Sex Difference in Plasma Deoxyribonuclease Activity in Rats
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34717068
PubMed Central
PMC8815475
DOI
10.33549/physiolres.934766
PII: 934766
Knihovny.cz E-zdroje
- MeSH
- deoxyribonukleasy krev MeSH
- DNA krev MeSH
- krysa rodu Rattus MeSH
- orchiektomie MeSH
- pohlavní dimorfismus * MeSH
- potkani inbrední LEW MeSH
- testosteron krev MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deoxyribonukleasy MeSH
- DNA MeSH
- testosteron MeSH
Extracellular DNA (ecDNA) activates immune cells and is involved in the pathogenesis of diseases associated with inflammation such as sepsis, rheumatoid arthritis or metabolic syndrome. DNA can be cleaved by deoxyribonucleases (DNases), some of which are secreted out of cells. The aim of this experiment was to describe plasma DNase activity in relation to extracellular DNA in adult rats, to analyse potential sex differences and to prove whether they are related to endogenous testosterone. Adult Lewis rats (n=28) of both sexes were included in the experiment. Male rats were gonadectomized or sham-operated and compared to intact female rats. Plasma ecDNA and DNase activity were measured using fluorometry and single radial enzyme diffusion assay, respectively. Concentrations of nuclear ecDNA and mitochondrial ecDNA were determined using real-time PCR. Females had 60% higher plasma DNase activity than males ( p=0.03). Gonadectomy did not affect plasma DNase in males. Neither the concentration of total ecDNA, nor nuclear or mitochondrial DNA in plasma differed between the groups. No significant correlations between DNase and ecDNA were found. From previous studies on mice, it was expected, that male rats will have higher DNase activity. In contrast, our study in rats showed the opposite sex difference. This sex difference seems not to be caused by endogenous testosterone. Interestingly, no sex differences were observed in plasma ecDNA suggesting a complex or missing association between plasma ecDNA and DNase. The observed sex difference in plasma DNase should be taken into account in animal models of ecDNA-associated diseases.
Zobrazit více v PubMed
ALBADAWI H, OKLU R, RAACKE MALLEY RE, O’KEEFE RM, UONG TP, CORMIER NR, WATKINS MT. Effect of DNase I treatment and neutrophil depletion on acute limb ischemia-reperfusion injury in mice. J Vasc Surg. 2016;64:484–493. doi: 10.1016/j.jvs.2015.01.031. PubMed DOI PMC
ANDRIAMANAMPISOA CL, BANCAUD A, BOUTONNET-RODAT A, DIDELOT A, FABRE J, FINA F, GARLAN F, GARRIGOU S, GAUDY C, GINOT F, HENAFF D, LAURENT-PUIG P, MORIN A, PICOT V, SAIAS L, TALY V, TOMASINI P, ZAANAN A. BIABooster: Online DNA concentration and size profiling with a limit of detection of 10 fg/mul and application to high-sensitivity characterization of circulating cell-free DNA. Anal Chem. 2018;90:3766–3774. doi: 10.1021/acs.analchem.7b04034. PubMed DOI
BABICKOVA J, CONKA J, JANOVICOVA L, BORIS M, KONECNA B, GARDLIK R. Extracellular DNA as a prognostic and therapeutic target in mouse colitis under dnase i treatment. Folia Biol. 2018;64:10–15. PubMed
BENEDUSI V, MARTINI E, KALLIKOURDIS M, VILLA A, MEDA C, MAGGI A. Ovariectomy shortens the life span of female mice. Oncotarget. 2015;6:10801–10811. doi: 10.18632/oncotarget.2984. PubMed DOI PMC
CAMUZI ZOVICO PV, GASPARINI NETO VH, VENANCIO FA, SOARES MIGUEL GP, GRACA PEDROSA R, KENJI HARAGUCHI F, BARAUNA VG. Cell-free DNA as an obesity biomarker. Physiol Res. 2020;69:515–520. doi: 10.33549/physiolres.934242. PubMed DOI PMC
CLEMENTI A, VIRZI GM, BROCCA A, PASTORI S, DE CAL M, MARCANTE S, GRANATA A, RONCO C. The role of cell-free plasma DNA in critically ill patients with sepsis. Blood Purif. 2016;41:34–40. doi: 10.1159/000440975. PubMed DOI
DELGADO-RIZO V, MARTINEZ-GUZMAN MA, INIGUEZ-GUTIERREZ L, GARCIA-OROZCO A, ALVARADO-NAVARRO A, FAFUTIS-MORRIS M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. doi: 10.3389/fimmu.2017.00081. PubMed DOI PMC
FERNANDO MR, JIANG C, KRZYZANOWSKI GD, RYAN WL. New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 2017;12:e0183915. doi: 10.1371/journal.pone.0183915. PubMed DOI PMC
HU Q, WOOD CR, CIMEN S, VENKATACHALAM AB, ALWAYN IP. Mitochondrial damage-associated molecular patterns (MTDs) are released during hepatic ischemia reperfusion and induce inflammatory responses. PLoS One. 2015;10:e0140105. doi: 10.1371/journal.pone.0140105. PubMed DOI PMC
CHANDRANANDA D, THORNE NP, BAHLO M. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA. BMC Med Genomics. 2015;8:29. doi: 10.1186/s12920-015-0107-z. PubMed DOI PMC
CHENG THT, LUI KO, PENG XL, CHENG SH, JIANG P, CHAN KCA, CHIU RWK, LO YMD. DNase1 does not appear to play a major role in the fragmentation of plasma DNA in a knockout mouse model. Clin Chem. 2018;64:406–408. doi: 10.1373/clinchem.2017.280446. PubMed DOI
CHIN KY, IMA-NIRWANA S. The effects of testosterone deficiency and its replacement on inflammatory markers in rats: a pilot study. Int J Endocrinol Metab. 2017;15:e43053. doi: 10.5812/ijem.43053. PubMed DOI PMC
JIMENEZ-ALCAZAR M, RANGASWAMY C, PANDA R, BITTERLING J, SIMSEK YJ, LONG AT, BILYY R, KRENN V, RENNE C, RENNE T, KLUGE S, PANZER U, MIZUTA R, MANNHERZ HG, KITAMURA D, HERRMANN M, NAPIREI M, FUCHS TA. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science. 2017;358:1202–1206. doi: 10.1126/science.aam8897. PubMed DOI
KOBLIHOVA E, MRAZOVA I, VANOURKOVA Z, MAXOVA H, RYSKA M, FRONEK J. Sex-linked differences in the course of thioacetamide-induced acute liver failure in Lewis rats. Physiol Res. 2020;69:835–845. doi: 10.33549/physiolres.934499. PubMed DOI PMC
KOIZUMI T. Tissue distribution of deoxyribonuclease I (DNase I) activity level in mice and its sexual dimorphism. Exp Anim. 1995;44:181–185. doi: 10.1538/expanim.44.181. PubMed DOI
KONECNA B, LAUKOVA L, VLKOVA B. Immune activation by nucleic acids: A role in pregnancy complications. Scand J Immunol. 2018;87:e12651. doi: 10.1111/sji.12651. PubMed DOI
KONECNA B, SYSAK R, KACEROVSKY M, CELEC P, VLKOVA B. Deoxyribonuclease activity in plasma of pregnant women and experimental animals. J Matern Fetal Neonatal Med. 2018;31:1807–1809. doi: 10.1080/14767058.2017.1326899. PubMed DOI
KYPRIANOU N, ENGLISH HF, ISAACS JT. Activation of a Ca2+-Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate. 1988;13:103–117. doi: 10.1002/pros.2990130203. PubMed DOI
LASTUVKA Z, BORBELYOVA V, JANISOVA K, OTAHAL J, MYSLIVECEK J, RILJAK V. Neonatal hypoxic-ischemic brain injury leads to sex-specific deficits in rearing and climbing in adult mice. Physiol Res. 2020;69:S499–S512. doi: 10.33549/physiolres.934604. PubMed DOI PMC
LAZARIDES E, LINDBERG U. Actin is the naturally occurring inhibitor of deoxyribonuclease I. Proc Natl Acad Sci U S A. 1974;71:4742–4746. doi: 10.1073/pnas.71.12.4742. PubMed DOI PMC
LJUNGMAN M, HANAWALT PC. Efficient protection against oxidative DNA damage in chromatin. Mol Carcinog. 1992;5:264–269. doi: 10.1002/mc.2940050406. PubMed DOI
MAI SH, KHAN M, DWIVEDI DJ, ROSS CA, ZHOU J, GOULD TJ, GROSS PL, WEITZ JI, FOX-ROBICHAUD AE, LIAW PC CANADIAN CRITICAL CARE TRANSLATIONAL BIOLOGY G. Delayed but not early treatment with DNase reduces organ damage and improves outcome in a murine model of sepsis. Shock. 2015;44:166–172. doi: 10.1097/SHK.0000000000000396. PubMed DOI
NAKAZAWA D, SHIDA H, KUSUNOKI Y, MIYOSHI A, NISHIO S, TOMARU U, ATSUMI T, ISHIZU A. The responses of macrophages in interaction with neutrophils that undergo NETosis. J Autoimmun. 2016;67:19–28. doi: 10.1016/j.jaut.2015.08.018. PubMed DOI
RAUCH F, POLZAR B, STEPHAN H, ZANOTTI S, PADDENBERG R, MANNHERZ HG. Androgen ablation leads to an upregulation and intranuclear accumulation of deoxyribonuclease I in rat prostate epithelial cells paralleling their apoptotic elimination. J Cell Biol. 1997;137:909–923. doi: 10.1083/jcb.137.4.909. PubMed DOI PMC
RILJAK V, LASTUVKA Z, MYSLIVECEK J, BORBELYOVA V, OTAHAL J. Early postnatal hypoxia induces behavioral deficits but not morphological damage in the hippocampus in adolescent rats. Physiol Res. 2020;69:165–179. doi: 10.33549/physiolres.934234. PubMed DOI PMC
ROONEY JP, RYDE IT, SANDERS LH, HOWLETT EH, COLTON MD, GERM KE, MAYER GD, GREENAMYRE JT, MEYER JN. PCR based determination of mitochondrial DNA copy number in multiple species. Methods Mol Biol. 2015;1241:23–38. doi: 10.1007/978-1-4939-1875-1_3. PubMed DOI PMC
ROSSETTI ML, STEINER JL, GORDON BS. Increased mitochondrial turnover in the skeletal muscle of fasted, castrated mice is related to the magnitude of autophagy activation and muscle atrophy. Mol Cell Endocrinol. 2018;473:178–185. doi: 10.1016/j.mce.2018.01.017. PubMed DOI
SHIOKAWA D, MATSUSHITA T, SHIKA Y, SHIMIZU M, MAEDA M, TANUMA S. DNase X is a glycosylphosphatidylinositol-anchored membrane enzyme that provides a barrier to endocytosis-mediated transfer of a foreign gene. J Biol Chem. 2007;282:17132–17140. doi: 10.1074/jbc.M610428200. PubMed DOI
SPERANSKII AI, KOSTYUK SV, KALASHNIKOVA EA, VEIKO NN. Enrichment of extracellular DNA from the cultivation medium of human peripheral blood mononuclears with genomic CpG rich fragments results in increased cell production of IL-6 and TNF-a via activation of the NF-kB signaling pathway. Biomed Khim. 2016;62:331–340. doi: 10.18097/PBMC20166203331. PubMed DOI
STROUN M, LYAUTEY J, LEDERREY C, OLSON-SAND A, ANKER P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta. 2001;313:139–142. doi: 10.1016/S0009-8981(01)00665-9. PubMed DOI
VOKALOVA L, LAUKOVA L, CONKA J, MELISKOVA V, BORBELYOVA V, BABICKOVA J, TOTHOVA L, HODOSY J, VLKOVA B, CELEC P. Deoxyribonuclease partially ameliorates thioacetamide-induced hepatorenal injury. Am J Physiol Gastrointest Liver Physiol. 2017;312:G457–G463. doi: 10.1152/ajpgi.00446.2016. PubMed DOI
ZHDANOV DD, FAHMI T, WANG X, APOSTOLOV EO, SOKOLOV NN, JAVADOV S, BASNAKIAN AG. Regulation of apoptotic endonucleases by EndoG. DNA Cell Biol. 2015;34:316–326. doi: 10.1089/dna.2014.2772. PubMed DOI PMC