Diagnosis and management of hypernatraemia in children
Jazyk angličtina Země Norsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
00064203
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
34716953
DOI
10.1111/apa.16170
Knihovny.cz E-zdroje
- Klíčová slova
- children, hypernatraemia, plasma osmolality, salt excess, water loss,
- MeSH
- chlorid sodný MeSH
- diferenciální diagnóza MeSH
- dítě MeSH
- hospitalizace MeSH
- hypernatremie * diagnóza etiologie terapie MeSH
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- chlorid sodný MeSH
Hypernatraemia is most commonly caused by excessive loss of solute-free water or decreased fluid intake; less often, the aetiology is salt intoxication. Especially infants, young children and individuals with a lack of access to water are at risk of developing hypernatraemia. Diagnosis is based on detailed history, physical examination and basic laboratory tests. Correction of hypernatraemia must be slow to prevent cerebral oedema and irreversible brain damage. This article reviews the aetiology, differential diagnosis and management of conditions associated with paediatric hypernatraemia. Distinguishing states with water deficiency from states with salt excess is important for proper management of hypernatraemic patients.
Zobrazit více v PubMed
Forman S, Crofton P, Huang H, Marshall T, Fares K, McIntosh N. The epidemiology of hypernatraemia in hospitalised children in Lothian: a 10-year study showing differences between dehydration, osmoregulatory dysfunction and salt poisoning. Arch Dis Child. 2012;97(6):502-507.
Moritz ML, Manole MD, Bogen DL, Ayus JC. Breastfeeding-associated hypernatremia: are we missing the diagnosis? Pediatrics. 2005;116(3):e343-e347.
Moritz ML, Ayus JC. Disorders of water metabolism in children: hyponatremia and hypernatremia. Pediatr Rev. 2002;23(11):371-380.
Goff DA, Higinio V, Serwint JR. Pediatr Rev. 2009;30(10):412-413; discussion 3.
Bockenhauer D, Zieg J. Electrolyte disorders. Clin Perinatol. 2014;41(3):575-590.
Jain A. Body fluid composition. Pediatr Rev. 2015;36(4):141-152; quiz 51-2.
Rondon-Berrios H, Berl T. Physiology and pathophysiology of water homeostasis. Front Horm Res. 2019;52:8-23.
Wadei HM, Textor SC. The role of the kidney in regulating arterial blood pressure. Nat Rev Nephrol. 2012;8(10):602-609.
Zieg J. Pathophysiology of hyponatremia in children. Front Pediatr. 2017;5:213.
Boone M, Deen PM. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch. 2008;456(6):1005-1024.
Robertson GL, Athar S. The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J Clin Endocrinol Metab. 1976;42(4):613-620.
Fountain JH, Lappin SL. Physiology, Renin Angiotensin System. Statpearls; 2021.
Cuzzo B, Padala SA, Lappin SL. Physiology, Vasopressin. StatPearls; 2021.
Danziger JZM, Parker MJ. Renal Physiology: A Clinical Approach. Lippincott Williams & Wilkins.
Isaacson LC. Urinary osmolality and specific gravity. Lancet. 1959;1(7063):72-73.
Bourque CW. Central mechanisms of osmosensation and systemic osmoregulation. Nat Rev Neurosci. 2008;9(7):519-531.
Baylis PH, Thompson CJ. Osmoregulation of vasopressin secretion and thirst in health and disease. Clin Endocrinol. 1988;29(5):549-576.
Lechner SG, Markworth S, Poole K, et al. The molecular and cellular identity of peripheral osmoreceptors. Neuron. 2011;69(2):332-344.
Schwade JN, Haftel L, Ruhe L, Endmann M. Extrapontine myelinolysis following extreme hypernatremia and hyperosmolarity. Case Rep Pediatr. 2019;2019:7381597.
Finberg L. Neonatal neurologic damage after dehydration. J Pediatr. 2007;151(2):110-111.
Coulthard MG, Haycock GB. Distinguishing between salt poisoning and hypernatraemic dehydration in children. BMJ. 2003;326(7381):157-160.
Chow E, Fox N, Gama R. Effect of low serum total protein on sodium and potassium measurement by ion-selective electrodes in critically ill patients. Br J Biomed Sci. 2008;65(3):128-131.
Powers KS. Dehydration: isonatremic, hyponatremic, and hypernatremic recognition and management. Pediatr Rev 2015;36(7):274-283; quiz 84-5.
Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF. Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis. 2005;45(4):626-637.
Rosner MH. Exercise-associated hyponatremia. Semin Nephrol. 2009;29(3):271-281.
Metheny NA, Krieger MM. Salt toxicity: a systematic review and case reports. J Emerg Nurs. 2020;46(4):428-439.
Lavagno C, Camozzi P, Renzi S, et al. Breastfeeding-associated hypernatremia: a systematic review of the literature. J Hum Lact 2016;32(1):67-74.
Escobar GJ, Liljestrand P, Hudes ES, et al. Five-year neurodevelopmental outcome of neonatal dehydration. J Pediatr. 2007;151(2):127-133.e1.
Gregoire JR. Adjustment of the osmostat in primary aldosteronism. Mayo Clin Proc. 1994;69(11):1108-1110.
Moritz ML, Ayus JC. Intravenous fluid management for the acutely ill child. Curr Opin Pediatr. 2011;23(2):186-193.
Schwaderer AL, Schwartz GJ. Treating hypernatremic dehydration. Pediatr Rev. 2005;26(4):148-150.
Holliday MA, Segar WE. The maintenance need for water in parenteral fluid therapy. Pediatrics. 1957;19(5):823-832.
Bockenhauer D, Bichet DG. Nephrogenic diabetes insipidus. Curr Opin Pediatr. 2017;29(2):199-205.
Electrolyte disorders related emergencies in children
Fluid management in children with volume depletion