Triangulation supports agricultural spread of the Transeurasian languages

. 2021 Nov ; 599 (7886) : 616-621. [epub] 20211110

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu historické články, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34759322
Odkazy

PubMed 34759322
PubMed Central PMC8612925
DOI 10.1038/s41586-021-04108-8
PII: 10.1038/s41586-021-04108-8
Knihovny.cz E-zdroje

The origin and early dispersal of speakers of Transeurasian languages-that is, Japanese, Korean, Tungusic, Mongolic and Turkic-is among the most disputed issues of Eurasian population history1-3. A key problem is the relationship between linguistic dispersals, agricultural expansions and population movements4,5. Here we address this question by 'triangulating' genetics, archaeology and linguistics in a unified perspective. We report wide-ranging datasets from these disciplines, including a comprehensive Transeurasian agropastoral and basic vocabulary; an archaeological database of 255 Neolithic-Bronze Age sites from Northeast Asia; and a collection of ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan, complementing previously published genomes from East Asia. Challenging the traditional 'pastoralist hypothesis'6-8, we show that the common ancestry and primary dispersals of Transeurasian languages can be traced back to the first farmers moving across Northeast Asia from the Early Neolithic onwards, but that this shared heritage has been masked by extensive cultural interaction since the Bronze Age. As well as marking considerable progress in the three individual disciplines, by combining their converging evidence we show that the early spread of Transeurasian speakers was driven by agriculture.

Archaeological Institute for Yangtze Civilization Wuhan University Wuhan China

Center for Cultural Resource Studies Kanazawa University Kanazawa Japan

Centre of Computational Evolution University of Auckland Auckland New Zealand

Department of Anthropology National Museum of Nature and Science Tsukuba Japan

Department of Anthropology The University of Montana Missoula MT USA

Department of Archaeology and Art History Donga University Busan South Korea

Department of Archaeology and Art History Seoul National University Seoul South Korea

Department of Archaeology Wuhan University Wuhan China

Department of Bioinformatics and Genomics Graduate School of Medical Sciences Kanazawa University Kanazawa Japan

Department of Biological Sciences Graduate School of Science The University of Tokyo Tokyo Japan

Department of Conservation of Cultural Heritage Hanseo University Seosan Korea

Department of Environmental Changes Faculty of Social and Cultural Studies Kyushu University Fukuoka Japan

Department of World Languages and Cultures Northern Illinois University DeKalb IL USA

Faculty of Arts Masaryk University Brno Czech Republic

Graduate School of Integrated Sciences of Global Society Kyushu University Fukuoka Japan

Graduate School of Medicine University of the Ryukyus Nishihara Japan

Hankuk University of Foreign Studies Seoul South Korea

Hiroshima University Museum Higashi Hiroshima Japan

Hokkaido Government Board of Education Sapporo Japan

Institut d'Asie Orientale ENS de Lyon Lyon France

Institute for Linguistic Studies Russian Academy of Sciences Saint Petersburg Russia

Institute of Linguistics Russian Academy of Sciences Moscow Russia

Kokugakuin University Museum Tokyo Japan

Leiden University Institute of Area Studies Leiden The Netherlands

Max Planck Institute for the Science of Human History Jena Germany

Miyakojima City Board of Education Miyakojima Japan

National Research University Higher School of Economics Moscow Russia

Research Center for Buried Cultural Properties Kumamoto University Kumamoto Japan

Research Center for Chinese Frontier Archaeology of Jilin University Jilin University Changchun China

Research Center for the Pacific Islands Kagoshima University Kagoshima Japan

Sainsbury Institute for the Study of Japanese Arts and Cultures Norwich UK

School of Archaeology and Museology Peking University Beijing China

School of Archaeology University of Oxford Oxford UK

School of Life Sciences Jilin University Changchun China

University Museum University of Tokyo Tokyo Japan

Komentář v

PubMed

Zobrazit více v PubMed

Starostin, S., Dybo, A. & Mudrak, O. Etymological Dictionary of the Altaic Languages Vol. I– III (Brill, 2003).

Blažek, V. Altaic Languages. History of Research, Survey, Classification and a Sketch of Comparative Grammar (Masaryk Univ. Press, 2019).

Robbeets, M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 772–783 (Oxford Univ. Press, 2020).

Mallory J, Dybo A, Balanovsky O. The impact of genetics research on archaeology and linguistics in Eurasia. Russ. J. Genet. 2019;55:1472–1487.

Bellwood, P. & Renfrew, C. (eds) Examining the Farming/Language Dispersal Hypothesis (McDonald Institute for Archaeological Research, 2002).

Menges K. Dravidian and Altaic. Anthropos. 1977;72:129–179.

Miller RA. Archaeological light on Japanese linguistic origins. Asian Pac. Quart. Soc. Cult. Affairs. 1990;22:1–26.

Dybo A. Language and archeology: some methodological problems. 1. Indo-European and Altaic landscapes. J. Language Relationship. 2013;9:69–92.

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC

Allentoft M, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. PubMed

Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. PubMed PMC

Ning C, et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 2020;11:2700. PubMed PMC

Wang CC, et al. Genomic insights into the formation of human populations in East Asia. Nature. 2021;591:413–419. PubMed PMC

Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science369, 282–288 (2020). PubMed

Francis-Ratte, A. & Unger, J. M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 705–714 (Oxford Univ. Press, 2020).

Anderson, G. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 715–725 (Oxford Univ. Press, 2020).

Vajda, E. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 726–734 (Oxford Univ. Press, 2020).

Robbeets, M. Is Japanese related to Korean, Tungusic, Mongolic and Turkic? (Harrassowitz, 2005).

Robbeets, M. Diachrony of Verb Morphology: Japanese and the Transeurasian languages(Vol. 291 in Trends in Linguistics. Studies and Monographs) (Mouton de Gruyter, 2015).

Heggarty, P. & Beresford-Jones, D. in Encyclopedia of Global Archaeology (ed. Smith, C.) 1–9 (Springer, 2014).

Bellwood, P. First Farmers: The Origins of Agricultural Societies (Blackwell, 2005).

Starostin, S. in Past Human Migrations in East Asia: Matching Archaeology, Linguistics and Genetics (eds Sanchez-Mazas, A. et al.) 254–262 (Routledge, 2008).

Ramstedt GJ. A Comparison of the Altaic Languages with Japanese. Trans. Asiatic Soc. Japan Second Ser. 1924;7:41–54.

Kæmpfer, E. De Beschryving van Japan, benevens eene Beschryving van het Koningryk Siam (Balthasar Lakeman, 1729).

Crawford, G. W. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P.V. & Olsen, J.W.) 421–435 (Springer, 2018).

Stevens C, Fuller D. The spread of agriculture in eastern Asia: archaeological bases for hypothetical farmer/language dispersals . Lang. Dyn. Chang. 2017;7:152–186.

Leipe C, et al. Discontinuous spread of millet agriculture in eastern Asia and prehistoric population dynamics. Sci. Adv. 2019;5:eaax6225. PubMed PMC

Stevens C, et al. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Veget. Hist. Archaeobot. 2021;30:21–33.

Shelach-Lavi G, et al. Sedentism and plant cultivation in northeast China emerged during affluent conditions. PLoS ONE. 2019;14:e0218751. PubMed PMC

Lee, G. A. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P. & Olsen, J.) 451–481 (Springer, 2017).

Li T, et al. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia. 2020;22:100177.

Nelson SM, et al. Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production. Evol. Hum. Sci. 2020;2:e5. PubMed PMC

Hudson, M. J. Ruins of Identity: Ethnogenesis in the Japanese Islands (Univ. Hawai‘i Press, 1999).

Qin, L. & Fuller D. Q. in Prehistoric Maritime Cultures and Seafaring (eds Wu, C. & Rolett, B.) 159–191 (Springer, 2019).

Hosner D, et al. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene. 2016;26:1576–1593.

Hudson MJ, Robbeets M. Archaeolinguistic evidence for the farming/language dispersal of Koreanic. Evol. Hum. Sci. 2020;2:e52. PubMed PMC

Jeong C, et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell. 2020;183:890–904. PubMed PMC

Savelyev A, Jeong C. Early nomads of the Eastern Steppe and their tentative connections in the West. Evol. Human Sci. 2020;2:e20. PubMed PMC

Janhunen, J. in The Mongolic languages (ed. Janhunen, J.) 1–29 (Routledge, 2003).

Hudson, M. J. in New Perspectives in Southeast Asian and Pacific Prehistory (eds Piper, P., H. Matsumura, H. & Bulbeck, D.) 189–199 (ANU Press, 2017).

Sagart L, et al. Dated language phylogenies shed light on the ancestry of Sino-Tibetan. Proc. Natl Acad. Sci. USA. 2019;116:10317–10322. PubMed PMC

Zhang H, et al. Dated phylogeny suggests early Neolithic origin of SinoTibetan languages. Sci. Rep. 2020;10:20792. PubMed PMC

Haspelmath, M. & Tadmor, U. Loanwords in the World’s Languages: a Comparative Handbook (Mouton de Gruyter, 2009).

Heggarty, P. & Anderson, C. Cognacy in Basic Lexicon (CoBL), https://www.shh.mpg.de/dlce-research-projects/ie-cor-database (Max Planck Institute for the Science of Human History, 2015).

Savelyev, A. & Robbeets, M. Bayesian phylolinguistics infers the internal structure and the time-depth of the Turkic language family. J. Lang. Evol. 39–53 (2019).

Oskolskaya, S., Koile, E. & Robbeets, M. A Bayesian approach to the classification of Tungusic languages. Diachronica10.1075/dia.20010.osk (2021).

Bouckaert R, Bowern C, Atkinson QD. The origin and expansion of Pama–Nyungan languages across Australia. Nat. Ecol. Evol. 2018;2:741–749. PubMed

Bouckaert, R. & Robbeets, M. Pseudo Dollo models for the evolution of binary characters along a tree. Preprint at 10.1101/207571 (2018).

Drummond AJ, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. PubMed PMC

Gavryushkina A, et al. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 2014;10:e1003919. PubMed PMC

Maturana PM, et al. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 2019;68:219–233. PubMed

Bouckaert R, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. PubMed PMC

Mueller, N. F. & Bouckaert, R. Adaptive parallel tempering for BEAST 2. Preprint at 10.1101/603514 (2020).

Bouckaert R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406. PubMed PMC

Wichmann, S. & Rama, T. Testing methods of linguistic homeland detection using synthetic data. Preprint at 10.1101/2020.09.03.280826 (2020). PubMed PMC

Neureiter N, Ranacher P, van Gijn R, Bickel B, Weibel R. Can Bayesian phylogeography reconstruct migrations and expansions in linguistic evolution? R. Soc. Open Sci. 2021;8:201079. PubMed PMC

Mace, R., Holden, C. & Shennan, S. The Evolution of Cultural Diversity—a Phylogenetic Approach (UCL Press, 2005).

O’Brien MJ, Lyman RL. Evolutionary archeology: current status and future prospects. Evol. Anthropol. 2002;11:26–36.

Allaby RG, Fuller DQ, Brown TA. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl Acad. Sci. USA. 2008;105:13982–13986. PubMed PMC

Drummond AJ, et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005;22:1185–1192. PubMed

Shelach, G. & Teng, M. in A Companion to Chinese Archaeology (ed. Underhill, A.) 37–54 (Wiley–Blackwell, 2013).

Miyamoto K. The initial spread of early agriculture into Northeast Asia. Asian Archaeol. 2014;3:11–26.

Li T, Ning C, Zhushchikhovskaya IS, Hudson MJ, Robbeets M. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia. 2020;22:e100177.

Kōmoto, M. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 8–34 (Kumamoto Univ., 2007).

An, S. (ed.) Nongŏbŭi kogohak (Sahoep'yŏngnon, 2013).

Nishitani, T. (ed.) Higashi Ajia ni okeru shisekibo no sōgōteki kenkyū (Kyushu Univ., 1997).

Furusawa, Y. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 86–109 (Kumamoto Univ., 2007).

Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC

Peltzer A, Herbig A, Krause J. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17:60. PubMed PMC

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. PubMed PMC

Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC

Jun G, et al. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. PubMed PMC

Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. PubMed PMC

Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC

Jeong C, et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 2019;3:966–976. PubMed PMC

Jeong C, et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA. 2018;115:E11248–E11255. PubMed PMC

Mallick S, et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 2016;538:201–206. PubMed PMC

Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. PubMed PMC

Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. PubMed PMC

Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. PubMed PMC

Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. PubMed PMC

Patterson N, Price AL, Reich D. Population structure and eigen analysis. PLoS Genet. 2006;2:e190. PubMed PMC

Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. PubMed PMC

Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC

Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524:216–219. PubMed PMC

Kirch, P. V. & Green, R. Hawaiki, Ancestral Polynesia: An Essay in Historical Anthropology (Cambridge Univ. Press, 2001).

Oh, Y., Conte, M., Kang, S., Kim, J. & Hwang, J. Population fluctuation and the adoption of food production in prehistoric Korea: using radiocarbon dates as a proxy for population change. Radiocarbon59, 1761–1770 (2017).

Hosner. D., Wagner, M., Tarasov, P. E., Chen, X. & Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene26, 1576–1593 (2016).

Koyama, S. Jomon subsistence and population. SENRI Ethnol. Stud.2, 1–65 (1978).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...