Recombinant Adeno-Associated Virus Serotype 9 Gene Therapy in Spinal Muscular Atrophy
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
34721262
PubMed Central
PMC8548432
DOI
10.3389/fneur.2021.726468
Knihovny.cz E-resources
- Keywords
- AAV9, gene therapy, onasemnogene abeparvovec, spinal muscular atrophy, spinal muscular atrophy treatment,
- Publication type
- Journal Article MeSH
- Review MeSH
Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disease caused by deletion or mutation of the SMN1 gene. It is characterized by a progressive loss of motor neurons resulting in muscle weakness. The disease affects 1 in 11,000 live births and before the era of treatment SMA was a leading genetic cause of mortality in infants. Recently, disease modifying therapies have been introduced in clinical practice. They include intrathecal and oral antisense oligonucleotides binding to pre-mRNA of SMN2 gene and increasing the translation of fully functional SMN protein as well as SMN1 gene replacement therapy. Onasemnogene abeparvovec uses the adeno-associated virus 9 (AAV9) vector to deliver the SMN1 gene. Phase 1 and phase 3 clinical trials showed that a single administration of onasemnogene abeparvovec resulted in improvement of motor functions in the majority of infants with SMA. Currently, phase 3 trials in SMA1 and SMA2 patients, as well as presymptomatic infants diagnosed with SMA, are ongoing. The drug was approved for medical use in the US in 2019, and in Japan and the European Union in 2020. Thus, first real-world data on efficacy and safety of onasemnogene abeparvovec in SMA patients are available.
See more in PubMed
Sugarman EA, Nagan N, Zhu H, Akmaev VR, Zhou Z, Rohlfs EM, et al. . Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. Eur J Hum Genet. (2012) 20:27–32. 10.1038/ejhg.2011.134 PubMed DOI PMC
Vill K, Schwartz O, Blaschek A, Glaser D, Nennstiel U, Wirth B, et al. . Newborn screening for spinal muscular atrophy in Germany: clinical results after 2 years. Orphanet J Rare Dis. (2021) 16:153. 10.1186/s13023-021-01783-8 PubMed DOI PMC
Aharoni S, Nevo Y, Orenstein N, Basel-Salmon L, Ben-Shachar S, Mussaffi H, et al. . Impact of a national population-based carrier-screening program on spinal muscular atrophy births. Neuromuscul Disord. (2020) 30:970–4. 10.1016/j.nmd.2020.10.005 PubMed DOI
Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. . Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. (2014) 83:810–7. 10.1212/WNL.0000000000000741 PubMed DOI PMC
van der Heul AMB, Cuppen I, Wadman RI, Asselman F, Schoenmakers M, van de Woude DR, et al. . Feeding and swallowing problems in infants with spinal muscular atrophy type 1: an observational study. J Neuromuscul Dis. (2020) 7:323–30. 10.3233/JND-190465 PubMed DOI
Wadman RI, De Amicis R, Brusa C, Battezzati A, Bertoli S, Davis T, et al. . Feeding difficulties in children and adolescents with spinal muscular atrophy type 2. Neuromuscul Disord. (2021) 31:101–12. 10.1016/j.nmd.2020.12.007 PubMed DOI
Pera MC, Romeo DM, Graziano A, Palermo C, Messina S, Baranello G, et al. . Sleep disorders in spinal muscular atrophy. Sleep Med. (2017) 30:160–3. 10.1016/j.sleep.2016.11.012 PubMed DOI
von Gontard A, Zerres K, Backes M, Laufersweiler-Plass C, Wendland C, Melchers P, et al. . Intelligence and cognitive function in children and adolescents with spinal muscular atrophy. Neuromuscul Disord. (2002) 12:130–6. 10.1016/s0960-8966(01)00274-7 PubMed DOI
Mix L, Schreiber-Katz O, Wurster CD, Uzelac Z, Platen S, Gipperich C, et al. . Executive function is inversely correlated with physical function: the cognitive profile of adult Spinal Muscular Atrophy (SMA). Orphanet J Rare Dis. (2021) 16:10. 10.1186/s13023-020-01661-9 PubMed DOI PMC
Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany: ). Neuromuscul Disord. (1992) 2:423–8. 10.1016/s0960-8966(06)80015-5 PubMed DOI
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. . Natural history of infantile-onset spinal muscular atrophy. Ann Neurol. (2017) 82:883–91. 10.1002/ana.25101 PubMed DOI PMC
De Sanctis R, Pane M, Coratti G, Palermo C, Leone D, Pera MC, et al. . Clinical phenotypes and trajectories of disease progression in type 1 spinal muscular atrophy. Neuromuscul Disord. (2018) 28:24–8. 10.1016/j.nmd.2017.09.015 PubMed DOI
Mercuri E, Lucibello S, Perulli M, Coratti G, de Sanctis R, Pera MC, et al. . Longitudinal natural history of type I spinal muscular atrophy: a critical review. Orphanet J Rare Dis. (2020) 15:84. 10.1186/s13023-020-01356-1 PubMed DOI PMC
Coratti G, Messina S, Lucibello S, Pera MC, Montes J, Pasternak A, et al. . Clinical variability in spinal muscular atrophy type III. Ann Neurol. (2020) 88:1109–17. 10.1002/ana.25900 PubMed DOI
Annoussamy M, Seferian AM, Daron A, Pereon Y, Cances C, Vuillerot C, et al. . Natural history of type 2 and 3 spinal muscular atrophy: 2-year NatHis-SMA study. Ann Clin Transl Neurol. (2021) 8:359–73. 10.1002/acn3.51281 PubMed DOI PMC
Lusakowska A, Jedrzejowska M, Kaminska A, Janiszewska K, Grochowski P, Zimowski J, et al. . Observation of the natural course of type 3 spinal muscular atrophy: data from the polish registry of spinal muscular atrophy. Orphanet J Rare Dis. (2021) 16:150. 10.1186/s13023-021-01771-y PubMed DOI PMC
Souza PVS, Pinto W, Ricarte A, Badia BML, Seneor DD, Teixeira DT, et al. . Clinical and radiological profile of patients with spinal muscular atrophy type 4. Eur J Neurol. (2021) 28:609–19. 10.1111/ene.14587 PubMed DOI
Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. Eur J Paediatr Neurol. (1999) 3:49–51. 10.1053/ejpn.1999.0181 PubMed DOI
Mercuri E, Pera MC, Scoto M, Finkel R, Muntoni F. Spinal muscular atrophy - insights and challenges in the treatment era. Nat Rev Neurol. (2020) 16:706–15. 10.1038/s41582-020-00413-4 PubMed DOI
Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. . Identification and characterization of a spinal muscular atrophy-determining gene. Cell. (1995) 80:155–65. 10.1016/0092-8674(95)90460-3 PubMed DOI
Mailman MD, Heinz JW, Papp AC, Snyder PJ, Sedra MS, Wirth B, et al. . Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet Med. (2002) 4:20–6. 10.1097/00125817-200201000-00004 PubMed DOI
Liu Q, Fischer U, Wang F, Dreyfuss G. The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell. (1997) 90:1013–21. 10.1016/s0092-8674(00)80367-0 PubMed DOI
Burghes AH, Beattie CE. Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci. (2009) 10:597–609. 10.1038/nrn2670 PubMed DOI PMC
Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, et al. . Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. (2005) 57:704–12. 10.1002/ana.20473 PubMed DOI PMC
Tiziano FD, Bertini E, Messina S, Angelozzi C, Pane M, D'Amico A, et al. . The Hammersmith functional score correlates with the SMN2 copy number: a multicentric study. Neuromuscul Disord. (2007) 17:400–3. 10.1016/j.nmd.2007.02.006 PubMed DOI
Calucho M, Bernal S, Alias L, March F, Vencesla A, Rodriguez-Alvarez FJ, et al. . Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscul Disord. (2018) 28:208–15. 10.1016/j.nmd.2018.01.003 PubMed DOI
Farrar MA, Park SB, Vucic S, Carey KA, Turner BJ, Gillingwater TH, et al. . Emerging therapies and challenges in spinal muscular atrophy. Ann Neurol. (2017) 81:355–68. 10.1002/ana.24864 PubMed DOI PMC
Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. . Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. (2016) 86:890–7. 10.1212/WNL.0000000000002445 PubMed DOI PMC
Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. . Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. (2016) 388:3017–26. 10.1016/S0140-6736(16)31408-8 PubMed DOI
Passini MA, Bu J, Richards AM, Kinnecom C, Sardi SP, Stanek LM, et al. . Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. (2011) 3:72ra18. 10.1126/scitranslmed.3001777 PubMed DOI PMC
Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. . Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N Engl J Med. (2017) 377:1723–32. 10.1056/NEJMoa1702752 PubMed DOI
Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM, et al. . Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med. (2018) 378:625–35. 10.1056/NEJMoa1710504 PubMed DOI
Darras BT, Chiriboga CA, Iannaccone ST, Swoboda KJ, Montes J, Mignon L, et al. . Nusinersen in later-onset spinal muscular atrophy: long-term results from the phase 1/2 studies. Neurology. (2019) 92:e2492–506. 10.1212/WNL.0000000000007527 PubMed DOI PMC
De Vivo DC, Bertini E, Swoboda KJ, Hwu WL, Crawford TO, Finkel RS, et al. . Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul Disord. (2019) 29:842–56. 10.1016/j.nmd.2019.09.007 PubMed DOI PMC
Pechmann A, Langer T, Schorling D, Stein S, Vogt S, Schara U, et al. . Evaluation of children with SMA type 1 under treatment with nusinersen within the expanded access program in Germany. J Neuromuscul Dis. (2018) 5:135–43. 10.3233/JND-180315 PubMed DOI PMC
Aragon-Gawinska K, Daron A, Ulinici A, Vanden Brande L, Seferian A, Gidaro T, et al. . Sitting in patients with spinal muscular atrophy type 1 treated with nusinersen. Dev Med Child Neurol. (2020) 62:310–4. 10.1111/dmcn.14412 PubMed DOI
Modrzejewska S, Kotulska K, Kopyta I, Gredowska E, Emich-Widera E, Tomaszek K, et al. . Nusinersen treatment of Spinal Muscular Atrophy Type 1 - results of expanded access programme in Poland. Neurol Neurochir Pol. (2021) 55:289–94. 10.5603/PJNNS.a2021.0020 PubMed DOI
Hiebeler M, Abicht A, Reilich P, Walter MC. Effect of discontinuation of nusinersen treatment in long-standing SMA3. J Neuromuscul Dis. (2021) 8:537–42. 10.3233/JND-210644 PubMed DOI
Dhillon S. Risdiplam: first approval. Drugs. (2020) 80:1853–8. 10.1007/s40265-020-01410-z PubMed DOI
Baranello G, Bloespflug-Tanguy O, Darras B, Day J, Deconinck N, Klein A, et al. . FIREFISH part 1: 24-month safety and exploratory outcomes of risdiplam (RG7916) in infants with type 1 spinal muscular atrophy (SMA). In: Poster Presented at: 25th International Annual Congress of the World Muscle Society; September 28– October 2 (2020). Halifax, NS.
Baranello G, Darras BT, Day JW, Deconinck N, Klein A, Masson R, et al. . Risdiplam in type 1 spinal muscular atrophy. N Engl J Med. (2021) 384:915–23. 10.1056/NEJMoa2009965 PubMed DOI
Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P, et al. . Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet. (2011) 20:681–93. 10.1093/hmg/ddq514 PubMed DOI
Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, Goodspeed K, Gray SJ, Kay CN, et al. . Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. (2021) 29:464–88. 10.1016/j.ymthe.2020.12.007 PubMed DOI PMC
Foust KD, Nurre E, Montgomery CL, Hernandez A, Chan CM, Kaspar BK. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol. (2009) 27:59–65. 10.1038/nbt.1515 PubMed DOI PMC
Foust KD, Wang X, McGovern VL, Braun L, Bevan AK, Haidet AM, et al. . Rescue of the spinal muscular atrophy phenotype in a mouse model by early postnatal delivery of SMN. Nat Biotechnol. (2010) 28:271–4. 10.1038/nbt.1610 PubMed DOI PMC
Bevan AK, Hutchinson KR, Foust KD, Braun L, McGovern VL, Schmelzer L, et al. . Early heart failure in the SMND7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum Mol Genet. (2010) 19:3895–905. 10.1093/hmg/ddq300 PubMed DOI PMC
Meyer K, Ferraiuolo L, Schmelzer L, Braun L, McGovern V, Likhite S, et al. . Improving single injection CSF delivery of AAV9-mediated gene therapy for SMA: a dose–response study in mice and nonhuman primates. Mol Ther. (2015) 23:477–87. 10.1038/mt.2014.210 PubMed DOI PMC
Van Alstyne M, Tattoli I, Delestrée N, Recinos Y, Workman E, Shihabuddin LS, et al. . Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci. (2021) 24:930–40. 10.1038/s41593-021-00827-3 PubMed DOI PMC
Duque S, Joussemet B, Riviere C, Marais T, Dubreil L, Douar AM, et al. . Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol Ther. (2009) 17:1187–96. 10.1038/mt.2009.71 PubMed DOI PMC
Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR, Prior TW, et al. . Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. (2017) 377:1713–22. 10.1056/NEJMoa1706198 PubMed DOI
Rashnonejad A, Chermahini GA, Li S, Ozkinay F, Gao G. Large-scale production of adeno-associated viral vector serotype-9 carrying the human survival motor neuron gene. Mol Biotechnol. (2016) 58:30–6. 10.1007/s12033-015-9899-5 PubMed DOI PMC
Mendell JR, Al-Zaidy SA, Lehman KJ, McColly M, Lowes LP, Alfano LN, et al. . Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. (2021) 78:834–41. 10.1001/jamaneurol.2021.1272 PubMed DOI PMC
Zhao X, Feng Z, Risher N, Mollin A, Sheedy J, Ling KKY, et al. . SMN protein is required throughout life to prevent spinal muscular atrophy disease progression. Hum Mol Genet. (2021). 10.1093/hmg/ddab220. [Epub ahead of print]. PubMed DOI
Al-Zaidy S, Pickard AS, Kotha K, Alfano LN, Lowes L, Paul G, et al. . Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatr Pulmonol. (2019) 54:179–85. 10.1002/ppul.24203 PubMed DOI PMC
Lowes LP, Alfano LN, Arnold WD, Shell R, Prior TW, McColly M, et al. . Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 Receiving single-dose gene replacement therapy. Pediatr Neurol. (2019) 98:39–45. 10.1016/j.pediatrneurol.2019.05.005 PubMed DOI
Mendell JR. Therapy for spinal muscular atrophy. N Engl J Med. (2018) 378:487–8. 10.1056/NEJMc1715769 PubMed DOI
Mendell J, Finkel R, Mercuri E, Strauss K, Day J, Kleyn A, et al. . Long-Term Follow-up (LTFU) of onasemnogene abeparvovec gene therapy in Spinal Muscular Atrophy. In: 2021 Muscular Dystrophy Association Virtual Clinical and Scientific Conference (2021). Virtual Conference.
Day JW, Finkel RS, Chiriboga CA, Connolly AM, Crawford TO, Darras BT, et al. . Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. (2021) 20:284–93. 10.1016/S1474-4422(21)00001-6 PubMed DOI
Dangouloff T, Servais L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther Clin Risk Manag. (2019) 15:1153–61. 10.2147/TCRM.S172291 PubMed DOI PMC
Strauss K, Farrar M, Muntoni F, Saito K, Mendell J, Servais L, et al. . Onasemnogene abeparvovec gene therapy in presymptomatic Spinal Muscular Atrophy (SMA): SPR1NT study update in children with three copies of SMN2. In: 2021 Muscular Dystrophy Association Virtual Clinical and Scientific Conference (2021). Virtual Conference.
Strauss K, Farrar MA, Munton F, Saito K, Mendell J, Servais L, et al. . Onasemnogene abeparvovec gene therapy in presymptomatic Spinal Muscular Atrophy (SMA): in: SPR1NT Study Update in Children with Two Copies of SMN2. 2021 Muscular Dystrophy Association Virtual Clinical and Scientific Conference (2021). Virtual Conference.
Finkel RS, Day JW, De Vivo DC, Kirschner J, Mercuri E, Muntoni F, et al. . RESTORE: a prospective multinational registry of patients with genetically confirmed spinal muscular atrophy - rationale and study design. J Neuromuscul Dis. (2020) 7:145–52. 10.3233/JND-190451 PubMed DOI PMC
Chand D, Mohr F, McMillan H, Tukov FF, Montgomery K, Kleyn A, et al. . Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol. (2021) 74:560–6. 10.1016/j.jhep.2020.11.001 PubMed DOI
Feldman AG, Parsons JA, Dutmer CM, Veerapandiyan A, Hafberg E, Maloney N, et al. . Subacute liver failure following gene replacement therapy for spinal muscular atrophy type 1. J Pediatr. (2020) 225:252–8.e1. 10.1016/j.jpeds.2020.05.044 PubMed DOI PMC
Waldrop MA, Karingada C, Storey MA, Powers B, Iammarino MA, Miller NF, et al. . Gene therapy for spinal muscular atrophy: safety and early outcomes. Pediatrics. (2020) 146:e20200729. 10.1542/peds.2020-0729 PubMed DOI
Prabhu N, Saylam E, Louis C, Moss M, Millner R, Douglass D, et al. . Thrombotic Microangiopathy (TMA): a potential adverse reaction post Zolgensma (onasemnogene abeparvovec-xioi) therapy for Spinal Muscular Atrophy (SMA) (5483). Neurology. (2020) 94:5483. Available online at: https://n.neurology.org/content/94/15_Supplement/5483
Chand DH, Zaidman C, Arya K, Millner R, Farrar MA, Mackie FE, et al. . Thrombotic microangiopathy following onasemnogene abeparvovec for spinal muscular atrophy: a case series. J Pediatr. (2021) 231:265–8. 10.1016/j.jpeds.2020.11.054 PubMed DOI
Kray KM, McGovern VL, Chugh D, Arnold WD, Burghes AH. Dual SMN inducing therapies can rescue survival and motor unit function in symptomatic Δ7SMA mice. Neurobiol Dis. (2021) 159:105488. 10.1016/j.nbd.2021.105488 PubMed DOI PMC
Harada Y, Rao VK, Arya K, Kuntz NL, DiDonato CJ, Napchan-Pomerantz G. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve. (2020) 62:550–4. 10.1002/mus.27034 PubMed DOI
Matesanz SE, Curry C, Gross B, Rubin AI, Linn R, Yum SW, et al. . Clinical course in a patient with spinal muscular atrophy type 0 treated with nusinersen and onasemnogene abeparvovec. J Child Neurol. (2020) 35:717–23. 10.1177/0883073820928784 PubMed DOI
Oechsel KF, Cartwright MS. Combination therapy with onasemnogene and risdiplam in spinal muscular atrophy type 1. Muscle Nerve. (2021) 64:487–90. 10.1002/mus.27375 PubMed DOI
Kirschner J, Butoianu N, Goemans N, Haberlova J, Kostera-Pruszczyk A, Mercuri E, et al. . European ad-hoc consensus statement on gene replacement therapy for spinal muscular atrophy. Eur J Paediatr Neurol. (2020) 28:38–43. 10.1016/j.ejpn.2020.07.001 PubMed DOI PMC