Apolipoprotein A1 deficiency in mice primes bone marrow stem cells for T cell lymphopoiesis
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34698355
PubMed Central
PMC8645231
DOI
10.1242/jcs.258901
PII: 272619
Knihovny.cz E-zdroje
- Klíčová slova
- Apolipoprotein, Bone marrow, High-density lipoprotein, Lymphopoiesis, Stem cells,
- MeSH
- apolipoprotein A-I * nedostatek genetika MeSH
- buňky kostní dřeně MeSH
- LDL-receptory MeSH
- lymfopoéza * MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- T-lymfocyty MeSH
- transplantace kostní dřeně MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Apoa1 protein, mouse MeSH Prohlížeč
- apolipoprotein A-I * MeSH
- LDL-receptory MeSH
The bone marrow has emerged as a potentially important target in cardiovascular disease as it generates all leukocytes involved in atherogenesis. In the current study, we evaluated whether a change in bone marrow functionality underlies the increased atherosclerosis susceptibility associated with high-density lipoprotein (HDL) deficiency. We found that HDL deficiency in mice due to the genetic lack of hepatocyte-derived apolipoprotein A1 (APOA1) was associated with an increase in the Lin-Sca-1+Kit+ (LSK) bone marrow stem cell population and lymphoid-primed multipotent progenitor numbers, which translated into a higher production and systemic flux of T cell subsets. In accordance with APOA1 deficiency-associated priming of stem cells to increase T lymphocyte production, atherogenic diet-fed low-density lipoprotein receptor knockout mice transplanted with bone marrow from APOA1-knockout mice displayed marked lymphocytosis as compared to wild-type bone marrow recipients. However, atherosclerotic lesion sizes and collagen contents were similar in the two groups of bone marrow recipients. In conclusion, systemic lack of APOA1 primes bone marrow stem cells for T cell lymphopoiesis. Our data provide novel evidence for a regulatory role of HDL in bone marrow functioning in normolipidemic mice.
Zobrazit více v PubMed
Betjes, M. G. H., de Wit, E. E. A., Weimar, W. and Litjens, N. H. R. (2010). Circulating pro-inflammatory CD4posCD28null T cells are independently associated with cardiovascular disease in ESRD patients. Nephrol. Dial. Transplant. 25, 3640-3646. 10.1093/ndt/gfq203 PubMed DOI
Choi, H. Y., Hafiane, A., Schwertani, A. and Genest, J. (2017). High-density lipoproteins: biology, epidemiology, and clinical management. Can. J. Cardiol. 33, 325-333. 10.1016/j.cjca.2016.09.012 PubMed DOI
Depuydt, M. A. C., Prange, K. H. M., Slenders, L., Örd, T., Elbersen, D., Boltjes, A., de Jager, S. C. A., Asselbergs, F. W., de Borst, G. J., Aavik, E.et al. (2020). Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437-1455. 10.1161/CIRCRESAHA.120.316770 PubMed DOI PMC
Fernandez, D. M., Rahman, A. H., Fernandez, N. F., Chudnovskiy, A., Amir, E.-D., Amadori, L., Khan, N. S., Wong, C. K., Shamailova, R., Hill, C. A.et al. (2019). Single-cell immune landscape of human atherosclerotic plaques. Nat. Med. 25, 1576-1588. 10.1038/s41591-019-0590-4 PubMed DOI PMC
Filou, S., Lhomme, M., Karavia, E. A., Kalogeropoulou, C., Theodoropoulos, V., Zvintzou, E., Sakellaropoulos, G. C., Petropoulou, P.-I., Constantinou, C., Kontush, A.et al. (2016). Distinct roles of apolipoproteins A1 and E in the modulation of high-density lipoprotein composition and function. Biochemistry 55, 3752-3762. 10.1021/acs.biochem.6b00389 PubMed DOI
Hambleton, S., Salem, S., Bustamante, J., Bigley, V., Boisson-Dupuis, S., Azevedo, J., Fortin, A., Haniffa, M., Ceron-Gutierrez, L., Bacon, C. M.et al. (2011). IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127-138. 10.1056/NEJMoa1100066 PubMed DOI PMC
Hoekstra, M. and Van Eck, M. (2016). HDL is redundant for adrenal steroidogenesis in LDLR knockout mice with a human-like lipoprotein profile. J. Lipid Res. 57, 631-637. 10.1194/jlr.M066019 PubMed DOI PMC
Hoekstra, M., Korporaal, S. J., Li, Z., Zhao, Y., Van Eck, M. and Van Berkel, T. J. (2010). Plasma lipoproteins are required for both basal and stress-induced adrenal glucocorticoid synthesis and protection against endotoxemia in mice. Am. J. Physiol. Endocrinol. Metab. 299, E1038-E1043. 10.1152/ajpendo.00431.2010 PubMed DOI
Hoekstra, M., Korporaal, S. J. A., van der Sluis, R. J., Hirsch-Reinshagen, V., Bochem, A. E., Wellington, C. L., Van Berkel, T. J. C., Kuivenhoven, J. A. and Van Eck, M. (2013). LCAT deficiency in mice is associated with a diminished adrenal glucocorticoid function. J. Lipid Res. 54, 358-364. 10.1194/jlr.M030080 PubMed DOI PMC
Höpfner, F., Jacob, M., Ulrich, C., Russ, M., Simm, A., Silber, R. E., Girndt, M., Noutsias, M., Werdan, K. and Schlitt, A. (2019). Subgroups of monocytes predict cardiovascular events in patients with coronary heart disease. The PHAMOS trial (Prospective Halle Monocytes Study). Hellenic J. Cardiol. 60, 311-321. 10.1016/j.hjc.2019.04.012 PubMed DOI
Josan, K., Majumdar, S. R. and McAlister, F. A. (2008). The efficacy and safety of intensive statin therapy: a meta-analysis of randomized trials. CMAJ 178, 576-584. 10.1503/cmaj.070675 PubMed DOI PMC
Karsunky, H., Zeng, H., Schmidt, T., Zevnik, B., Kluge, R., Schmid, K. W., Dührsen, U. and Möröy, T. (2002). Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. Nat. Genet. 30, 295-300. 10.1038/ng831 PubMed DOI
Komiya, I., Tomoyose, T., Ouchi, G., Yara, T. and Higa, S. (2018). Low level of serum HDL-cholesterol with increased sIL-2R predicts a poor clinical outcome for patients with malignant lymphoma and adult T-cell leukemia-lymphoma. Cytokine 105, 57-62. 10.1016/j.cyto.2018.02.005 PubMed DOI
Liao, X.-L., Lou, B., Ma, J. and Wu, M.-P. (2005). Neutrophils activation can be diminished by apolipoprotein A-I. Life Sci. 77, 325-335. 10.1016/j.lfs.2004.10.066 PubMed DOI
Lin, H. and Grosschedl, R. (1995). Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263-267. 10.1038/376263a0 PubMed DOI
Moore, R. E., Kawashiri, M.-A., Kitajima, K., Secreto, A., Millar, J. S., Pratico, D. and Rader, D. J. (2003). Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler. Thromb. Vasc. Biol. 23, 1914-1920. 10.1161/01.ATV.0000092328.66882.F5 PubMed DOI
Morel, S., Leahy, J., Fournier, M., Lamarche, B., Garofalo, C., Grimard, G., Poulain, F., Delvin, E., Laverdière, C., Krajinovic, M.et al. (2017). Lipid and lipoprotein abnormalities in acute lymphoblastic leukemia survivors. J. Lipid Res. 58, 982-993. 10.1194/jlr.M072207 PubMed DOI PMC
Murphy, A. J., Woollard, K. J., Suhartoyo, A., Stirzaker, R. A., Shaw, J., Sviridov, D. and Chin-Dusting, J. P. F. (2011). Neutrophil activation is attenuated by high-density lipoprotein and apolipoprotein A-I in in vitro and in vivo models of inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 1333-1341. 10.1161/ATVBAHA.111.226258 PubMed DOI
Olson, N. C., Sitlani, C. M., Doyle, M. F., Huber, S. A., Landay, A. L., Tracy, R. P., Psaty, B. M. and Delaney, J. A. (2020). Innate and adaptive immune cell subsets as risk factors for coronary heart disease in two population-based cohorts. Atherosclerosis 300, 47-53. 10.1016/j.atherosclerosis.2020.03.011 PubMed DOI PMC
Out, R., Hoekstra, M., Meurs, I., de Vos, P., Kuiper, J., Van Eck, M. and Van Berkel, T. J. C. (2007). Total body ABCG1 expression protects against early atherosclerotic lesion development in mice. Arterioscler. Thromb. Vasc. Biol. 27, 594-599. 10.1161/01.ATV.0000257136.24308.0c PubMed DOI
Out, R., Jessup, W., Le Goff, W., Hoekstra, M., Gelissen, I. C., Zhao, Y., Kritharides, L., Chimini, G., Kuiper, J., Chapman, M. J.et al. (2008). Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ. Res. 102, 113-120. 10.1161/CIRCRESAHA.107.161711 PubMed DOI
Ouweneel, A. B., Zhao, Y., Calpe-Berdiel, L., Lammers, B., Hoekstra, M., Van Berkel, T. J. C. and Van Eck, M. (2021). Impact of bone marrow ATP-binding cassette transporter A1 deficiency on atherogenesis is independent of the presence of the low-density lipoprotein receptor. Atherosclerosis 319, 79-85. 10.1016/j.atherosclerosis.2021.01.001 PubMed DOI
Pevny, L., Lin, C. S., D'Agati, V., Simon, M. C., Orkin, S. H. and Costantini, F. (1995). Development of hematopoietic cells lacking transcription factor GATA-1. Development 121, 163-172. 10.1242/dev.121.1.163 PubMed DOI
Plump, A. S., Erickson, S. K., Weng, W., Partin, J. S., Breslow, J. L. and Williams, D. L. (1996). Apolipoprotein A-I is required for cholesteryl ester accumulation in steroidogenic cells and for normal adrenal steroid production. J. Clin. Invest. 97, 2660-2671. 10.1172/JCI118716 PubMed DOI PMC
Rogacev, K. S., Cremers, B., Zawada, A. M., Seiler, S., Binder, N., Ege, P., Große-Dunker, G., Heisel, I., Hornof, F., Jeken, J.et al. (2012). CD14++CD16+ monocytes independently predict cardiovascular events: a cohort study of 951 patients referred for elective coronary angiography. J. Am. Coll. Cardiol. 60, 1512-1520. 10.1016/j.jacc.2012.07.019 PubMed DOI
Sacedón, R., Vicente, A., Varas, A., Jiménez, E., Muñoz, J. J. and Zapata, A. G. (1999). Early maturation of T-cell progenitors in the absence of glucocorticoids. Blood 94, 2819-2826. 10.1182/blood.V94.8.2819.420k12_2819_2826 PubMed DOI
SahBandar, I. N., Ndhlovu, L. C., Saiki, K., Kohorn, L. B., Peterson, M. M., D'Antoni, M. L., Shiramizu, B., Shikuma, C. M. and Chow, D. C. (2020). Relationship between circulating inflammatory monocytes and cardiovascular disease measures of carotid intimal thickness. J. Atheroscler. Thromb. 27, 441-448. 10.5551/jat.49791 PubMed DOI PMC
Schaefer, E. J., Santos, R. D. and Asztalos, B. F. (2010). Marked HDL deficiency and premature coronary heart disease. Curr. Opin. Lipidol. 21, 289-297. 10.1097/MOL.0b013e32833c1ef6 PubMed DOI PMC
Seijkens, T., Hoeksema, M. A., Beckers, L., Smeets, E., Meiler, S., Levels, J., Tjwa, M., de Winther, M. P. J. and Lutgens, E. (2014). Hypercholesterolemia-induced priming of hematopoietic stem and progenitor cells aggravates atherosclerosis. FASEB J. 28, 2202-2213. 10.1096/fj.13-243105 PubMed DOI
Seijkens, T. T. P., Poels, K., Meiler, S., van Tiel, C. M., Kusters, P. J. H., Reiche, M., Atzler, D., Winkels, H., Tjwa, M., Poelman, H.et al. (2019). Deficiency of the T cell regulator Casitas B-cell lymphoma-B aggravates atherosclerosis by inducing CD8+ T cell-mediated macrophage death. Eur. Heart J. 40, 372-382. 10.1093/eurheartj/ehy714 PubMed DOI PMC
Stehling-Sun, S., Dade, J., Nutt, S. L., DeKoter, R. P. and Camargo, F. D. (2009). Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nat. Immunol. 10, 289-296. 10.1038/ni.1694 PubMed DOI
van Eck, M., Bos, I. S. T., Kaminski, W. E., Orsó, E., Rothe, G., Twisk, J., Böttcher, A., Van Amersfoort, E. S., Christiansen-Weber, T. A., Fung-Leung, W.-P.et al. (2002). Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc. Natl. Acad. Sci. USA 99, 6298-6303. 10.1073/pnas.092327399 PubMed DOI PMC
van Kampen, E., Jaminon, A., van Berkel, T. J. C. and Van Eck, M. (2014). Diet-induced (epigenetic) changes in bone marrow augment atherosclerosis. J. Leukoc. Biol. 96, 833-841. 10.1189/jlb.1A0114-017R PubMed DOI
Westerterp, M., Gourion-Arsiquaud, S., Murphy, A. J., Shih, A., Cremers, S., Levine, R. L., Tall, A. R. and Yvan-Charvet, L. (2012). Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195-206. 10.1016/j.stem.2012.04.024 PubMed DOI PMC
Wilhelm, A. J., Zabalawi, M., Grayson, J. M., Weant, A. E., Major, A. S., Owen, J., Bharadwaj, M., Walzem, R., Chan, L., Oka, K.et al. (2009). Apolipoprotein A-I and its role in lymphocyte cholesterol homeostasis and autoimmunity. Arterioscler. Thromb. Vasc. Biol. 29, 843-849. 10.1161/ATVBAHA.108.183442 PubMed DOI PMC
Yavasoglu, I., Sargin, G., Yilmaz, F., Altındag, S., Akgun, G., Tombak, A., Toka, B., Dal, S., Ozbas, H., Cetin, G.et al. (2017). Cholesterol levels in patients with chronic lymphocytic leukemia. J. Natl. Med. Assoc. 109, 23-27. 10.1016/j.jnma.2016.11.006 PubMed DOI
Yun, X., Sun, X., Hu, X., Zhang, H., Yin, Z., Zhang, X., Liu, M., Zhang, Y. and Wang, X. (2021). Prognostic and therapeutic value of apolipoprotein a and a new risk scoring system based on Apolipoprotein A and adenosine deaminase in chronic lymphocytic leukemia. Front. Oncol. 11, 698572. 10.3389/fonc.2021.698572 PubMed DOI PMC
Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., Welch, C. and Tall, A. R. (2007). Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J. Clin. Invest. 117, 3900-3908. 10.1172/JCI33372 PubMed DOI PMC
Yvan-Charvet, L., Pagler, T., Gautier, E. L., Avagyan, S., Siry, R. L., Han, S., Welch, C. L., Wang, N., Randolph, G. J., Snoeck, H. W.et al. (2010). ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689-1693. 10.1126/science.1189731 PubMed DOI PMC
Zabalawi, M., Bhat, S., Loughlin, T., Thomas, M. J., Alexander, E., Cline, M., Bullock, B., Willingham, M. and Sorci-Thomas, M. G. (2003). Induction of fatal inflammation in LDL receptor and ApoA-I double-knockout mice fed dietary fat and cholesterol. Am. J. Pathol. 163, 1201-1213. 10.1016/S0002-9440(10)63480-3 PubMed DOI PMC
Zohren, F., Souroullas, G. P., Luo, M., Gerdemann, U., Imperato, M. R., Wilson, N. K., Göttgens, B., Lukov, G. L. and Goodell, M. A. (2012). The transcription factor Lyl-1 regulates lymphoid specification and the maintenance of early T lineage progenitors. Nat. Immunol. 13, 761-769. 10.1038/ni.2365 PubMed DOI PMC