Accelerated Maturation, Exhaustion, and Senescence of T cells in 22q11.2 Deletion Syndrome

. 2022 Feb ; 42 (2) : 274-285. [epub] 20211029

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34716533
Odkazy

PubMed 34716533
DOI 10.1007/s10875-021-01154-9
PII: 10.1007/s10875-021-01154-9
Knihovny.cz E-zdroje

PURPOSE: 22q11.2 deletion syndrome (22q11.2DS) is a primary immunodeficiency characterized chiefly by the hypoplasia of the thymus resulting in T cell lymphopenia, increased susceptibility to infections, and higher risk of autoimmune diseases. The irregular thymic niche of T cell development may contribute to autoimmune and atopic complications, whereas the compensatory mechanism of homeostatic T cell proliferation and continuous immune stimulation may result in T cell senescence and exhaustion, further aggravating the immune system dysregulation. METHODS: We used flow cytometry to investigate T cell maturation, delineation, proliferation, activation, and expression of senescence and exhaustion-associated markers (PD1, KLRG1, CD57) in 17 pediatric and adolescent patients with 22q11.2DS and age-matched healthy donors. RESULTS: 22q11.2DS patients aged 0-5 years had fewer naïve but more effector memory T cells with a tendency to approach normal values with increasing age. Young patients in particular had a higher percentage of proliferating T cells and increased expression of PD1, KLRG1, and CD57, as well as cells co-expressing several exhaustion-associated molecules (PD1, KLRG1, Tbet, Eomes, Helios). Additionally, high-risk 22q11.2DS patients with very low numbers of CD4 T cells had significantly higher percentage of Th1 and Th17 T cells, driven in part by higher proportion of mature T cell forms. CONCLUSION: The low thymic output and accelerated T cell differentiation remain the principal features of 22q11.2DS patient immunity, especially in young patients of < 5 years. Later in life, homeostatic proliferation drives expression of T cell exhaustion and senescence-associated markers, suggesting functional aberrations in addition to numeric T cell deficiency.

Zobrazit více v PubMed

Sedlackova E. The syndrome of the congentially shortening of the soft palate. Časopis lékařů Českých. 1955;94:1304–7. PubMed

Sullivan KE. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol Rev. 2019;287:186–201. DOI

Shprintzen RJ. Velo-Cardio-Facial Syndrome: 30 Years of Study. Dev Disabil Res Rev. 2008;14:3–10. DOI

Lischner HW, Punnett HH, DiGeorge AM. Lymphocytes in congenital absence of the thymus. Nature. 1967;214:580–2.

Di George A, Lischner H, Dacou C, Arey J. Absence of the thymus. Lancet. 1967;289:1387. DOI

Zweier C, Sticht H, Aydin-Yaylagül I, Campbell CE, Rauch A. Human TBX1 missense mutations cause gain of function resulting in the same phenotype as 22q11.2 deletions. Am J Hum Genet. 2007;80:510–7. DOI

Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, et al. TBX1 is responsible for cardiovascular defects in velo-cardio-facial/DiGeorge syndrome. Cell. 2001;104:619–29. DOI

Pignata C, D’Agostino A, Finelli P, Fiore M, Scotese I, Cosentini E, et al. Progressive deficiencies in blood T cells associated with a 10p12-13 interstitial deletion. Clin Immunol Immunopathol. 1996;80:9–15. DOI

Jongmans MCJ, Admiraal RJ, van der Donk KP, Vissers LELM, Baas AF, Kapusta L, et al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene. J Med Genet. 2006;43:306–14. DOI

Verdelli C, Avagliano L, Guarnieri V, Cetani F, Ferrero S, Vicentini L, et al. Expression, function, and regulation of the embryonic transcription factor TBX1 in parathyroid tumors. Lab Investig. 2017;97:1488–99.

Davies EG. Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia. Front Immunol. 2013;4:322.

McDonald-McGinn DM, Sullivan K, Marino B, Philip N, Swillen A, Vorstman JAS, et al. 22q11.2 Deletion syndrome. Nat Rev Dis Primers. 2015;1:1–46.

Giardino G, Radwan N, Koletsi P, Morrogh DM, Adams S, Ip W, et al. Clinical and immunological features in a cohort of patients with partial DiGeorge syndrome followed at a single center. Blood. 2019;133:2586–96.

Jawad AF, McDonald-Mcginn DM, Zackai E, Sullivan KE. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J pediatr. 2001;139:715–23.

Piliero LM, Sanford AN, Mcdonald-Mcginn DM, Zackai EH, Sullivan KE. T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood. 2004;103:1020–5. DOI

Seidel MG, Kindle G, Gathmann B, Quinti I, Buckland M, van Montfrans J, et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract. 2019;7(1763):70.

Mahé P, Nagot N, Portales P, Lozano C, Vincent T, Sarda P, et al. Risk factors of clinical dysimmune manifestations in a cohort of 86 children with 22q11.2 deletion syndrome: A retrospective study in France. A J Med Genet A. 2019;179:2207–13. DOI

Nain E, Kiykim A, Ogulur I, Kasap N, Karakoc‐Aydiner E, Ozen A, et al. Immune system defects in DiGeorge syndrome and association with clinical course. Scand J Immunol. 2019;90:0–3.

Lima K, Abrahamsen TG, Foelling I, Natvig S, Ryder LP, Olaussen RW. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles. Clin Exp Immunol. 2010;161:98–107.

Klocperk A, Paračková Z, Bloomfield M, Rataj M, Pokorný J, Unger S, et al. Follicular helper T cells in DiGeorge Syndrome. Front Immunol. 2018;9:1–9.

Froňková E, Klocperk A, Svaton M, Nováková M, Kotrova M, Kayserova J, et al. The TREC/KREC assay for the diagnosis and monitoring of patients with DiGeorge syndrome. PLoS ONE. 2014;9:1–13.

Palmer DB. The effect of age on thymic function. Front Immunol. 2013;4.

Surh CD, Sprent J. Homeostatic T cellproliferation. J Exp Med. 2000;192:F9–14.

Pierdominici M, Mazzetta F, Caprini E, Marziali M, Digilio MC, Marino B, et al. Biased T-cell receptor repertoires in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Exp Immunol. 2003;132:323–31.

Zemble R, Luning Prak E, McDonald K, McDonald-McGinn D, Zackai E, Sullivan K. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Immunol. 2010;136:409–18.

Yi JS, Cox MA, Zajac AJ. T-cell exhaustion: characteristics, causes and conversion. Immunology. 2010;129:474–81.

1. Wang S, Zhang Q, Hui H, Agrawal K, Karris MAY, Rana TM. An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerg Microbes Infect. 2020;9:2333–47.

Kasprowicz V, Schulze zur Wiesch J, Kuntzen T, Nolan BE, Longworth S, Berical A, et al. High level of PD-1 expression on hepatitis C virus (HCV)-specific CD8+ and CD4+ T cells during acute HCV infection, irrespective of clinical outcome. J Virol. Am Soc Microbiol; 2008;82:3154–60.

Wentink MWJ, Mueller YM, Dalm VASH, Driessen GJ, van Hagen PM, van Montfrans JM, et al. Exhaustion of the CD8+ T cell compartment in patients with mutations in phosphoinositide 3-kinase delta. Front Immunol. 2018;9:1–15. DOI

Henson SM, Akbar AN. KLRG1-more than a marker for T cell senescence. Age (Dordr). 2009;31(4):285–91. 1. Henson SM, Akbar AN. KLRG1-more than a marker for T cell senescence. Age (Omaha). 2009;31:285–91.

Kared H, Martelli S, Ng TP, Pender SLF, Larbi A. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother. 2016;65:441–52.

CuraDaball P, Ventura Ferreira MS, Ammann S, Klemann C, Lorenz MR, Warthorst U, et al. CD57 identifies T cells with functional senescence before terminal differentiation and relative telomere shortening in patients with activated PI3 kinase delta syndrome. Immunol Cell Biol. 2018;96:1060–71. DOI

Gosselin A, Monteiro P, Chomont N, Diaz-Griffero F, Said EA, Fonseca S, et al. Peripheral Blood CCR4 + CCR6 + and CXCR3 + CCR6 + CD4 + T Cells Are Highly Permissive to HIV-1 Infection. J Immunol. The Amirecan Association of Immunologists; 2010;184:1604–16.

Pangrazzi L, Weinberger B. T cells, aging and senescence. Exp Gerontol. Elsevier Inc.; 2020;134:110887.

Torfadottir H, Freysdottir J, Skaftadottir I, Haraldsson A, Sigfusson G, Ogmundsdottir HM. Evidence for extrathymic T cell maturation after thymectomy in infancy. Clin Exp Immunol. 2006;145:407–12. DOI

McClory S, Hughes T, Freud AG, Briercheck EL, Martin C, Trimboli AJ, et al. Evidence for a stepwise program of extrathymic T cell development within the human tonsil. J Clin Investig. 2012;122:1403–15. DOI

Lundqvist C, Baranov V, Hammarström S, Athlin L, Hammarström ML. Intra-epithelial lymphocytes. Evidence for regional specialization and extrathymic T cell maturation in the human gut epithelium. Int Immunol. 1995;7:1473–87. DOI

Min B. Spontaneous T cell proliferation: a physiologic process to create and maintain homeostatic balance and diversity of the immune system. Front Immunol. 2018;9.

Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang H-Q, et al. Cutting Edge: Recent Immune Status Determines the Source of Antigens That Drive Homeostatic T Cell Expansion. J Immunol. The American Association of Immunologists; 2005;174:3158–63.

Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med. 2000;192:549–56. DOI

Klocperk A, Mejstříková E, Kayserová J, Kalina T, Šedivá A. Low marginal zone-like B lymphocytes and natural antibodies characterize skewed B-lymphocyte subpopulations in del22q11 DiGeorge patients. Clin Immunol. 2015;161:144–9. DOI

King C, Ilic A, Koelsch K, Sarvetnick N. Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell. 2004;117:265–77. DOI

Baccala R, Theofilopoulos A. The new paradigm of T-cell homeostatic proliferation-induced autoimmunity. Trends Immunol. 2005;26:5–8.

Li J, Ueno A, Fort Gasia M, Luider J, Wang T, Hirota C, et al. Profiles of lamina propria t helper cell subsets discriminate between ulcerative colitis and crohn’s disease. Inflamm Bowel Dis. 2016;22:1779–92.

Fletcher JM, Lalor SJ, Sweeney CM, Tubridy N, Mills KHG. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin Exp Immunol. 2010;162:1.

Unger S, Seidl M, van Schouwenburg P, Rakhmanov M, Bulashevska A, Frede N, et al. The TH1 phenotype of follicular helper T cells indicates an IFN-γ-associated immune dysregulation in patients with CD21low common variable immunodeficiency. J Allergy Clin Immunol. 2017;141:730–40

Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443:350–4.

Feuth T, Arends JE, Fransen JH, Nanlohy NM, van Erpecum KJ, Siersema PD, et al. Complementary role of HCV and HIV in T-cell activation and exhaustion in HIV/HCV coinfection. Ostrowski MA, editor. PLoS ONE. Public Library of Science; 2013;8:e59302.

Klocperk A, Unger S, Friedmann D, Seidl M, Zoldan K, Pfeiffer J, et al. Exhausted phenotype of follicular CD8 T cells in CVID. J Allergy Clin Immunol. American Academy of Allergy, Asthma & Immunology; 2020;146:912–915.e13.

Berbers R-M, van der Wal MM, van Montfrans JM, Ellerbroek PM, Dalm VASH, van Hagen PM, et al. Chronically activated T-cells retain their inflammatory properties in common variable immunodeficiency. J Clin Immunol. 2021;41:1621–32.

Mavrogonatou E, Pratsinis H, Kletsas D. The role of senescence in cancer development. Semin Cancer Biol. 2020;62:182–91.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Profound T Lymphocyte and DNA Repair Defect Characterizes Schimke Immuno-Osseous Dysplasia

. 2024 Aug 17 ; 44 (8) : 180. [epub] 20240817

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...