Pluripotency Stemness and Cancer: More Questions than Answers
Language English Country United States Media print
Document type Journal Article
- Keywords
- AP-1, Cancer stem cells, Embryonic stem cells, Induced pluripotent cancer cells, Induced pluripotent stem cells, Pluripotency reprogramming, Pluripotency transcription factors, Sarcoma,
- MeSH
- Cell Differentiation genetics MeSH
- Embryonic Stem Cells MeSH
- Induced Pluripotent Stem Cells * metabolism MeSH
- Humans MeSH
- Neoplasms * genetics metabolism MeSH
- Octamer Transcription Factor-3 genetics metabolism MeSH
- Pluripotent Stem Cells * MeSH
- Cellular Reprogramming genetics MeSH
- Transcription Factors genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Octamer Transcription Factor-3 MeSH
- Transcription Factors MeSH
Embryonic stem cells and induced pluripotent stem cells provided us with fascinating new knowledge in recent years. Mechanistic insight into intricate regulatory circuitry governing pluripotency stemness and disclosing parallels between pluripotency stemness and cancer instigated numerous studies focusing on roles of pluripotency transcription factors, including Oct4, Sox2, Klf4, Nanog, Sall4 and Tfcp2L1, in cancer. Although generally well substantiated as tumour-promoting factors, oncogenic roles of pluripotency transcription factors and their clinical impacts are revealing themselves as increasingly complex. In certain tumours, both Oct4 and Sox2 behave as genuine oncogenes, and reporter genes driven by composite regulatory elements jointly recognized by both the factors can identify stem-like cells in a proportion of tumours. On the other hand, cancer stem cells seem to be biologically very heterogeneous both among different tumour types and among and even within individual tumours. Pluripotency transcription factors are certainly implicated in cancer stemness, but do not seem to encompass its entire spectrum. Certain cancer stem cells maintain their stemness by biological mechanisms completely different from pluripotency stemness, sometimes even by engaging signalling pathways that promote differentiation of pluripotent stem cells. Moreover, while these signalling pathways may well be antithetical to stemness in pluripotent stem cells, they may cooperate with pluripotency factors in cancer stem cells - a paradigmatic example is provided by the MAPK-AP-1 pathway. Unexpectedly, forced expression of pluripotency transcription factors in cancer cells frequently results in loss of their tumour-initiating ability, their phenotypic reversion and partial epigenetic normalization. Besides the very different signalling contexts operating in pluripotent and cancer stem cells, respectively, the pronounced dose dependency of reprogramming pluripotency factors may also contribute to the frequent loss of tumorigenicity observed in induced pluripotent cancer cells. Finally, contradictory cell-autonomous and non-cell-autonomous effects of various signalling molecules operate during pluripotency (cancer) reprogramming. The effects of pluripotency transcription factors in cancer are thus best explained within the concept of cancer stem cell heterogeneity.
See more in PubMed
Ambrosetti DC, Basilico C, Dailey L (1997) Synergistic activation of the fibroblast growth factor 4 enhancer by Sox2 and Oct-3 depends on protein-protein interactions facilitated by a specific spatial arrangement of factor binding sites. Mol Cell Biol 17:6321–6329. https://doi.org/10.1128/mcb.17.11.6321 PubMed DOI PMC
Amsterdam A, Raanan C, Schreiber L et al (2013) Localization of the stem cell markers LGR5 and Nanog in the normal and the cancerous human ovary and their inter-relationship. Acta Histochem 115:330–338. https://doi.org/10.1016/j.acthis.2012.09.004 PubMed DOI
Annovazzi L, Mellai M, Caldera V et al (2011) SOX2 expression and amplification in gliomas and glioma cell lines. Cancer Genomics Proteomics 8:139–147 PubMed
Antonescu CR, Zhang L, Chang N-E et al (2010) EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 49:1114–1124. https://doi.org/10.1002/gcc.20819 PubMed DOI PMC
Argentati C, Tortorella I, Bazzucchi M et al (2020) Harnessing the potential of stem cells for disease modeling: Progress and promises. J Pers Med 10:8. https://doi.org/10.3390/jpm10010008 DOI PMC
Atkin NB, Baker MC (1982) Specific chromosome change, i(12p), in testicular tumours? Lancet 2:1349. https://doi.org/10.1016/s0140-6736(82)91557-4 PubMed DOI
Bar S, Schachter M, Eldar-Geva T, Benvenisty N (2017) Large-scale analysis of loss of imprinting in human pluripotent stem cells. Cell Rep 19:957–968. https://doi.org/10.1016/j.celrep.2017.04.020 PubMed DOI
Bass AJ, Watanabe H, Mermel CH et al (2009) SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet 41:1238–1242. https://doi.org/10.1038/ng.465 PubMed DOI PMC
Basu-Roy U, Bayin NS, Rattanakorn K et al (2015) Sox2 antagonizes the hippo pathway to maintain stemness in cancer cells. Nat Commun 6:6411. https://doi.org/10.1038/ncomms7411 PubMed DOI
Bayo P, Jou A, Stenzinger A et al (2015) Loss of SOX2 expression induces cell motility via vimentin up-regulation and is an unfavorable risk factor for survival of head and neck squamous cell carcinoma. Mol Oncol 9:1704–1719. https://doi.org/10.1016/j.molonc.2015.05.006 PubMed DOI PMC
Belotte J, Fletcher NM, Alexis M et al (2015) Sox2 gene amplification significantly impacts overall survival in serous epithelial ovarian cancer. Reprod Sci 22:38–46. https://doi.org/10.1177/1933719114542021 PubMed DOI PMC
Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277. https://doi.org/10.1038/nrc3034 PubMed DOI
Ben-Porath I, Thomson MW, Carey VJ et al (2008) An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 40:499–507. https://doi.org/10.1038/ng.127 PubMed DOI PMC
Berger AW, Schwerdel D, Reinacher-Schick A et al (2019) A blood-based multi marker assay supports the differential diagnosis of early-stage pancreatic cancer. Theranostics 9:1280–1287. https://doi.org/10.7150/thno.29247 PubMed DOI PMC
Bernhardt M, Galach M, Novak D, Utikal J (2012) Mediators of induced pluripotency and their role in cancer cells – current scientific knowledge and future perspectives. Biotechnol J 7:810–821. https://doi.org/10.1002/biot.201100347 PubMed DOI
Bernhardt M, Novak D, Assenov Y et al (2017) Melanoma-derived iPCCs show differential Tumorigenicity and therapy response. Stem Cell Rep 8:1379–1391. https://doi.org/10.1016/j.stemcr.2017.03.007 DOI
Birbrair A (ed) (2019a) Stem cells heterogeneity - novel concepts. Adv Exp Med Biol:1123. https://doi.org/10.1007/978-3-030-11096-3_1
Birbrair A (ed) (2019b) Stem cells heterogeneity in Cancer. Adv Exp Med Biol:1139. https://doi.org/10.1007/978-3-030-14366-4
Blanco L, Tirado CA (2018) Testicular germ cell tumors: a Cytogenomic update. J Assoc Genet Technol 44:128–133 PubMed
Boer B, Kopp J, Mallanna S et al (2007) Elevating the levels of Sox2 in embryonal carcinoma cells and embryonic stem cells inhibits the expression of Sox2:Oct-3/4 target genes. Nucleic Acids Res 35:1773–1786. https://doi.org/10.1093/nar/gkm059 PubMed DOI PMC
Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956. https://doi.org/10.1016/j.cell.2005.08.020 PubMed DOI PMC
Câmara DAD, Mambelli LI, Porcacchia AS, Kerkis I (2016) Advances and challenges on Cancer cells reprogramming using induced pluripotent stem cells technologies. J Cancer 7:2296–2303. https://doi.org/10.7150/jca.16629 PubMed DOI PMC
Carey BW, Markoulaki S, Hanna JH et al (2011) Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell 9:588–598. https://doi.org/10.1016/j.stem.2011.11.003 PubMed DOI
Castro-Pérez E, Rodríguez CI, Mikheil D et al (2019) Melanoma progression inhibits pluripotency and differentiation of melanoma-derived iPSCs produces cells with neural-like mixed dysplastic phenotype. Stem Cell Rep 13:177–192. https://doi.org/10.1016/j.stemcr.2019.05.018 DOI
Celià-Terrassa T, Kang Y (2016) Distinctive properties of metastasis-initiating cells. Genes Dev 30:892–908. https://doi.org/10.1101/gad.277681.116 PubMed DOI PMC
Chang C-C, Hsu W-H, Wang C-C et al (2013) Connective tissue growth factor activates pluripotency genes and mesenchymal-epithelial transition in head and neck cancer cells. Cancer Res 73:4147–4157. https://doi.org/10.1158/0008-5472.CAN-12-4085 PubMed DOI
Che J, Wu P, Wang G et al (2020) Expression and clinical value of SALL4 in renal cell carcinomas. Mol Med Rep 22:819–827. https://doi.org/10.3892/mmr.2020.11170 PubMed DOI PMC
Chen Y, Shi L, Zhang L et al (2008) The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 283:17969–17978. https://doi.org/10.1074/jbc.M802917200 PubMed DOI
Chen S, Xu Y, Chen Y et al (2012a) SOX2 gene regulates the transcriptional network of oncogenes and affects tumorigenesis of human lung Cancer cells. PLoS One 7:e36326. https://doi.org/10.1371/journal.pone.0036326 PubMed DOI PMC
Chen Z, Wang T, Cai L et al (2012b) Clinicopathological significance of non-small cell lung cancer with high prevalence of Oct-4 tumor cells. J Exp Clin Cancer Res 31:10. https://doi.org/10.1186/1756-9966-31-10 PubMed DOI PMC
Chen Y, Huang Y, Zhu L et al (2016) SOX2 inhibits metastasis in gastric cancer. J Cancer Res Clin Oncol 142:1221–1230. https://doi.org/10.1007/s00432-016-2125-4 PubMed DOI
Chen G, Guo Y, Li C et al (2020) Small molecules that promote self-renewal of stem cells and somatic cell reprogramming. Stem Cell Rev Rep 16:511–523. https://doi.org/10.1007/s12015-020-09965-w PubMed DOI
Chiou S-H, Yu C-C, Huang C-Y et al (2008) Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res 14:4085–4095. https://doi.org/10.1158/1078-0432.CCR-07-4404 PubMed DOI
Chiou S-H, Wang M-L, Chou Y-T et al (2010) Coexpression of Oct4 and Nanog enhances malignancy in lung adenocarcinoma by inducing cancer stem cell-like properties and epithelial-mesenchymal transdifferentiation. Cancer Res 70:10433–10444. https://doi.org/10.1158/0008-5472.CAN-10-2638 PubMed DOI
Chung H, Lee B-K, Uprety N et al (2016) Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep 17:519–529. https://doi.org/10.15252/embr.201540933 PubMed DOI PMC
Cordonnier T, Langonné A, Sohier J et al (2011) Consistent osteoblastic differentiation of human mesenchymal stem cells with bone morphogenetic protein 4 and low serum. Tissue Eng Part C Methods 17:249–259. https://doi.org/10.1089/ten.TEC.2010.0387 PubMed DOI
Czerwińska P, Mazurek S, Wiznerowicz M (2018) Application of induced pluripotency in cancer studies. Rep Pract Oncol Radiother 23:207–214. https://doi.org/10.1016/j.rpor.2018.04.005 PubMed DOI PMC
Deng F-M, Galvan K, de la Roza G et al (2011) Molecular characterization of an EWSR1-POU5F1 fusion associated with a t(6;22) in an undifferentiated soft tissue sarcoma. Cancer Genet 204:423–429. https://doi.org/10.1016/j.cancergen.2011.05.006 PubMed DOI
Deng G, Zhu L, Huang F et al (2015) SALL4 is a novel therapeutic target in intrahepatic cholangiocarcinoma. Oncotarget 6:27416–27426 DOI
Fan G, Ye D, Zhu S et al (2017) RTL1 promotes melanoma proliferation by regulating Wnt/β-catenin signalling. Oncotarget 8:106026–106037. https://doi.org/10.18632/oncotarget.22523 PubMed DOI PMC
Ferreirós A, Pedrosa P, Da Silva-Álvarez S et al (2019) Context-dependent impact of RAS oncogene expression on cellular reprogramming to pluripotency. Stem Cell Rep 12:1099–1112. https://doi.org/10.1016/j.stemcr.2019.04.006 DOI
Forghanifard MM, Ardalan Khales S, Javdani-Mallak A et al (2014) Stemness state regulators SALL4 and SOX2 are involved in progression and invasiveness of esophageal squamous cell carcinoma. Med Oncol 31:922. https://doi.org/10.1007/s12032-014-0922-7 PubMed DOI
Fu T-Y, Hsieh I-C, Cheng J-T et al (2016) Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med 45:89–95. https://doi.org/10.1111/jop.12335 PubMed DOI
Ghazi N, Aali N, Shahrokhi V-R et al (2020) Relative expression of SOX2 and OCT4 in Oral squamous cell carcinoma and Oral epithelial dysplasia. Rep Biochem Mol Biol 9:171–179. https://doi.org/10.29252/rbmb.9.2.171 PubMed DOI PMC
Gómez J, Val-Bernal J, Arranz MP et al (2014) Alterations in the expression of p53, KLF4, and p21 in neuroendocrine lung tumors. Arch Pathol Lab Med 138:936–942. https://doi.org/10.5858/arpa.2013-0119-OA DOI
Gong L, Yan Q, Zhang Y et al (2019) Cancer cell reprogramming: a promising therapy converting malignancy to benignity. Cancer Commun (Lond) 39:48. https://doi.org/10.1186/s40880-019-0393-5 DOI
Guo Y, Liu S, Wang P et al (2011) Expression profile of embryonic stem cell-associated genes Oct4, Sox2 and Nanog in human gliomas. Histopathology 59:763–775. https://doi.org/10.1111/j.1365-2559.2011.03993.x PubMed DOI
Guo Y, Yin J, Tang M, Yu X (2018) Downregulation of SOX3 leads to the inhibition of the proliferation, migration and invasion of osteosarcoma cells. Int J Oncol 52:1277–1284. https://doi.org/10.3892/ijo.2018.4278 PubMed DOI
Gutekunst M, Mueller T, Weilbacher A et al (2013) Cisplatin hypersensitivity of testicular germ cell tumors is determined by high constitutive Noxa levels mediated by Oct-4. Cancer Res 73:1460–1469. https://doi.org/10.1158/0008-5472.CAN-12-2876 PubMed DOI
Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–430. https://doi.org/10.1016/j.stem.2014.09.015 PubMed DOI
Hadjimichael C, Chanoumidou K, Papadopoulou N et al (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7:1150–1184. https://doi.org/10.4252/wjsc.v7.i9.1150 PubMed DOI PMC
Hall J, Guo G, Wray J et al (2009) Oct4 and LIF/Stat3 additively induce Krüppel factors to sustain embryonic stem cell self-renewal. Cell Stem Cell 5:597–609. https://doi.org/10.1016/j.stem.2009.11.003 PubMed DOI
Harmston N, Lim JYS, Arqués O et al (2021) Widespread repression of gene expression in Cancer by a Wnt/β-catenin/MAPK pathway. Cancer Res 81:464–475. https://doi.org/10.1158/0008-5472.CAN-20-2129 PubMed DOI
Hartman AA, Scalf SM, Zhang J et al (2020) YAP non-cell-autonomously promotes pluripotency induction in mouse cells. Stem Cell Rep 14:730–743. https://doi.org/10.1016/j.stemcr.2020.03.006 DOI
Hatefi N, Nouraee N, Parvin M et al (2012) Evaluating the expression of Oct4 as a prognostic tumor marker in bladder Cancer. Iran J Basic Med Sci 15:1154–1161 PubMed PMC
Hatina J, Hájková L, Peychl J et al (2003) Establishment and characterization of clonal cell lines derived from a fibrosarcoma of the H2-K/V-JUN transgenic mouse. A model of H2-K/V-JUN mediated tumorigenesis. Tumour Biol 24:176–184. https://doi.org/10.1159/000074427
Hatina J, Inès Fernandes M, Hoffmann MJ, Zeimet A (2013) Cancer stem cells – basic biological properties and experimental approaches. In: eLS. Wiley, Chichester. https://doi.org/10.1002/9780470015902.a0021164.pub2 DOI
Hatina J, Kripnerova M, Houfkova K et al (2019) Sarcoma stem cell heterogeneity. Adv Exp Med Biol 1123:95–118. https://doi.org/10.1007/978-3-030-11096-3_7
He J, Zhou M, Chen X et al (2016) Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 35:98. https://doi.org/10.1186/s13046-016-0378-z PubMed DOI PMC
Heo J, Noh B-J, Lee S et al (2020) Phosphorylation of TFCP2L1 by CDK1 is required for stem cell pluripotency and bladder carcinogenesis. EMBO Mol Med 12:e10880. https://doi.org/10.15252/emmm.201910880 PubMed DOI
Hepburn AC, Veeratterapillay R, Williamson SC et al (2012) Side population in human non-muscle invasive bladder cancer enriches for cancer stem cells that are maintained by MAPK signalling. PLoS One 7:e50690. https://doi.org/10.1371/journal.pone.0050690 PubMed DOI PMC
Hiew MSY, Cheng HP, Huang C-J et al (2018) Incomplete cellular reprogramming of colorectal cancer cells elicits an epithelial/mesenchymal hybrid phenotype. J Biomed Sci 25:57. https://doi.org/10.1186/s12929-018-0461-1 PubMed DOI PMC
Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477. https://doi.org/10.1016/j.cell.2005.02.018 PubMed DOI
Hotfilder M, Mallela N, Seggewiß J et al (2018) Defining a characteristic gene expression set responsible for Cancer stem cell-like features in a sub-population of Ewing sarcoma cells CADO-ES1. Int J Mol Sci 19:3908. https://doi.org/10.3390/ijms19123908 DOI PMC
Hu W, Hofstetter WL, Li H et al (2009) Putative tumor-suppressive function of Krüppel-like factor 4 in primary lung carcinoma. Clin Cancer Res 15:5688–5695. https://doi.org/10.1158/1078-0432.CCR-09-0310 PubMed DOI PMC
Ichida JK, Blanchard J, Lam K et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503. https://doi.org/10.1016/j.stem.2009.09.012 PubMed DOI PMC
Iglesias JM, Leis O, Pérez Ruiz E et al (2014) The activation of the Sox2 RR2 pluripotency transcriptional reporter in human breast cancer cell lines is dynamic and labels cells with higher tumorigenic potential. Front Oncol 4:308. https://doi.org/10.3389/fonc.2014.00308 PubMed DOI PMC
Iglesias JM, Gumuzio J, Martin AG (2017) Linking pluripotency reprogramming and cancer. Stem Cells Transl Med 6:335–339. https://doi.org/10.5966/sctm.2015-0225 PubMed DOI
Jeter CR, Liu B, Liu X et al (2011) NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene 30:3833–3845. https://doi.org/10.1038/onc.2011.114 PubMed DOI PMC
Jiang J, Chan Y-S, Loh Y-H et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360. https://doi.org/10.1038/ncb1698 PubMed DOI
Johnson BE, Russell E, Simmons AM et al (1996) MYC family DNA amplification in 126 tumor cell lines from patients with small cell lung cancer. J Cell Biochem 63:210–217. https://doi.org/10.1002/jcb.240630516 DOI
Jostes SV, Fellermeyer M, Arévalo L et al (2020) Unique and redundant roles of SOX2 and SOX17 in regulating the germ cell tumor fate. Int J Cancer 146:1592–1605. https://doi.org/10.1002/ijc.32714 PubMed DOI
Jung YK, Jang K, Paik SS et al (2016) Positive immunostaining of Sal-like protein 4 is associated with poor patient survival outcome in the large and undifferentiated Korean hepatocellular carcinoma. Ann Surg Treat Res 91:23–28. https://doi.org/10.4174/astr.2016.91.1.23 PubMed DOI PMC
Justilien V, Walsh MP, Ali SA et al (2014) The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 25:139–151. https://doi.org/10.1016/j.ccr.2014.01.008 PubMed DOI PMC
Kabiri Z, Greicius G, Zaribafzadeh H et al (2018) Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells. J Clin Invest 128:3806–3812. https://doi.org/10.1172/JCI99325 PubMed DOI PMC
Kessler SM, Haybaeck J, Kiemer AK (2016) Insulin-like growth factor 2 - the oncogene and its accomplices. Curr Pharm Des 22:5948–5961. https://doi.org/10.2174/1381612822666160713100235 PubMed DOI
Keysar SB, Le PN, Miller B et al (2017) Regulation of head and neck squamous cancer stem cells by PI3K and SOX2. J Natl Cancer Inst 109. https://doi.org/10.1093/jnci/djw189
Kim J, Hoffman JP, Alpaugh RK et al (2013) An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep 3:2088–2099. https://doi.org/10.1016/j.celrep.2013.05.036 PubMed DOI PMC
Kim C-K, He P, Bialkowska AB, Yang VW (2017a) SP and KLF transcription factors in digestive physiology and diseases. Gastroenterology 152:1845–1875. https://doi.org/10.1053/j.gastro.2017.03.035 PubMed DOI
Kim J, Bamlet WR, Oberg AL et al (2017b) Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aah5583
Knappe N, Novak D, Weina K et al (2016) Directed dedifferentiation using partial reprogramming induces invasive phenotype in melanoma cells. Stem Cells 34:832–846. https://doi.org/10.1002/stem.2284 PubMed DOI
Koo BS, Lee SH, Kim JM et al (2015) Oct4 is a critical regulator of stemness in head and neck squamous carcinoma cells. Oncogene 34:2317–2324. https://doi.org/10.1038/onc.2014.174 PubMed DOI
Kopp JL, Ormsbee BD, Desler M, Rizzino A (2008) Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells 26:903–911. https://doi.org/10.1634/stemcells.2007-0951 PubMed DOI
Kuo K-K, Lee K-T, Chen K-K et al (2016) Positive feedback loop of OCT4 and c-JUN expedites cancer stemness in liver cancer. Stem Cells 34:2613–2624. https://doi.org/10.1002/stem.2447 PubMed DOI
Lai J, Kong CM, Mahalingam D et al (2013) Elite model for the generation of induced pluripotent cancer cells (iPCs). PLoS One 8:e56702. https://doi.org/10.1371/journal.pone.0056702 PubMed DOI PMC
Lee J, Kim JY, Kang IY et al (2007) The EWS-Oct-4 fusion gene encodes a transforming gene. Biochem J 406:519–526. https://doi.org/10.1042/BJ20070243 PubMed DOI PMC
Lee M, Nam EJ, Kim SW et al (2012) Prognostic impact of the cancer stem cell-related marker NANOG in ovarian serous carcinoma. Int J Gynecol Cancer 22:1489–1496. https://doi.org/10.1097/IGJ.0b013e3182738307 PubMed DOI
Lee AS, Tang C, Rao MS et al (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19:998–1004. https://doi.org/10.1038/nm.3267 PubMed DOI PMC
Lee SH, Oh S-Y, Do SI et al (2014) SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br J Cancer 111:2122–2130. https://doi.org/10.1038/bjc.2014.528 PubMed DOI PMC
Li X, Wang J, Xu Z et al (2012) Expression of Sox2 and Oct4 and their clinical significance in human non-small-cell lung cancer. Int J Mol Sci 13:7663–7675. https://doi.org/10.3390/ijms13067663 PubMed DOI PMC
Li L, Yu H, Wang X et al (2013a) Expression of seven stem-cell-associated markers in human airway biopsy specimens obtained via fiberoptic bronchoscopy. J Exp Clin Cancer Res 32:28. https://doi.org/10.1186/1756-9966-32-28 PubMed DOI PMC
Li X-L, Jia L-L, Shi M-M et al (2013b) Downregulation of KPNA2 in non-small-cell lung cancer is associated with Oct4 expression. J Transl Med 11:232. https://doi.org/10.1186/1479-5876-11-232 PubMed DOI PMC
Li A, Jiao Y, Yong KJ et al (2015) SALL4 is a new target in endometrial cancer. Oncogene 34:63–72. https://doi.org/10.1038/onc.2013.529 PubMed DOI
Li J, Shen J, Wang K et al (2016) The roles of sox family genes in sarcoma. Curr Drug Targets 17:1761–1772. https://doi.org/10.2174/1389450117666160502145311 PubMed DOI
Lin T, Ding Y-Q, Li J-M (2012) Overexpression of Nanog protein is associated with poor prognosis in gastric adenocarcinoma. Med Oncol 29:878–885. https://doi.org/10.1007/s12032-011-9860-9 PubMed DOI
Liu X, Sun H, Qi J et al (2013) Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramming. Nat Cell Biol 15:829–838. https://doi.org/10.1038/ncb2765 PubMed DOI
Liu T-C, Vachharajani N, Chapman WC, Brunt EM (2014) SALL4 immunoreactivity predicts prognosis in Western hepatocellular carcinoma patients but is a rare event - a study of 236 cases. Am J Surg Pathol 38:966–972. https://doi.org/10.1097/PAS.0000000000000218 PubMed DOI PMC
Liu J, Han Q, Peng T et al (2015) The oncogene c-Jun impedes somatic cell reprogramming. Nat Cell Biol 17:856–867. https://doi.org/10.1038/ncb3193 PubMed DOI
Liu Y, Guo B, Aguilera-Jimenez E et al (2020) Chromatin looping shapes KLF5-dependent transcriptional programs in human epithelial cancers. Cancer Res 80:5464–5477. https://doi.org/10.1158/0008-5472.CAN-20-1287 PubMed DOI PMC
Lombardo Y, Scopelliti A, Cammareri P et al (2011) Bone morphogenetic protein 4 induces differentiation of colorectal cancer stem cells and increases their response to chemotherapy in mice. Gastroenterology 140:297–309. https://doi.org/10.1053/j.gastro.2010.10.005 PubMed DOI
Lu X, Mazur SJ, Lin T et al (2014) The pluripotency factor Nanog promotes breast cancer tumorigenesis and metastasis. Oncogene 33:2655–2664. https://doi.org/10.1038/onc.2013.209 PubMed DOI
Ma Y, Cui W, Yang J et al (2006) SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood 108:2726–2735. https://doi.org/10.1182/blood-2006-02-001594 PubMed DOI PMC
Mahalingam D, Kong CM, Lai J et al (2012) Reversal of aberrant cancer methylome and transcriptome upon direct reprogramming of lung cancer cells. Sci Rep 2:592. https://doi.org/10.1038/srep00592 PubMed DOI PMC
Marjanovic Vicentic J, Drakulic D, Garcia I et al (2019) SOX3 can promote the malignant behavior of glioblastoma cells. Cell Oncol (Dordr) 42:41–54. https://doi.org/10.1007/s13402-018-0405-5 DOI
Martello G, Sugimoto T, Diamanti E et al (2012) Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11:491–504. https://doi.org/10.1016/j.stem.2012.06.008 PubMed DOI PMC
Martello G, Bertone P, Smith A (2013) Identification of the missing pluripotency mediator downstream of leukaemia inhibitory factor. EMBO J 32:2561–2574. https://doi.org/10.1038/emboj.2013.177 PubMed DOI PMC
Matsuoka J, Yashiro M, Sakurai K et al (2012) Role of the stemness factors Sox2, Oct3/4, and Nanog in gastric carcinoma. J Surg Res 174:130–135. https://doi.org/10.1016/j.jss.2010.11.903 PubMed DOI
Menendez ST, Rey V, Martinez-Cruzado L et al (2020) SOX2 expression and transcriptional activity identifies a subpopulation of cancer stem cells in sarcoma with prognostic implications. Cancers (Basel) 12. https://doi.org/10.3390/cancers12040964
Meng H-M, Zheng P, Wang X-Y et al (2010) Over-expression of Nanog predicts tumor progression and poor prognosis in colorectal cancer. Cancer Biol Ther 9:295–302. https://doi.org/10.4161/cbt.9.4.10666 PubMed DOI
Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51. https://doi.org/10.1093/jb/mvp148 PubMed DOI
Miyoshi N, Ishii H, Nagai K et al (2010) Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A 107:40–45. https://doi.org/10.1073/pnas.0912407107 PubMed DOI
Miyoshi N, Haraguchi N, Mizushima T et al (2021) Targeting cancer stem cells in refractory cancer. Regen Ther 17:13–19. https://doi.org/10.1016/j.reth.2021.01.002 PubMed DOI PMC
Möller E, Stenman G, Mandahl N et al (2008) POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J Pathol 215:78–86. https://doi.org/10.1002/path.2327 PubMed DOI
Moreira AL, Gonen M, Rekhtman N, Downey RJ (2010) Progenitor stem cell marker expression by pulmonary carcinomas. Mod Pathol 23:889–895. https://doi.org/10.1038/modpathol.2010.68 PubMed DOI
Nagamatsu G, Saito S, Kosaka T et al (2012) Optimal ratio of transcription factors for somatic cell reprogramming. J Biol Chem 287:36273–36282. https://doi.org/10.1074/jbc.M112.380683 PubMed DOI PMC
Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437:281–285. https://doi.org/10.1038/nature03914 PubMed DOI
Nayak S, Mahenthiran A, Yang Y et al (2020) Bone morphogenetic protein 4 targeting glioma stem-like cells for malignant glioma treatment: latest advances and implications for clinical application. Cancers (Basel) 12. https://doi.org/10.3390/cancers12020516
Nettersheim D, Jostes S, Schneider S, Schorle H (2016) Elucidating human male germ cell development by studying germ cell cancer. Reproduction 152:R101–R113. https://doi.org/10.1530/REP-16-0114 PubMed DOI
Nicolè L, Sanavia T, Veronese N et al (2017) Oncofetal gene SALL4 and prognosis in cancer: a systematic review with meta-analysis. Oncotarget 8:22968–22979. https://doi.org/10.18632/oncotarget.14952 PubMed DOI PMC
Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24:372–376. https://doi.org/10.1038/74199 PubMed DOI
Ohm JE, Mali P, Van Neste L et al (2010) Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells. Cancer Res 70:7662–7673. https://doi.org/10.1158/0008-5472.CAN-10-1361 PubMed DOI PMC
Ohnishi K, Semi K, Yamamoto T et al (2014) Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation. Cell 156:663–677. https://doi.org/10.1016/j.cell.2014.01.005 PubMed DOI
Oikawa T, Kamiya A, Zeniya M et al (2013) SALL4, a stem cell biomarker in liver cancers. Hepatology 57:1469–1483. https://doi.org/10.1002/hep.26159 PubMed DOI
Okuda H, Xing F, Pandey PR et al (2013) miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res 73:1434–1444. https://doi.org/10.1158/0008-5472.CAN-12-2037 PubMed DOI PMC
Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y (2008) SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 98:824–831. https://doi.org/10.1038/sj.bjc.6604193 PubMed DOI PMC
Pádua D, Barros R, Amaral AL et al (2020) A SOX2 reporter system identifies gastric cancer stem-like cells sensitive to monensin. Cancers (Basel) 12. https://doi.org/10.3390/cancers12020495
Pain D, Chirn G-W, Strassel C, Kemp DM (2005) Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J Biol Chem 280:6265–6268. https://doi.org/10.1074/jbc.C400587200 PubMed DOI
Pandya AY, Talley LI, Frost AR et al (2004) Nuclear localization of KLF4 is associated with an aggressive phenotype in early-stage breast cancer. Clin Cancer Res 10:2709–2719. https://doi.org/10.1158/1078-0432.ccr-03-0484 PubMed DOI
Papapetrou EP (2016) Patient-derived induced pluripotent stem cells in cancer research and precision oncology. Nat Med 22:1392–1401. https://doi.org/10.1038/nm.4238 PubMed DOI PMC
Papatsenko D, Waghray A, Lemischka IR (2018) Feedback control of pluripotency in embryonic stem cells: signaling, transcription and epigenetics. Stem Cell Res 29:180–188. https://doi.org/10.1016/j.scr.2018.02.012 PubMed DOI
Patel N, Ghaleb AM, Nandan MO, Yang VW (2010) Expression of the tumor suppressor Krüppel-like factor 4 as a prognostic predictor for colon cancer. Cancer Epidemiol Biomark Prev 19:2631–2638. https://doi.org/10.1158/1055-9965.EPI-10-0677 DOI
Pham DL, Scheble V, Bareiss P et al (2013) SOX2 expression and prognostic significance in ovarian carcinoma. Int J Gynecol Pathol 32:358–367. https://doi.org/10.1097/PGP.0b013e31826a642b PubMed DOI
Qi X, Li T-G, Hao J et al (2004) BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 101:6027–6032. https://doi.org/10.1073/pnas.0401367101 PubMed DOI PMC
Qin H, Blaschke K, Wei G et al (2012) Transcriptional analysis of pluripotency reveals the hippo pathway as a barrier to reprogramming. Hum Mol Genet 21:2054–2067. https://doi.org/10.1093/hmg/dds023 PubMed DOI PMC
Rao S, Zhen S, Roumiantsev S et al (2010) Differential roles of Sall4 isoforms in embryonic stem cell pluripotency. Mol Cell Biol 30:5364–5380. https://doi.org/10.1128/MCB.00419-10 PubMed DOI PMC
Ray SK (2016) The transcription regulator Krüppel-like factor 4 and its dual roles of oncogene in glioblastoma and tumor suppressor in neuroblastoma. For Immunopathol Dis Therap 7:127–139. https://doi.org/10.1615/ForumImmunDisTher.2016017227 PubMed DOI PMC
Riordan JD, Keng VW, Tschida BR et al (2013) Identification of rtl1, a retrotransposon-derived imprinted gene, as a novel driver of hepatocarcinogenesis. PLoS Genet 9:e1003441. https://doi.org/10.1371/journal.pgen.1003441 PubMed DOI PMC
Riou G, Barrois M, Lê MG et al (1987) C-myc proto-oncogene expression and prognosis in early carcinoma of the uterine cervix. Lancet 1:761–763. https://doi.org/10.1016/s0140-6736(87)92795-4 PubMed DOI
Robinson M, Gilbert SF, Waters JA et al (2021) Characterization of SOX2, OCT4 and NANOG in ovarian cancer tumor-initiating cells. Cancers (Basel) 13. https://doi.org/10.3390/cancers13020262
Rodini CO, Suzuki DE, Saba-Silva N et al (2012) Expression analysis of stem cell-related genes reveal OCT4 as a predictor of poor clinical outcome in medulloblastoma. J Neuro-Oncol 106:71–79. https://doi.org/10.1007/s11060-011-0647-9 DOI
Saiki Y, Ishimaru S, Mimori K et al (2009) Comprehensive analysis of the clinical significance of inducing pluripotent stemness-related gene expression in colorectal cancer cells. Ann Surg Oncol 16:2638–2644. https://doi.org/10.1245/s10434-009-0567-5 PubMed DOI
Sancho R, Nateri AS, de Vinuesa AG et al (2009) JNK signalling modulates intestinal homeostasis and tumourigenesis in mice. EMBO J 28:1843–1854. https://doi.org/10.1038/emboj.2009.153 PubMed DOI PMC
Sarig R, Rivlin N, Brosh R et al (2010) Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J Exp Med 207:2127–2140. https://doi.org/10.1084/jem.20100797 PubMed DOI PMC
Sarkar A, Huebner AJ, Sulahian R et al (2016) Sox2 suppresses gastric tumorigenesis in mice. Cell Rep 16:1929–1941. https://doi.org/10.1016/j.celrep.2016.07.034 PubMed DOI
Shakiba N, Fahmy A, Jayakumaran G et al (2019) Cell competition during reprogramming gives rise to dominant clones. Science 364. https://doi.org/10.1126/science.aan0925
Shen L, Qin K, Wang D et al (2014) Overexpression of Oct4 suppresses the metastatic potential of breast cancer cells via Rnd1 downregulation. Biochim Biophys Acta (BBA) – Mol Basis Dis 1842:2087–2095. https://doi.org/10.1016/j.bbadis.2014.07.015 DOI
Sineva GS, Pospelov VA (2014) β-Catenin in pluripotency: adhering to self-renewal or Wnting to differentiate? Int Rev Cell Mol Biol 312:53–78. https://doi.org/10.1016/B978-0-12-800178-3.00002-6 PubMed DOI
Siraj AK, Pratheeshkumar P, Divya SP et al (2020) Krupple-like factor 5 is a potential therapeutic target and prognostic marker in epithelial ovarian cancer. Front Pharmacol 11:598880. https://doi.org/10.3389/fphar.2020.598880 PubMed DOI PMC
Siu MKY, Wong ESY, Kong DSH et al (2013) Stem cell transcription factor NANOG controls cell migration and invasion via dysregulation of E-cadherin and FoxJ1 and contributes to adverse clinical outcome in ovarian cancers. Oncogene 32:3500–3509. https://doi.org/10.1038/onc.2012.363 PubMed DOI
Sławek S, Szmyt K, Fularz M et al (2016) Pluripotency transcription factors in lung cancer—a review. Tumor Biol 37:4241–4249. https://doi.org/10.1007/s13277-015-4407-x DOI
Soheili S, Asadi MH, Farsinejad A (2017) Distinctive expression pattern of OCT4 variants in different types of breast cancer. Cancer Biomark 18:69–76. https://doi.org/10.3233/CBM-160675 PubMed DOI
Tai S-K, Yang M-H, Chang S-Y et al (2011) Persistent Krüppel-like factor 4 expression predicts progression and poor prognosis of head and neck squamous cell carcinoma. Cancer Sci 102:895–902. https://doi.org/10.1111/j.1349-7006.2011.01859.x PubMed DOI
Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17:183–193. https://doi.org/10.1038/nrm.2016.8 PubMed DOI
Tamm C, Böwer N, Annerén C (2011) Regulation of mouse embryonic stem cell self-renewal by a yes-YAP-TEAD2 signaling pathway downstream of LIF. J Cell Sci 124:1136–1144. https://doi.org/10.1242/jcs.075796 PubMed DOI
Tang B, Raviv A, Esposito D et al (2015) A flexible reporter system for direct observation and isolation of cancer stem cells. Stem Cell Rep 4:155–169. https://doi.org/10.1016/j.stemcr.2014.11.002 DOI
Taylor-Weiner A, Zack T, O’Donnell E et al (2016) Genomic evolution and chemoresistance in germ-cell tumours. Nature 540:114–118. https://doi.org/10.1038/nature20596 PubMed DOI PMC
Tian T, Zhang Y, Wang S et al (2012) Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer. J Biomed Res 26:336–345. https://doi.org/10.7555/JBR.26.20120045 PubMed DOI PMC
Toschi L, Finocchiaro G, Nguyen TT et al (2014) Increased SOX2 gene copy number is associated with FGFR1 and PIK3CA gene gain in non-small cell lung cancer and predicts improved survival in early stage disease. PLoS One 9:e95303. https://doi.org/10.1371/journal.pone.0095303 PubMed DOI PMC
Tsuchida R, Das B, Yeger H et al (2008) Cisplatin treatment increases survival and expansion of a highly tumorigenic side-population fraction by upregulating VEGF/Flt1 autocrine signaling. Oncogene 27:3923–3934. https://doi.org/10.1038/onc.2008.38 PubMed DOI
Turhan A, Foudi A, Hwang JW et al (2019) Modeling malignancies using induced pluripotent stem cells: from chronic myeloid leukemia to hereditary cancers. Exp Hematol 71:61–67. https://doi.org/10.1016/j.exphem.2019.01.003 PubMed DOI
Uhlén M, Fagerberg L, Hallström BM, et al (2015) Proteomics. Tissue-based map of the human proteome. Science 347:1260419. https://www.proteinatlas.org . Accessed 31 May 2021. https://doi.org/10.1126/science.1260419
Utikal J, Polo JM, Stadtfeld M et al (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148. https://doi.org/10.1038/nature08285 PubMed DOI PMC
Vicente López MA, Vázquez García MN, Entrena A et al (2011) Low doses of bone morphogenetic protein 4 increase the survival of human adipose-derived stem cells maintaining their stemness and multipotency. Stem Cells Dev 20:1011–1019. https://doi.org/10.1089/scd.2010.0355 PubMed DOI
Vijayakumar G, Narwal A, Kamboj M, Sen R (2020) Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head and Neck Pathol 14:749–757. https://doi.org/10.1007/s12105-019-01114-1 DOI
Voigt P, Tee W-W, Reinberg D (2013) A double take on bivalent promoters. Genes Dev 27:1318–1338. https://doi.org/10.1101/gad.219626.113 PubMed DOI PMC
Wang N, Liu Z-H, Ding F et al (2002a) Down-regulation of gut-enriched Krüppel-like factor expression in esophageal cancer. World J Gastroenterol 8:966–970. https://doi.org/10.3748/wjg.v8.i6.966 PubMed DOI PMC
Wang Y, Wu M-C, Sham JST et al (2002b) Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 95:2346–2352. https://doi.org/10.1002/cncr.10963 PubMed DOI
Wang J, Wang H, Li Z et al (2008) C-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3. https://doi.org/10.1371/journal.pone.0003769
Wang Q, He W, Lu C et al (2009) Oct3/4 and Sox2 are significantly associated with an unfavorable clinical outcome in human esophageal squamous cell carcinoma. Anticancer Res 29:1233–1241 PubMed
Wang F, Guo Y, Chen Q et al (2013) Stem cell factor SALL4, a potential prognostic marker for myelodysplastic syndromes. J Hematol Oncol 6:73. https://doi.org/10.1186/1756-8722-6-73 PubMed DOI PMC
Wang S, Tie J, Wang R et al (2015) SOX2, a predictor of survival in gastric cancer, inhibits cell proliferation and metastasis by regulating PTEN. Cancer Lett 358:210–219. https://doi.org/10.1016/j.canlet.2014.12.045 PubMed DOI
Wang Q, Xu J, Chen Y, Liu L (2019) KLF4 overexpression decreases the viability, invasion and migration of papillary thyroid cancer cells. Exp Ther Med 18:3493–3501. https://doi.org/10.3892/etm.2019.7969 PubMed DOI PMC
Watanabe K, Dai X (2011) A WNTer revisit: new faces of β-catenin and TCFs in pluripotency. Sci Signal 4:pe41. https://doi.org/10.1126/scisignal.2002436 PubMed DOI
Wilbertz T, Wagner P, Petersen K et al (2011) SOX2 gene amplification and protein overexpression are associated with better outcome in squamous cell lung cancer. Mod Pathol 24:944–953. https://doi.org/10.1038/modpathol.2011.49 PubMed DOI
Wu F, Zhang J, Wang P et al (2012) Identification of two novel phenotypically distinct breast cancer cell subsets based on Sox2 transcription activity. Cell Signal 24:1989–1998. https://doi.org/10.1016/j.cellsig.2012.07.008 PubMed DOI
Wuputra K, Ku C-C, Wu D-C et al (2020) Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. J Exp Clin Cancer Res 39:100. https://doi.org/10.1186/s13046-020-01584-0 PubMed DOI PMC
Xu K, Zhu Z, Zeng F, Dong J (2007) Expression and significance of Oct4 in bladder cancer. J Huazhong Univ Sci Technol [Med Sci] 27:675–677. https://doi.org/10.1007/s11596-007-0614-z DOI
Yamaguchi S, Yamazaki Y, Ishikawa Y et al (2005) EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 43:217–222. https://doi.org/10.1002/gcc.20171 PubMed DOI
Yang J (2018) SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomarker Res 6:1. https://doi.org/10.1186/s40364-017-0115-6 DOI
Yang M, Xie X, Ding Y (2016) SALL4 is a marker of poor prognosis in serous ovarian carcinoma promoting invasion and metastasis. Oncol Rep 35:1796–1806. https://doi.org/10.3892/or.2016.4545 PubMed DOI
Yilmazer A, de Lázaro I, Taheri H (2015) Reprogramming cancer cells: a novel approach for cancer therapy or a tool for disease-modeling? Cancer Lett 369:1–8. https://doi.org/10.1016/j.canlet.2015.06.027 PubMed DOI
Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292. https://doi.org/10.1016/s0092-8674(03)00847-x PubMed DOI
Ying Q-L, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523. https://doi.org/10.1038/nature06968 PubMed DOI PMC
Yokoyama Y, Watanabe T, Tamura Y et al (2017) Autocrine BMP-4 signaling is a therapeutic target in colorectal cancer. Cancer Res 77:4026–4038. https://doi.org/10.1158/0008-5472.CAN-17-0112 PubMed DOI
Yong KJ, Gao C, Lim JSJ et al (2013) Oncofetal gene SALL4 in aggressive hepatocellular carcinoma. N Engl J Med 368:2266–2276. https://doi.org/10.1056/NEJMoa1300297 PubMed DOI PMC
Yu F, Li J, Chen H et al (2011) Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30:2161–2172. https://doi.org/10.1038/onc.2010.591 PubMed DOI PMC
Zhang X, Cruz FD, Terry M et al (2013) Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32:2249–2260, 2260.e1–21. https://doi.org/10.1038/onc.2012.237 DOI
Zhang L, Yan Y, Jiang Y et al (2015) The expression of SALL4 in patients with gliomas: high level of SALL4 expression is correlated with poor outcome. J Neuro-Oncol 121:261–268. https://doi.org/10.1007/s11060-014-1646-4 DOI
Zhang M, Gan W, Jing C et al (2019) High expression of Oct4 and Nanog predict poor prognosis in intrahepatic cholangiocarcinoma patients after curative resection. J Cancer 10:1313–1324. https://doi.org/10.7150/jca.28349 PubMed DOI PMC
Zheng H, Ying H, Yan H et al (2008) Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harb Symp Quant Biol 73:427–437. https://doi.org/10.1101/sqb.2008.73.047 PubMed DOI
Zhou Y, Hofstetter WL, He Y et al (2010) KLF4 inhibition of lung cancer cell invasion by suppression of SPARC expression. Cancer Biol Ther 9:507–513. https://doi.org/10.4161/cbt.9.7.11106 PubMed DOI
Zhou S, Venkatramani R, Gomulia E et al (2016) The diagnostic and prognostic value of SALL4 in hepatoblastoma. Histopathology 69:822–830. https://doi.org/10.1111/his.13005 PubMed DOI
Zhu D, Kong CSL, Gingold JA et al (2018) Induced pluripotent stem cells and induced pluripotent cancer cells in cancer disease modeling. Adv Exp Med Biol 1119:169–183. https://doi.org/10.1007/5584_2018_257