Sci. Eng. C. 2018;82:372–383. doi: 10.1016/j.msec.2016.11.121. PubMed DOI
Hu W.L., Chen S.Y., Yang J.X., Li Z., Wang H.P. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 2014;101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102. PubMed DOI
Liang J., Wang R., Chen R.P. The Impact of Cross-linking Mode on the Physical and Antimicrobial Properties of a Chitosan/Bacterial Cellulose Composite. Polymers. 2019;11:491. doi: 10.3390/polym11030491. PubMed DOI PMC
Liu X., Wang Y., Cheng Z., Sheng J., Yang R.D. Nano-sized fibrils dispersed from bacterial cellulose grafted with chitosan. Carbohydr. Polym. 2019;214:311–316. doi: 10.1016/j.carbpol.2019.03.055. PubMed DOI
Kim H.J., Jin J.N., Kan E., Kim K.J., Lee S.H. Bacterial Cellulose-chitosan Composite Hydrogel Beads for Enzyme Immobilization. Biotechnol. Bioprocess Eng. 2017;22:89–94. doi: 10.1007/s12257-016-0381-4. DOI
Indriyati, Dara F., Primadona I., Srikandace Y., Karina M. Development of bacterial cellulose/chitosan films: Structural, physicochemical and antimicrobial properties. J. Polym. Res. 2021;28:70. doi: 10.1007/s10965-020-02328-6. DOI
Cacicedo M.L., Pacheco G., Islan G.A., Alvarez V.A., Barud H.S., Castro G.R. Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. Int. J. Biol. Macromol. 2020;147:1136–1145. doi: 10.1016/j.ijbiomac.2019.10.082. PubMed DOI
Khattak S., Qin X.T., Huang L.H., Xie Y.Y., Jia S.R., Zhong C. Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int. J. Biol. Macromol. 2021;189:483–493. doi: 10.1016/j.ijbiomac.2021.08.157. PubMed DOI
Zmejkoski D.Z., Zdravkovic N.M., Trisic D.D., Budimir M.D., Markovic Z.M., Kozyrovska N.O., Markovic B.M.T. Chronic wound dressings-Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. Int. J. Biol. Macromol. 2021;191:315–323. doi: 10.1016/j.ijbiomac.2021.09.118. PubMed DOI
Kai J., Zhou X.S. Preparation, Characterization, and Cytotoxicity Evaluation of Zinc Oxide-Bacterial Cellulose-Chitosan Hydrogels for Antibacterial Dressing. Macromol. Chem. Phys. 2020;221:2000257. doi: 10.1002/macp.202000257. DOI
Stanescu P.O., Radu I.C., Alexa R.L., Hudita A., Tanasa E., Ghitman J., Stoian O., Tsatsakis A., Ginghina O., Zaharia C., et al. Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv. 2021;28:1932–1950. doi: 10.1080/10717544.2021.1977423. PubMed DOI PMC
Ju S.Y., Zhang F.L., Duan J.F., Jiang J.X. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Carbohydr. Polym. 2020;237:116167. doi: 10.1016/j.carbpol.2020.116167. PubMed DOI
Silva-Weiss A., Bifani V., Ihl M., Sobral P.J.A., Gomez-Guillen M.C. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll. 2013;31:458–466. doi: 10.1016/j.foodhyd.2012.11.028. DOI
Lipovka A., Kharchenko A., Dubovoy A., Filipenko M., Stupak V., Mayorov A., Fomenko V., Geydt P., Parshin D. The effect of adding modified chitosan on the strength properties of bacterial cellulose for clinical applications. Polymers. 2021;13:1995. doi: 10.3390/polym13121995. PubMed DOI PMC
Fischer P., Windhab E.J. Rheology of food materials. Curr. Opin. Colloid Interface Sci. 2011;16:36–40. doi: 10.1016/j.cocis.2010.07.003. DOI
Kalyani P., Khandelwal M. Modulation of morphology, water uptake/retention, and rheological properties by in-situ modification of bacterial cellulose with the addition of biopolymers. Cellulose. 2021;28:11025–11036. doi: 10.1007/s10570-021-04256-0. DOI
Song S., Liu X.Y., Ding L., Abubaker M.A., Zhang J., Huang Y.L., Yang S., Fan Z. Conformational and rheological properties of bacterial cellulose sulfate. Int. J. Biol. Macromol. 2021;183:2326–2336. doi: 10.1016/j.ijbiomac.2021.06.001. PubMed DOI
Lakehal I., Montembault A., David L., Perrier A., Vibert R., Duclaux L., Reinert L. Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int. J. Biol. Macromol. 2019;129:68–77. doi: 10.1016/j.ijbiomac.2019.01.216. PubMed DOI
de Souza Soares L., Perim R.B., de Alvarenga E.S., de Moura Guimarães L., de Carvalho Teixeira A.V.N., dos Reis Coimbra J.S., de Oliveira E.B. Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid. Int. J. Biol. Macromol. 2019;128:140–148. doi: 10.1016/j.ijbiomac.2019.01.106. PubMed DOI
Kjm K.M., Son J.H., Kim S.K., Weller C.L., Hanna M.A. Properties of chitosan films as a function of pH and solvent type. J. Food Sci. 2006;71:E119–E124.
Nguyen H.T., Ngwabebhoh F.A., Saha N., Zandraa O., Saha T., Saha P. Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey) J. Appl. Polym. Sci. 2022;139:51433. doi: 10.1002/app.51433. DOI
ASTM . Standard D882 Annual Book of American Standard Testing Methods. American Society for Testing and Materials; Philadelphia, PA, USA: 2001. Standard test method for tensile properties of thin plastic sheeting; pp. 162–170.
Velásquez-Cock J., Ramírez E., Betancourt S., Putaux J.-L., Osorio M., Castro C., Gañán P., Zuluaga R. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int. J. Biol. Macromol. 2014;69:208–213. doi: 10.1016/j.ijbiomac.2014.05.040. PubMed DOI
Xu Y.X., Liu X.L., Jiang Q.X., Yu D.W., Xu Y.S., Wang B., Xia W. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr. Polym. 2021;260:117778. doi: 10.1016/j.carbpol.2021.117778. PubMed DOI