CD36 maintains the gastric mucosa and associates with gastric disease
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 DK060022
NIDDK NIH HHS - United States
R01 HG011138
NHGRI NIH HHS - United States
R01 DK101332
NIDDK NIH HHS - United States
S10 RR027552
NCRR NIH HHS - United States
P30 DK056341
NIDDK NIH HHS - United States
P30 DK056338
NIDDK NIH HHS - United States
R01 CA246208
NCI NIH HHS - United States
P30 DK020579
NIDDK NIH HHS - United States
R56 AG068026
NIA NIH HHS - United States
R35 HG010718
NHGRI NIH HHS - United States
R01 DK048370
NIDDK NIH HHS - United States
R01 GM140287
NIGMS NIH HHS - United States
MC_PC_17228
Medical Research Council - United Kingdom
R01 CA239645
NCI NIH HHS - United States
R01 DK094989
NIDDK NIH HHS - United States
P30 DK052574
NIDDK NIH HHS - United States
R01 DK111175
NIDDK NIH HHS - United States
R01 DK105129
NIDDK NIH HHS - United States
MC_QA137853
Medical Research Council - United Kingdom
PubMed
34728772
PubMed Central
PMC8563937
DOI
10.1038/s42003-021-02765-z
PII: 10.1038/s42003-021-02765-z
Knihovny.cz E-zdroje
- MeSH
- antigeny CD36 genetika metabolismus MeSH
- endoteliální buňky metabolismus MeSH
- gastritida genetika MeSH
- gastrointestinální krvácení genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- žaludeční sliznice metabolismus MeSH
- žaludeční vředy genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- antigeny CD36 MeSH
- Cd36 protein, mouse MeSH Prohlížeč
The gastric epithelium is often exposed to injurious elements and failure of appropriate healing predisposes to ulcers, hemorrhage, and ultimately cancer. We examined the gastric function of CD36, a protein linked to disease and homeostasis. We used the tamoxifen model of gastric injury in mice null for Cd36 (Cd36-/-), with Cd36 deletion in parietal cells (PC-Cd36-/-) or in endothelial cells (EC-Cd36-/-). CD36 expresses on corpus ECs, on PC basolateral membranes, and in gastrin and ghrelin cells. Stomachs of Cd36-/- mice have altered gland organization and secretion, more fibronectin, and inflammation. Tissue respiration and mitochondrial efficiency are reduced. Phospholipids increased and triglycerides decreased. Mucosal repair after injury is impaired in Cd36-/- and EC-Cd36-/-, not in PC-Cd36-/- mice, and is due to defect of progenitor differentiation to PCs, not of progenitor proliferation or mature PC dysfunction. Relevance to humans is explored in the Vanderbilt BioVu using PrediXcan that links genetically-determined gene expression to clinical phenotypes, which associates low CD36 mRNA with gastritis, gastric ulcer, and gastro-intestinal hemorrhage. A CD36 variant predicted to disrupt an enhancer site associates (p < 10-17) to death from gastro-intestinal hemorrhage in the UK Biobank. The findings support role of CD36 in gastric tissue repair, and its deletion associated with chronic diseases that can predispose to malignancy.
Department of Cell Biology and Physiology Washington University School of Medicine St Louis MO USA
Department of Pathology and Immunology Washington University School of Medicine St Louis MO USA
Division of Genetic Medicine Vanderbilt University Medical Center Nashville TN USA
Institute of Physiology Czech Academy of Sciences Videnska 1083 14220 Prague 4 Czech Republic
Institute of Translational Medicine University of Liverpool Liverpool UK
Zobrazit více v PubMed
Schubert ML. Gastric acid secretion. Curr. Opin. Gastroenterol. 2016;32:452–460I. doi: 10.1097/MOG.0000000000000308. PubMed DOI
Churm R, Davies JS, Stephens JW, Prior SL. Ghrelin function in human obesity and type 2 diabetes: a concise review. Obes. Rev. 2017;18:140–148I. doi: 10.1111/obr.12474. PubMed DOI
Lv, Y., Liang, T., Wang, G. & Li, Z. Ghrelin, a gastrointestinal hormone, regulates energy balance and lipid metabolism. Biosci. Rep. 38, BSR20181061 (2018). PubMed PMC
Virdis A, et al. Human Ghrelin: A Gastric Hormone with Cardiovascular Properties. Curr. Pharm. Des. 2016;22:52–58I. doi: 10.2174/1381612822666151119144458. PubMed DOI
Cammisotto P, Bendayan M. A review on gastric leptin: the exocrine secretion of a gastric hormone. Anat. Cell Biol. 2012;45:1–16I. doi: 10.5115/acb.2012.45.1.1. PubMed DOI PMC
Sobhani I, et al. Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology. 2002;122:259–263I. doi: 10.1053/gast.2002.31385. PubMed DOI
Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121:79–90I. doi: 10.1053/gast.2001.25490. PubMed DOI
Meek TH, Morton GJ. The role of leptin in diabetes: metabolic effects. Diabetologia. 2016;59:928–932I. doi: 10.1007/s00125-016-3898-3. PubMed DOI
Yarandi SS, Hebbar G, Sauer CG, Cole CR, Ziegler TR. Diverse roles of leptin in the gastrointestinal tract: modulation of motility, absorption, growth, and inflammation. Nutrition. 2011;27:269–275I. doi: 10.1016/j.nut.2010.07.004. PubMed DOI PMC
Schubert ML, Rehfeld JF. Gastric peptides-gastrin and somatostatin. Compr. Physiol. 2019;10:197–228I. doi: 10.1002/cphy.c180035. PubMed DOI
Green R, et al. Vitamin B(12) deficiency. Nat. Rev. Dis. Prim. 2017;3:17040I. doi: 10.1038/nrdp.2017.40. PubMed DOI
Yeomans ND, Skeljo MV. Repair and healing of established gastric mucosal injury. J. Clin. Gastroenterol. 1991;13(Suppl 1):S37–41I. doi: 10.1097/00004836-199112001-00006. PubMed DOI
Aihara E, et al. Epithelial Regeneration After Gastric Ulceration Causes Prolonged Cell-Type Alterations. Cell. Mol. Gastroenterol. Hepatol. 2016;2:625–647I. doi: 10.1016/j.jcmgh.2016.05.005. PubMed DOI PMC
Meyer AR, Goldenring JR. Injury, repair, inflammation and metaplasia in the stomach. J. Physiol. 2018;596:3861–3867I. doi: 10.1113/JP275512. PubMed DOI PMC
Wong BW, et al. The role of fatty acid beta-oxidation in lymphangiogenesis. Nature. 2017;542:49–54I. doi: 10.1038/nature21028. PubMed DOI
Xiong J, et al. A metabolic basis for endothelial-to-mesenchymal transition. Mol. Cell. 2018;69:689–698. doi: 10.1016/j.molcel.2018.01.010. PubMed DOI PMC
Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517:302–310I. doi: 10.1038/nature14190. PubMed DOI PMC
Mihaylova MM, et al. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. cell stem cell. 2018;22:769–778. doi: 10.1016/j.stem.2018.04.001. PubMed DOI PMC
Chen L, et al. HNF4 Regulates Fatty Acid Oxidation and Is Required for Renewal of Intestinal Stem Cells in Mice. Gastroenterology. 2020;158:985–999. doi: 10.1053/j.gastro.2019.11.031. PubMed DOI PMC
Chen M, Yang Y, Braunstein E, Georgeson KE, Harmon CM. Gut expression and regulation of FAT/CD36: possible role in fatty acid transport in rat enterocytes. Am. J. Physiol. Endocrinol. Metab. 2001;281:E916–923I. doi: 10.1152/ajpendo.2001.281.5.E916. PubMed DOI
Mills JC, et al. A molecular profile of the mouse gastric parietal cell with and without exposure to Helicobacter pylori. Proc. Natl Acad. Sci. USA. 2001;98:13687–13692I. doi: 10.1073/pnas.231332398. PubMed DOI PMC
Samovski D, et al. Regulation of AMPK activation by CD36 links fatty acid uptake to beta-oxidation. Diabetes. 2015;64:353–359I. doi: 10.2337/db14-0582. PubMed DOI PMC
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol. 2013;13:621–634I. doi: 10.1038/nri3515. PubMed DOI
Cifarelli V, et al. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cell. Mol. Gastroenterol. Hepatol. 2017;3:82–98I. doi: 10.1016/j.jcmgh.2016.09.001. PubMed DOI PMC
Abumrad NA, Davidson NO. Role of the gut in lipid homeostasis. Physiol. Rev. 2012;92:1061–1085I. doi: 10.1152/physrev.00019.2011. PubMed DOI PMC
Sundaresan S, et al. CD36-dependent signaling mediates fatty acid-induced gut release of secretin and cholecystokinin. Faseb j. 2013;27:1191–1202I. doi: 10.1096/fj.12-217703. PubMed DOI PMC
Tran TT, et al. Luminal lipid regulates CD36 levels and downstream signaling to stimulate chylomicron synthesis. J. Biol. Chem. 2011;286:25201–25210I. doi: 10.1074/jbc.M111.233551. PubMed DOI PMC
Lo HG, et al. A single transcription factor is sufficient to induce and maintain secretory cell architecture. Genes Dev. 2017;31:154–171I. doi: 10.1101/gad.285684.116. PubMed DOI PMC
Capoccia BJ, Huh WJ, Mills JC. How form follows functional genomics: gene expression profiling gastric epithelial cells with a particular discourse on the parietal cell. Physiol. Genomics. 2009;37:67–78I. doi: 10.1152/physiolgenomics.90408.2008. PubMed DOI PMC
Poirier H, Degrace P, Niot I, Bernard A, Besnard P. Localization and regulation of the putative membrane fatty-acid transporter (FAT) in the small intestine. Comparison with fatty acid-binding proteins (FABP) Eur. J. Biochem. 1996;238:368–373I. doi: 10.1111/j.1432-1033.1996.0368z.x. PubMed DOI
Cammisotto PG, Bendayan M. Leptin secretion by white adipose tissue and gastric mucosa. Histol. Histopathol. 2007;22:199–210I. PubMed
Bado A, et al. The stomach is a source of leptin. Nature. 1998;394:790–793I. doi: 10.1038/29547. PubMed DOI
Cinti S, et al. Secretory granules of endocrine and chief cells of human stomach mucosa contain leptin. Int J. Obes. Relat. Metab. Disord. 2000;24:789–793I. doi: 10.1038/sj.ijo.0801228. PubMed DOI
Sobhani I, et al. Leptin secretion and leptin receptor in the human stomach. Gut. 2000;47:178–183I. doi: 10.1136/gut.47.2.178. PubMed DOI PMC
Besnard P. Lipids and obesity: Also a matter of taste? Rev. Endocr. Metab. Disord. 2016;17:159–170I. doi: 10.1007/s11154-016-9355-2. PubMed DOI
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr. Physiol. 2014;4:1339–1368I. doi: 10.1002/cphy.c130055. PubMed DOI PMC
Laugerette F, et al. CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J. Clin. Investig. 2005;115:3177–3184I. doi: 10.1172/JCI25299. PubMed DOI PMC
Engevik AC, Kaji I, Goldenring JR. The Physiology of the Gastric Parietal Cell. Physiol. Rev. 2020;100:573–602I. doi: 10.1152/physrev.00016.2019. PubMed DOI PMC
Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP. Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 2005;289:G521–529I. doi: 10.1152/ajpgi.00105.2004. PubMed DOI
Takeuchi K, Endoh T, Hayashi S, Aihara T. Activation of Muscarinic Acetylcholine Receptor Subtype 4 Is Essential for Cholinergic Stimulation of Gastric Acid Secretion: Relation to D Cell/Somatostatin. Front Pharm. 2016;7:278I. doi: 10.3389/fphar.2016.00278. PubMed DOI PMC
Huh WJ, et al. Tamoxifen induces rapid, reversible atrophy, and metaplasia in mouse stomach. Gastroenterology. 2012;142:21–24. doi: 10.1053/j.gastro.2011.09.050. PubMed DOI PMC
Saenz JB, Burclaff J, Mills JC. Modeling Murine Gastric Metaplasia Through Tamoxifen-Induced Acute Parietal Cell Loss. Methods Mol. Biol. 2016;1422:329–339I. doi: 10.1007/978-1-4939-3603-8_28. PubMed DOI PMC
Nomura S, et al. Spasmolytic polypeptide expressing metaplasia to preneoplasia in H. felis-infected mice. Gastroenterology. 2004;127:582–594I. doi: 10.1053/j.gastro.2004.05.029. PubMed DOI
Beyaz S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53–58I. doi: 10.1038/nature17173. PubMed DOI PMC
Knobloch M, et al. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates Adult Neural Stem Cell Activity. Cell Rep. 2017;20:2144–2155I. doi: 10.1016/j.celrep.2017.08.029. PubMed DOI PMC
Son NH, et al. Endothelial cell CD36 optimizes tissue fatty acid uptake. The. J. Clin. Investig. 2018;128:4329–4342I. doi: 10.1172/JCI99315. PubMed DOI PMC
Miller, M. J., Cusmano-Ozog, K., Oglesbee, D. & Young, S. Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med.23, 249–258 (2020). PubMed
Koves TR, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56I. doi: 10.1016/j.cmet.2007.10.013. PubMed DOI
Lee HJ, Mayette J, Rapoport SI, Bazinet RP. Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis. 2006;5:2I. doi: 10.1186/1476-511X-5-2. PubMed DOI PMC
Han X, et al. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry. 2007;46:6417–6428I. doi: 10.1021/bi7004015. PubMed DOI PMC
Nardone G, Laccetti P, Civiletti C, Budillon G. Phospholipid composition of human gastric mucosa: a study of endoscopic biopsy specimens. Gut. 1993;34:456–460I. doi: 10.1136/gut.34.4.456. PubMed DOI PMC
Gamazon ER, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat. Genet. 2018;50:956–967I. doi: 10.1038/s41588-018-0154-4. PubMed DOI PMC
Battle A, Brown CD, Engelhardt BE, Montgomery SB. Genetic effects on gene expression across human tissues. Nature. 2017;550:204–213I. doi: 10.1038/nature24277. PubMed DOI PMC
Unlu G, et al. Phenome-based approach identifies RIC1-linked Mendelian syndrome through zebrafish models, biobank associations and clinical studies. Nat. Med. 2020;26:98–109I. doi: 10.1038/s41591-019-0705-y. PubMed DOI PMC
Bycroft C, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–209I. doi: 10.1038/s41586-018-0579-z. PubMed DOI PMC
Kundaje A, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518:317–330I. doi: 10.1038/nature14248. PubMed DOI PMC
Love-Gregory L, et al. Higher chylomicron remnants and LDL particle numbers associate with CD36 SNPs and DNA methylation sites that reduce CD36. J. Lipid Res. 2016;57:2176–2184I. doi: 10.1194/jlr.P065250. PubMed DOI PMC
Allen LH, et al. Biomarkers of Nutrition for Development (BOND): Vitamin B-12 Review. J. Nutr. 2018;148:1995s–2027sI. doi: 10.1093/jn/nxy201. PubMed DOI PMC
Haruma K, et al. Old and New Gut Hormone, Gastrin and Acid Suppressive Therapy. Digestion. 2018;97:340–344I. doi: 10.1159/000485734. PubMed DOI
Dimaline R, Varro A. Novel roles of gastrin. J. Physiol. 2014;592:2951–2958I. doi: 10.1113/jphysiol.2014.272435. PubMed DOI PMC
Hacioglu A, Algin C, Pasaoglu O, Pasaoglu E, Kanbak G. Protective effect of leptin against ischemia-reperfusion injury in the rat small intestine. BMC Gastroenterol. 2005;5:37I. doi: 10.1186/1471-230X-5-37. PubMed DOI PMC
Adeyemi EO, et al. Mechanisms of action of leptin in preventing gastric ulcer. World J. Gastroenterol. 2005;11:4154–4160I. doi: 10.3748/wjg.v11.i27.4154. PubMed DOI PMC
McFarlan JT, et al. In vivo, fatty acid translocase (CD36) critically regulates skeletal muscle fuel selection, exercise performance, and training-induced adaptation of fatty acid oxidation. J. Biol. Chem. 2012;287:23502–23516I. doi: 10.1074/jbc.M111.315358. PubMed DOI PMC
Yoshida Y, et al. Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis. J. Physiol. 2013;591:4415–4426I. doi: 10.1113/jphysiol.2012.238451. PubMed DOI PMC
Nahlé Z, et al. CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPAR delta/beta-mediated adaptation to metabolic stress. J. Biol. Chem. 2008;283:14317–14326I. doi: 10.1074/jbc.M706478200. PubMed DOI PMC
Willet, S. G. et al. Regenerative proliferation of differentiated cells by mTORC1-dependent paligenosis. EMBO J37, e98311 (2018). PubMed PMC
Harayama, T. & Shimizu, T. Roles of polyunsaturated fatty acids, from mediators to membranes. J. Lipid. Res. 61, 1150–1160I (2020). PubMed PMC
Voelker DR, Numata M. Phospholipid regulation of innate immunity and respiratory viral infection. J. Biol. Chem. 2019;294:4282–4289I. doi: 10.1074/jbc.AW118.003229. PubMed DOI PMC
Cui K, et al. Chromatin signatures in multipotent human hematopoietic stem cells indicate the fate of bivalent genes during differentiation. cell stem cell. 2009;4:80–93I. doi: 10.1016/j.stem.2008.11.011. PubMed DOI PMC
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat. Rev. Mol. Cell Biol. 2017;18:90–101I. doi: 10.1038/nrm.2016.140. PubMed DOI PMC
Love-Gregory L, et al. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 2008;17:1695–1704I. doi: 10.1093/hmg/ddn060. PubMed DOI PMC
Ma X, et al. A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum. Mol. Genet. 2004;13:2197–2205I. doi: 10.1093/hmg/ddh233. PubMed DOI
Peery AF, et al. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology. 2012;143:1179–1187. doi: 10.1053/j.gastro.2012.08.002. PubMed DOI PMC
Paluchova V, et al. Lipokine 5-PAHSA Is Regulated by Adipose Triglyceride Lipase and Primes Adipocytes for De Novo Lipogenesis in Mice. Diabetes. 2020;69:300–312I. doi: 10.2337/db19-0494. PubMed DOI PMC
Cajka, T., Smilowitz, J. T. & Fiehn, O. Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. Anal. Chem. 89, 12360-–2368I (2017). PubMed
Ramsey VG, et al. The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1. Development. 2007;134:211–222I. doi: 10.1242/dev.02700. PubMed DOI
Gamazon ER, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 2015;47:1091–1098I. doi: 10.1038/ng.3367. PubMed DOI PMC