Triangulation supports agricultural spread of the Transeurasian languages
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu historické články, časopisecké články, práce podpořená grantem
PubMed
34759322
PubMed Central
PMC8612925
DOI
10.1038/s41586-021-04108-8
PII: 10.1038/s41586-021-04108-8
Knihovny.cz E-zdroje
- MeSH
- archeologie * MeSH
- datové soubory jako téma MeSH
- dějiny starověku MeSH
- geografická kartografie MeSH
- jazyk (prostředek komunikace) dějiny MeSH
- lidé MeSH
- lingvistika * MeSH
- migrace lidstva dějiny MeSH
- populační genetika * MeSH
- zemědělství dějiny MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
- Japonsko MeSH
- Korea MeSH
- Mongolsko MeSH
The origin and early dispersal of speakers of Transeurasian languages-that is, Japanese, Korean, Tungusic, Mongolic and Turkic-is among the most disputed issues of Eurasian population history1-3. A key problem is the relationship between linguistic dispersals, agricultural expansions and population movements4,5. Here we address this question by 'triangulating' genetics, archaeology and linguistics in a unified perspective. We report wide-ranging datasets from these disciplines, including a comprehensive Transeurasian agropastoral and basic vocabulary; an archaeological database of 255 Neolithic-Bronze Age sites from Northeast Asia; and a collection of ancient genomes from Korea, the Ryukyu islands and early cereal farmers in Japan, complementing previously published genomes from East Asia. Challenging the traditional 'pastoralist hypothesis'6-8, we show that the common ancestry and primary dispersals of Transeurasian languages can be traced back to the first farmers moving across Northeast Asia from the Early Neolithic onwards, but that this shared heritage has been masked by extensive cultural interaction since the Bronze Age. As well as marking considerable progress in the three individual disciplines, by combining their converging evidence we show that the early spread of Transeurasian speakers was driven by agriculture.
Archaeological Institute for Yangtze Civilization Wuhan University Wuhan China
Center for Cultural Resource Studies Kanazawa University Kanazawa Japan
Centre of Computational Evolution University of Auckland Auckland New Zealand
Department of Anthropology National Museum of Nature and Science Tsukuba Japan
Department of Anthropology The University of Montana Missoula MT USA
Department of Archaeology and Art History Donga University Busan South Korea
Department of Archaeology and Art History Seoul National University Seoul South Korea
Department of Archaeology Wuhan University Wuhan China
Department of Biological Sciences Graduate School of Science The University of Tokyo Tokyo Japan
Department of Conservation of Cultural Heritage Hanseo University Seosan Korea
Department of World Languages and Cultures Northern Illinois University DeKalb IL USA
Faculty of Arts Masaryk University Brno Czech Republic
Graduate School of Integrated Sciences of Global Society Kyushu University Fukuoka Japan
Graduate School of Medicine University of the Ryukyus Nishihara Japan
Hankuk University of Foreign Studies Seoul South Korea
Hiroshima University Museum Higashi Hiroshima Japan
Hokkaido Government Board of Education Sapporo Japan
Institut d'Asie Orientale ENS de Lyon Lyon France
Institute for Linguistic Studies Russian Academy of Sciences Saint Petersburg Russia
Institute of Linguistics Russian Academy of Sciences Moscow Russia
Kokugakuin University Museum Tokyo Japan
Leiden University Institute of Area Studies Leiden The Netherlands
Max Planck Institute for the Science of Human History Jena Germany
Miyakojima City Board of Education Miyakojima Japan
National Research University Higher School of Economics Moscow Russia
Research Center for Buried Cultural Properties Kumamoto University Kumamoto Japan
Research Center for the Pacific Islands Kagoshima University Kagoshima Japan
Sainsbury Institute for the Study of Japanese Arts and Cultures Norwich UK
School of Archaeology and Museology Peking University Beijing China
School of Archaeology University of Oxford Oxford UK
Zobrazit více v PubMed
Starostin, S., Dybo, A. & Mudrak, O. Etymological Dictionary of the Altaic Languages Vol. I– III (Brill, 2003).
Blažek, V. Altaic Languages. History of Research, Survey, Classification and a Sketch of Comparative Grammar (Masaryk Univ. Press, 2019).
Robbeets, M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 772–783 (Oxford Univ. Press, 2020).
Mallory J, Dybo A, Balanovsky O. The impact of genetics research on archaeology and linguistics in Eurasia. Russ. J. Genet. 2019;55:1472–1487.
Bellwood, P. & Renfrew, C. (eds) Examining the Farming/Language Dispersal Hypothesis (McDonald Institute for Archaeological Research, 2002).
Menges K. Dravidian and Altaic. Anthropos. 1977;72:129–179.
Miller RA. Archaeological light on Japanese linguistic origins. Asian Pac. Quart. Soc. Cult. Affairs. 1990;22:1–26.
Dybo A. Language and archeology: some methodological problems. 1. Indo-European and Altaic landscapes. J. Language Relationship. 2013;9:69–92.
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC
Allentoft M, et al. Population genomics of Bronze Age Eurasia. Nature. 2015;522:167–172. PubMed
Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. PubMed PMC
Ning C, et al. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat. Commun. 2020;11:2700. PubMed PMC
Wang CC, et al. Genomic insights into the formation of human populations in East Asia. Nature. 2021;591:413–419. PubMed PMC
Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science369, 282–288 (2020). PubMed
Francis-Ratte, A. & Unger, J. M. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 705–714 (Oxford Univ. Press, 2020).
Anderson, G. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 715–725 (Oxford Univ. Press, 2020).
Vajda, E. in The Oxford Guide to the Transeurasian Languages (eds Robbeets, M. & Savelyev, A.) 726–734 (Oxford Univ. Press, 2020).
Robbeets, M. Is Japanese related to Korean, Tungusic, Mongolic and Turkic? (Harrassowitz, 2005).
Robbeets, M. Diachrony of Verb Morphology: Japanese and the Transeurasian languages(Vol. 291 in Trends in Linguistics. Studies and Monographs) (Mouton de Gruyter, 2015).
Heggarty, P. & Beresford-Jones, D. in Encyclopedia of Global Archaeology (ed. Smith, C.) 1–9 (Springer, 2014).
Bellwood, P. First Farmers: The Origins of Agricultural Societies (Blackwell, 2005).
Starostin, S. in Past Human Migrations in East Asia: Matching Archaeology, Linguistics and Genetics (eds Sanchez-Mazas, A. et al.) 254–262 (Routledge, 2008).
Ramstedt GJ. A Comparison of the Altaic Languages with Japanese. Trans. Asiatic Soc. Japan Second Ser. 1924;7:41–54.
Kæmpfer, E. De Beschryving van Japan, benevens eene Beschryving van het Koningryk Siam (Balthasar Lakeman, 1729).
Crawford, G. W. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P.V. & Olsen, J.W.) 421–435 (Springer, 2018).
Stevens C, Fuller D. The spread of agriculture in eastern Asia: archaeological bases for hypothetical farmer/language dispersals . Lang. Dyn. Chang. 2017;7:152–186.
Leipe C, et al. Discontinuous spread of millet agriculture in eastern Asia and prehistoric population dynamics. Sci. Adv. 2019;5:eaax6225. PubMed PMC
Stevens C, et al. A model for the domestication of Panicum miliaceum (common, proso or broomcorn millet) in China. Veget. Hist. Archaeobot. 2021;30:21–33.
Shelach-Lavi G, et al. Sedentism and plant cultivation in northeast China emerged during affluent conditions. PLoS ONE. 2019;14:e0218751. PubMed PMC
Lee, G. A. in Handbook of East and Southeast Asian Archaeology (eds Habu, J., Lape, P. & Olsen, J.) 451–481 (Springer, 2017).
Li T, et al. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia. 2020;22:100177.
Nelson SM, et al. Tracing population movements in ancient East Asia through the linguistics and archaeology of textile production. Evol. Hum. Sci. 2020;2:e5. PubMed PMC
Hudson, M. J. Ruins of Identity: Ethnogenesis in the Japanese Islands (Univ. Hawai‘i Press, 1999).
Qin, L. & Fuller D. Q. in Prehistoric Maritime Cultures and Seafaring (eds Wu, C. & Rolett, B.) 159–191 (Springer, 2019).
Hosner D, et al. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene. 2016;26:1576–1593.
Hudson MJ, Robbeets M. Archaeolinguistic evidence for the farming/language dispersal of Koreanic. Evol. Hum. Sci. 2020;2:e52. PubMed PMC
Jeong C, et al. A dynamic 6,000-year genetic history of Eurasia’s Eastern Steppe. Cell. 2020;183:890–904. PubMed PMC
Savelyev A, Jeong C. Early nomads of the Eastern Steppe and their tentative connections in the West. Evol. Human Sci. 2020;2:e20. PubMed PMC
Janhunen, J. in The Mongolic languages (ed. Janhunen, J.) 1–29 (Routledge, 2003).
Hudson, M. J. in New Perspectives in Southeast Asian and Pacific Prehistory (eds Piper, P., H. Matsumura, H. & Bulbeck, D.) 189–199 (ANU Press, 2017).
Sagart L, et al. Dated language phylogenies shed light on the ancestry of Sino-Tibetan. Proc. Natl Acad. Sci. USA. 2019;116:10317–10322. PubMed PMC
Zhang H, et al. Dated phylogeny suggests early Neolithic origin of SinoTibetan languages. Sci. Rep. 2020;10:20792. PubMed PMC
Haspelmath, M. & Tadmor, U. Loanwords in the World’s Languages: a Comparative Handbook (Mouton de Gruyter, 2009).
Heggarty, P. & Anderson, C. Cognacy in Basic Lexicon (CoBL), https://www.shh.mpg.de/dlce-research-projects/ie-cor-database (Max Planck Institute for the Science of Human History, 2015).
Savelyev, A. & Robbeets, M. Bayesian phylolinguistics infers the internal structure and the time-depth of the Turkic language family. J. Lang. Evol. 39–53 (2019).
Oskolskaya, S., Koile, E. & Robbeets, M. A Bayesian approach to the classification of Tungusic languages. Diachronica10.1075/dia.20010.osk (2021).
Bouckaert R, Bowern C, Atkinson QD. The origin and expansion of Pama–Nyungan languages across Australia. Nat. Ecol. Evol. 2018;2:741–749. PubMed
Bouckaert, R. & Robbeets, M. Pseudo Dollo models for the evolution of binary characters along a tree. Preprint at 10.1101/207571 (2018).
Drummond AJ, et al. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88. PubMed PMC
Gavryushkina A, et al. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 2014;10:e1003919. PubMed PMC
Maturana PM, et al. Model selection and parameter inference in phylogenetics using nested sampling. Syst. Biol. 2019;68:219–233. PubMed
Bouckaert R, et al. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019;15:e1006650. PubMed PMC
Mueller, N. F. & Bouckaert, R. Adaptive parallel tempering for BEAST 2. Preprint at 10.1101/603514 (2020).
Bouckaert R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406. PubMed PMC
Wichmann, S. & Rama, T. Testing methods of linguistic homeland detection using synthetic data. Preprint at 10.1101/2020.09.03.280826 (2020). PubMed PMC
Neureiter N, Ranacher P, van Gijn R, Bickel B, Weibel R. Can Bayesian phylogeography reconstruct migrations and expansions in linguistic evolution? R. Soc. Open Sci. 2021;8:201079. PubMed PMC
Mace, R., Holden, C. & Shennan, S. The Evolution of Cultural Diversity—a Phylogenetic Approach (UCL Press, 2005).
O’Brien MJ, Lyman RL. Evolutionary archeology: current status and future prospects. Evol. Anthropol. 2002;11:26–36.
Allaby RG, Fuller DQ, Brown TA. The genetic expectations of a protracted model for the origins of domesticated crops. Proc. Natl Acad. Sci. USA. 2008;105:13982–13986. PubMed PMC
Drummond AJ, et al. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 2005;22:1185–1192. PubMed
Shelach, G. & Teng, M. in A Companion to Chinese Archaeology (ed. Underhill, A.) 37–54 (Wiley–Blackwell, 2013).
Miyamoto K. The initial spread of early agriculture into Northeast Asia. Asian Archaeol. 2014;3:11–26.
Li T, Ning C, Zhushchikhovskaya IS, Hudson MJ, Robbeets M. Millet agriculture dispersed from Northeast China to the Russian Far East: integrating archaeology, genetics and linguistics. Archaeol. Res. Asia. 2020;22:e100177.
Kōmoto, M. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 8–34 (Kumamoto Univ., 2007).
An, S. (ed.) Nongŏbŭi kogohak (Sahoep'yŏngnon, 2013).
Nishitani, T. (ed.) Higashi Ajia ni okeru shisekibo no sōgōteki kenkyū (Kyushu Univ., 1997).
Furusawa, Y. in A Study on the Environmental Change and Adaptation System in Prehistoric Northeast Asia (ed. Kōmoto, M.) 86–109 (Kumamoto Univ., 2007).
Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–15763. PubMed PMC
Peltzer A, Herbig A, Krause J. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17:60. PubMed PMC
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. PubMed PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. PubMed PMC
Jun G, et al. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 2015;25:918–925. PubMed PMC
Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. PubMed PMC
Haak W, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015;522:207–211. PubMed PMC
Jeong C, et al. The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 2019;3:966–976. PubMed PMC
Jeong C, et al. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc. Natl Acad. Sci. USA. 2018;115:E11248–E11255. PubMed PMC
Mallick S, et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature. 2016;538:201–206. PubMed PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. PubMed PMC
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. PubMed PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. PubMed PMC
Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. PubMed PMC
Patterson N, Price AL, Reich D. Population structure and eigen analysis. PLoS Genet. 2006;2:e190. PubMed PMC
Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. PubMed PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. PubMed PMC
Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524:216–219. PubMed PMC
Kirch, P. V. & Green, R. Hawaiki, Ancestral Polynesia: An Essay in Historical Anthropology (Cambridge Univ. Press, 2001).
Oh, Y., Conte, M., Kang, S., Kim, J. & Hwang, J. Population fluctuation and the adoption of food production in prehistoric Korea: using radiocarbon dates as a proxy for population change. Radiocarbon59, 1761–1770 (2017).
Hosner. D., Wagner, M., Tarasov, P. E., Chen, X. & Leipe, C. Spatiotemporal distribution patterns of archaeological sites in China during the Neolithic and Bronze Age: an overview. Holocene26, 1576–1593 (2016).
Koyama, S. Jomon subsistence and population. SENRI Ethnol. Stud.2, 1–65 (1978).