Chitosan Modified by Kombucha-Derived Bacterial Cellulose: Rheological Behavior and Properties of Convened Biopolymer Films

. 2022 Oct 28 ; 14 (21) : . [epub] 20221028

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36365566

Grantová podpora
DKRVO RP/CPS/2022/005 The Ministry of Education, Youth and Sports of the Czech Republic

This work investigates the rheological behavior and characteristics of solutions and convened biopolymer films from Chitosan (Chi) modified by kombucha-derived bacterial cellulose (KBC). The Arrhenius equation and the Ostwald de Waele model (power-law) revealed that the Chi/KBC solutions exhibited non-Newtonian behavior. Both temperature and KBC concentration strongly affected their solution viscosity. With the selection of a proper solvent for chitosan solubilization, it may be possible to improve the performances of chitosan films for specific applications. The elasticity of the prepared films containing KBC 10% w/w was preferable when compared to the controls. FTIR analysis has confirmed the presence of bacterial cellulose, chitosan acetate, and chitosan lactate as the corresponding components in the produced biopolymer films. The thermal behaviors of the Chi (lactic acid)/KBC samples showed slightly higher stability than Chi (acetic acid)/KBC. Generally, these results will be helpful in the preparation processes of the solutions and biopolymer films of Chi dissolved in acetic or lactic acid modified by KBC powder to fabricate food packaging, scaffolds, and bioprinting inks, or products related to injection or direct extrusion through a needle.

Zobrazit více v PubMed

Zhao H., Zhang L., Zheng S., Chai S.N., Wei J.L., Zhong L.L., He Y., Xue J. Bacteriostatic activity and cytotoxicity of bacterial cellulose-chitosan film loaded with in-situ synthesized silver nanoparticles. Carbohydr. Polym. 2022;281:11907. doi: 10.1016/j.carbpol.2021.119017. PubMed DOI

Kim S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018;2018:1708172. doi: 10.1155/2018/1708172. DOI

Phatchayawat P.P., Khamkeaw A., Yodmuang S., Phisalaphong M. 3D bacterial cellulose-chitosan-alginate-gelatin hydrogel scaffold for cartilage tissue engineering. Biochem. Eng. J. 2022;184:108476. doi: 10.1016/j.bej.2022.108476. DOI

Liu X., Xu Y., Guo C., Zhang C., Liu S., Gao J., Lin G., Yang H., Xia W. Effect of chitosan grafting oxidized bacterial cellulose on dispersion stability and modulability of biodegradable films. Int. J. Biol. Macromol. 2022;204:510–519. doi: 10.1016/j.ijbiomac.2022.02.004. PubMed DOI

Ashrafi A., Jokar M., Nafchi A.M. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018;108:444–454. doi: 10.1016/j.ijbiomac.2017.12.028. PubMed DOI

Chen X., Cui J., Xu X.R., Sun B.J., Zhang L., Dong W., Chen C., Sun D. Bacterial cellulose/attapulgite magnetic composites as an efficient adsorbent for heavy metal ions and dye treatment. Carbohydr. Polym. 2020;229:115512. doi: 10.1016/j.carbpol.2019.115512. PubMed DOI

Li D.W., Tian X.J., Wang Z.Q., Guan Z., Li X.Q., Qiao H., Ke Z., Luo L., Wi Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J. 2020;383:123127. doi: 10.1016/j.cej.2019.123127. DOI

Lin W.C., Lien C.C., Yeh H.J., Yu C.M., Hsu S.H. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 2013;94:603–611. doi: 10.1016/j.carbpol.2013.01.076. PubMed DOI

Siqueira G., Bras J., Follain N., Belbekhouche S., Marais S., Dufresne A. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals. Carbohydr. Polym. 2013;91:711–717. doi: 10.1016/j.carbpol.2012.08.057. PubMed DOI

Amorim L.F.A., Mouro C., Riool M., Gouveia I.C. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers. 2022;14:315. doi: 10.3390/polym14020315. PubMed DOI PMC

Hosseini S.F., Rezaei M., Zandi M., Ghavi F.F. Preparation and functional properties of fish gelatin-chitosan blend edible films. Food Chem. 2013;136:1490–1495. doi: 10.1016/j.foodchem.2012.09.081. PubMed DOI

Pavoni J.M.F., Luchese C.L., Tessaro I.C. Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int. J. Biol. Macromol. 2019;138:693–703. doi: 10.1016/j.ijbiomac.2019.07.089. PubMed DOI

Qiao C.D., Ma X.G., Wang X.J., Liu L.B. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT-Food Sci. Technol. 2021;135:109984. doi: 10.1016/j.lwt.2020.109984. DOI

Shrivastav P., Pramanik S., Vaidya G., Abdelgawad M.A., Ghoneim M.M., Singh A., Abualsoud B.M., Amaral L.S., Abourehab M.A.S. Bacterial cellulose as a potential biopolymer in biomedical applications: A state-of-the-art review. J. Mater. Chem. B. 2022;10:3199–3241. doi: 10.1039/D1TB02709C. PubMed DOI

Roman M., Haring A.P., Bertucio T.J. The growing merits and dwindling limitations of bacterial cellulose-based tissue engineering scaffolds. Curr. Opin. Chem. Eng. 2019;24:98–106. doi: 10.1016/j.coche.2019.03.006. DOI

Villarreal-Soto S.A., Beaufort S., Bouajila J., Souchard J.P., Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J. Food Sci. 2018;83:580–588. doi: 10.1111/1750-3841.14068. PubMed DOI

Jang W.D., Hwang J.H., Kim H.U., Ryu J.Y., Lee S.Y. Bacterial cellulose as an example product for sustainable production and consumption. Microb. Biotechnol. 2017;10:1181–1185. doi: 10.1111/1751-7915.12744. PubMed DOI PMC

Andriani D., Apriyana A.Y., Karina M. The optimization of bacterial cellulose production and its applications: A review. Cellulose. 2020;27:6747–6766. doi: 10.1007/s10570-020-03273-9. DOI

Coseri S. Insights on Cellulose Research in the Last Two Decades in Romania. Polymers. 2021;13:689. doi: 10.3390/polym13050689. PubMed DOI PMC

Dutta S.D., Patel D.K., Lim K.T. Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. J. Biol. Eng. 2019;13:55. doi: 10.1186/s13036-019-0177-0. PubMed DOI PMC

Wang J., Tavakoli J., Tang Y.H. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 2019;219:63–76. doi: 10.1016/j.carbpol.2019.05.008. PubMed DOI

Halib N., Ahmad I., Grassi M., Grassi G. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications. Int. J. Pharm. 2019;566:631–640. doi: 10.1016/j.ijpharm.2019.06.017. PubMed DOI

Wang B., Lin F., Li X., Ji X., Liu S., Han X., Yuah Z., Luo J. Transcrystallization of isotactic polypropylene/bacterial cellulose hamburger composite. Polymers. 2019;11:508. doi: 10.3390/polym11030508. PubMed DOI PMC

Ullah M.W., Ul-Islam M., Khana S., Kim Y., Park J.K. Innovative production of bio-cellulose using a cell-free system derived from a single cell line. Carbohydr. Polym. 2015;132:286–294. doi: 10.1016/j.carbpol.2015.06.037. PubMed DOI

Augimeri R.V., Varley A.J., Strap J.L. Establishing a Role for Bacterial Cellulose in Environmental Interactions: Lessons Learned from Diverse Biofilm-Producing Proteobacteria. Front. Microbiol. 2015;6:1282. doi: 10.3389/fmicb.2015.01282. PubMed DOI PMC

Kim Y., Ullah M.W., Ul-Islam M., Khan S., Jang J.H., Park J.K. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 2019;142:135–144. doi: 10.1016/j.bej.2018.11.017. DOI

Hestrin S., Schramm M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 1954;58:345–352. doi: 10.1042/bj0580345. PubMed DOI PMC

Bandyopadhyay S., Saha N., Zandraa O., Pummerova M., Saha P. Essential Oil Based PVP-CMC-BC-GG Functional Hydrogel Sachet for ‘Cheese’: Its Shelf Life Confirmed with Anthocyanin (Isolated from Red Cabbage) Bio Stickers. Foods. 2020;9:307. doi: 10.3390/foods9030307. PubMed DOI PMC

Hussain Z., Sajjad W., Khan T., Wahid F. Production of bacterial cellulose from industrial wastes: A review. Cellulose. 2019;26:2895–2911. doi: 10.1007/s10570-019-02307-1. DOI

Ul-Islam M., Ullah M.W., Khan S., Park J.K. Production of bacterial cellulose from alternative cheap and waste resources: A step for cost reduction with positive environmental aspects. Korean J. Chem. Eng. 2020;37:925–937. doi: 10.1007/s11814-020-0524-3. DOI

Jozala A.F., Pertile R.A.N., dos Santos C.A., Santos-Ebinuma V.D., Seckler M.M., Gama F.M., Pessoa A., Jr. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2015;99:1181–1190. doi: 10.1007/s00253-014-6232-3. PubMed DOI

Rastogi A., Banerjee R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem. 2020;91:297–302. doi: 10.1016/j.procbio.2019.12.021. DOI

Rodrigues A.C., Fontao A.I., Coelho A., Leal M., da Silva F., Wan Y.Z., Dourado F., Gama M. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium. New Biotechnol. 2019;49:19–27. doi: 10.1016/j.nbt.2018.12.002. PubMed DOI

Barshan S., Rezazadeh-Bari M., Almasi H., Amiri S. Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium. Int. J. Biol. Macromol. 2019;136:1188–1195. doi: 10.1016/j.ijbiomac.2019.06.192. PubMed DOI

Sperotto G., Stasiak L.G., Godoi J., Gabiatti N.C., De Souza S.S. A review of culture media for bacterial cellulose production: Complex, chemically defined and minimal media modulations. Cellulose. 2021;28:2649–2673. doi: 10.1007/s10570-021-03754-5. DOI

Jahan F., Kumar V., Saxena R.K. Distillery effluent as a potential medium for bacterial cellulose production: A biopolymer of great commercial importance. Bioresour. Technol. 2018;250:922–926. doi: 10.1016/j.biortech.2017.09.094. PubMed DOI

Coelho R.M.D., e Almeida A.L., do Amaral R.Q.G., da Mota R.N., de Sousa P.H.M. Kombucha: Review. Int. J. Gastron. Food Sci. 2020;22:100272. doi: 10.1016/j.ijgfs.2020.100272. DOI

Nguyen H.T., Saha N., Ngwabebhoh F.A., Zandraa O., Saha T., Saha P. Kombucha-derived bacterial cellulose from diverse wastes: A prudent leather alternative. Cellulose. 2021;28:9335–9353. doi: 10.1007/s10570-021-04100-5. DOI

Villarreal-Soto S.A., Bouajila J., Beaufort S., Bonneaud D., Souchard J.P., Taillandier P. Physicochemical properties of bacterial cellulose obtained from different Kombucha fermentation conditions. J. Vinyl Addit. Technol. 2021;27:183–190. doi: 10.1002/vnl.21795. DOI

Leonarski E., Cesca K., Borges O.M.A., de Oliveira D., Poletto P. Typical kombucha fermentation: Kinetic evaluation of beverage and morphological characterization of bacterial cellulose. J. Food Process. Preserv. 2021;45:e16100. doi: 10.1111/jfpp.16100. DOI

Stumpf T.R., Yang X.Y., Zhang J.C., Cao X.D. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. Mater. Sci. Eng. C. 2018;82:372–383. doi: 10.1016/j.msec.2016.11.121. PubMed DOI

Hu W.L., Chen S.Y., Yang J.X., Li Z., Wang H.P. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr. Polym. 2014;101:1043–1060. doi: 10.1016/j.carbpol.2013.09.102. PubMed DOI

Liang J., Wang R., Chen R.P. The Impact of Cross-linking Mode on the Physical and Antimicrobial Properties of a Chitosan/Bacterial Cellulose Composite. Polymers. 2019;11:491. doi: 10.3390/polym11030491. PubMed DOI PMC

Liu X., Wang Y., Cheng Z., Sheng J., Yang R.D. Nano-sized fibrils dispersed from bacterial cellulose grafted with chitosan. Carbohydr. Polym. 2019;214:311–316. doi: 10.1016/j.carbpol.2019.03.055. PubMed DOI

Kim H.J., Jin J.N., Kan E., Kim K.J., Lee S.H. Bacterial Cellulose-chitosan Composite Hydrogel Beads for Enzyme Immobilization. Biotechnol. Bioprocess Eng. 2017;22:89–94. doi: 10.1007/s12257-016-0381-4. DOI

Indriyati, Dara F., Primadona I., Srikandace Y., Karina M. Development of bacterial cellulose/chitosan films: Structural, physicochemical and antimicrobial properties. J. Polym. Res. 2021;28:70. doi: 10.1007/s10965-020-02328-6. DOI

Cacicedo M.L., Pacheco G., Islan G.A., Alvarez V.A., Barud H.S., Castro G.R. Chitosan-bacterial cellulose patch of ciprofloxacin for wound dressing: Preparation and characterization studies. Int. J. Biol. Macromol. 2020;147:1136–1145. doi: 10.1016/j.ijbiomac.2019.10.082. PubMed DOI

Khattak S., Qin X.T., Huang L.H., Xie Y.Y., Jia S.R., Zhong C. Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int. J. Biol. Macromol. 2021;189:483–493. doi: 10.1016/j.ijbiomac.2021.08.157. PubMed DOI

Zmejkoski D.Z., Zdravkovic N.M., Trisic D.D., Budimir M.D., Markovic Z.M., Kozyrovska N.O., Markovic B.M.T. Chronic wound dressings-Pathogenic bacteria anti-biofilm treatment with bacterial cellulose-chitosan polymer or bacterial cellulose-chitosan dots composite hydrogels. Int. J. Biol. Macromol. 2021;191:315–323. doi: 10.1016/j.ijbiomac.2021.09.118. PubMed DOI

Kai J., Zhou X.S. Preparation, Characterization, and Cytotoxicity Evaluation of Zinc Oxide-Bacterial Cellulose-Chitosan Hydrogels for Antibacterial Dressing. Macromol. Chem. Phys. 2020;221:2000257. doi: 10.1002/macp.202000257. DOI

Stanescu P.O., Radu I.C., Alexa R.L., Hudita A., Tanasa E., Ghitman J., Stoian O., Tsatsakis A., Ginghina O., Zaharia C., et al. Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv. 2021;28:1932–1950. doi: 10.1080/10717544.2021.1977423. PubMed DOI PMC

Ju S.Y., Zhang F.L., Duan J.F., Jiang J.X. Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Carbohydr. Polym. 2020;237:116167. doi: 10.1016/j.carbpol.2020.116167. PubMed DOI

Silva-Weiss A., Bifani V., Ihl M., Sobral P.J.A., Gomez-Guillen M.C. Structural properties of films and rheology of film-forming solutions based on chitosan and chitosan-starch blend enriched with murta leaf extract. Food Hydrocoll. 2013;31:458–466. doi: 10.1016/j.foodhyd.2012.11.028. DOI

Lipovka A., Kharchenko A., Dubovoy A., Filipenko M., Stupak V., Mayorov A., Fomenko V., Geydt P., Parshin D. The effect of adding modified chitosan on the strength properties of bacterial cellulose for clinical applications. Polymers. 2021;13:1995. doi: 10.3390/polym13121995. PubMed DOI PMC

Fischer P., Windhab E.J. Rheology of food materials. Curr. Opin. Colloid Interface Sci. 2011;16:36–40. doi: 10.1016/j.cocis.2010.07.003. DOI

Kalyani P., Khandelwal M. Modulation of morphology, water uptake/retention, and rheological properties by in-situ modification of bacterial cellulose with the addition of biopolymers. Cellulose. 2021;28:11025–11036. doi: 10.1007/s10570-021-04256-0. DOI

Song S., Liu X.Y., Ding L., Abubaker M.A., Zhang J., Huang Y.L., Yang S., Fan Z. Conformational and rheological properties of bacterial cellulose sulfate. Int. J. Biol. Macromol. 2021;183:2326–2336. doi: 10.1016/j.ijbiomac.2021.06.001. PubMed DOI

Lakehal I., Montembault A., David L., Perrier A., Vibert R., Duclaux L., Reinert L. Prilling and characterization of hydrogels and derived porous spheres from chitosan solutions with various organic acids. Int. J. Biol. Macromol. 2019;129:68–77. doi: 10.1016/j.ijbiomac.2019.01.216. PubMed DOI

de Souza Soares L., Perim R.B., de Alvarenga E.S., de Moura Guimarães L., de Carvalho Teixeira A.V.N., dos Reis Coimbra J.S., de Oliveira E.B. Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid. Int. J. Biol. Macromol. 2019;128:140–148. doi: 10.1016/j.ijbiomac.2019.01.106. PubMed DOI

Kjm K.M., Son J.H., Kim S.K., Weller C.L., Hanna M.A. Properties of chitosan films as a function of pH and solvent type. J. Food Sci. 2006;71:E119–E124.

Nguyen H.T., Ngwabebhoh F.A., Saha N., Zandraa O., Saha T., Saha P. Development of novel biocomposites based on the clean production of microbial cellulose from dairy waste (sour whey) J. Appl. Polym. Sci. 2022;139:51433. doi: 10.1002/app.51433. DOI

ASTM . Standard D882 Annual Book of American Standard Testing Methods. American Society for Testing and Materials; Philadelphia, PA, USA: 2001. Standard test method for tensile properties of thin plastic sheeting; pp. 162–170.

Velásquez-Cock J., Ramírez E., Betancourt S., Putaux J.-L., Osorio M., Castro C., Gañán P., Zuluaga R. Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int. J. Biol. Macromol. 2014;69:208–213. doi: 10.1016/j.ijbiomac.2014.05.040. PubMed DOI

Xu Y.X., Liu X.L., Jiang Q.X., Yu D.W., Xu Y.S., Wang B., Xia W. Development and properties of bacterial cellulose, curcumin, and chitosan composite biodegradable films for active packaging materials. Carbohydr. Polym. 2021;260:117778. doi: 10.1016/j.carbpol.2021.117778. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...