The Importance of Cardiorespiratory vs. Muscular Fitness in Reducing the Odds of Hypertension in War Veterans: A Population-Based Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34769639
PubMed Central
PMC8583623
DOI
10.3390/ijerph182111120
PII: ijerph182111120
Knihovny.cz E-zdroje
- Klíčová slova
- blood pressure, physical fitness, relationship, veterans,
- MeSH
- cvičení MeSH
- hypertenze * epidemiologie MeSH
- kardiorespirační zdatnost * MeSH
- lidé MeSH
- průřezové studie MeSH
- tělesná výkonnost MeSH
- veteráni váleční * MeSH
- zátěžový test MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE: The purpose of the study was to examine separate and combined associations between cardiorespiratory fitness (CRF) and musculoskeletal fitness (MF) with hypertension. METHODS: In this cross-sectional study, participants were 764 men and women aged 45-75 years, who were part of the Homeland War between 1990 to 1995 (33.5% women). CRF included the 2-min step test, while MF was consisted of push-ups in 30 s, chair-stands in 30 s and sit-ups in 30 s. The prevalence of hypertension was defined according to new American College of Cardiology and American Hearts Association Blood Pressure Guidelines for systolic and diastolic blood pressure of ≥130 mmHg and/or ≥80 mmHg. RESULTS: In models adjusted for sex, age, fatness and fasting blood glucose, we found a graded inverse association between CRF and MF with hypertension. Less cardiorespiratory and muscular fit individuals were more likely to have hypertension. When CRF and MF were combined, individuals with high MF and low CRF, low MF and high CRF and low MF and CRF were 1.77, 2.15 and 7.09 more likely to have of hypertension. CONCLUSION: Both CRF and MF are associated with the prevalence of hypertension, while the magnitude of the associations between MF and hypertension was more pronounced.
Zobrazit více v PubMed
Roth G.A., Forouzanfar M.H., Moran A.E., Barber R., Nguyen G., Feigin V.L., Naghavi M., Mensah G.A., Murray C.G.L. Demographic and epidemiologic drivers of global cardiovascular mortality. N. Engl. J. Med. 2015;372:1333–1341. doi: 10.1056/NEJMoa1406656. PubMed DOI PMC
Mills K.T., Stefanescu A., He J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020;16:223–237. doi: 10.1038/s41581-019-0244-2. PubMed DOI PMC
GBD 2017 Causes of Death Collaborators Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the global burden of disease study 2017. Lancet. 2018;392:1736–1788. doi: 10.1016/S0140-6736(18)32203-7. PubMed DOI PMC
Mills K.T., Bundy J.D., Kelly T.N., Reed J.E., Kearney P.M., Reynolds K., Chen J., He J. Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–450. doi: 10.1161/CIRCULATIONAHA.115.018912. PubMed DOI PMC
Leng B., Jin Y., Li G., Chen L., Jin N. Socioeconomic status and hypertension: A meta-analysis. J. Hypertens. 2015;33:221–229. doi: 10.1097/HJH.0000000000000428. PubMed DOI
Carnethon M.R., Sternfeld B., Schreiner P.J., Jacobs D.R., Jr., Lewis C.E., Liu K., Sidney S. Association of 20-year changes in cardiorespiratory fitness with incident type 2 diabetes: The coronary artery risk development in young adults (CARDIA) fitness study. Diabetes Care. 2009;32:1284–1288. doi: 10.2337/dc08-1971. PubMed DOI PMC
Hassinen M., Lakka T.A., Savonen K., Litmanen H., Kiviaho L., Laaksonen D.E., Komulainen P., Rauramaa R. Cardiorespiratory fitness as a feature of metabolic syndrome in older men and women: The Dose-Responses to Exercise Training study (DR’s EXTRA) Diabetes Care. 2008;31:1242–1247. doi: 10.2337/dc07-2298. PubMed DOI
Carnethon M.R., Gidding S.S., Nehgme R., Sidney S., Jacobs D.R., Jr., Liu K. Cardiorespiratory fitness in young adulthood and the development of cardiovascular disease risk factors. JAMA. 2003;290:3092–3100. doi: 10.1001/jama.290.23.3092. PubMed DOI
Ash G.I., Eicher J.D., Pescatello L.S. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: The 2013 update. Curr. Hypertens. Rev. 2013;9:130–147. doi: 10.2174/15734021113099990010. PubMed DOI
Pescatello L.S. Exercise and hypertension: Recent advances in exercise prescription. Curr. Hypertens. Rep. 2005;7:281–286. doi: 10.1007/s11906-005-0026-z. PubMed DOI
Diaz K.M., Shimbo D. Physical activity and the prevention of hypertension. Curr. Hypertens. Rep. 2013;15:659–668. doi: 10.1007/s11906-013-0386-8. PubMed DOI PMC
Rhéaume C., Arsenault B.J., Bélanger S., Pérusse L., Tremblay A., Bouchard C., Poirier P., Després J.-P. Low cardiorespiratory fitness levels and elevated blood pressure: What is the contribution of visceral adiposity? Hypertension. 2009;54:91–97. doi: 10.1161/HYPERTENSIONAHA.109.131656. PubMed DOI
Sui X., LaMonte M.J., Blair S.N. Cardiorespiratory fitness and risk of nonfatal cardiovascular disease in women and men with hypertension. Am. J. Hypertens. 2007;20:608–615. doi: 10.1016/j.amjhyper.2007.01.009. PubMed DOI PMC
Rankinen T. Cardiorespiratory fitness, BMI, and risk of hypertension: The Hypgene Study. Med. Sci. Sports Exerc. 2007;39:1687–1692. doi: 10.1249/mss.0b013e31812e527f. PubMed DOI
Barlow C.E., LaMonte M.J., Fitzgerald S.J., Kampert J.B., Perrin J.L., Blair S.N. Cardiorespiratory fitness is an independent predictor of hypertension incidence among initially normotensive healthy women. Am. J. Epidemiol. 2006;163:142–150. doi: 10.1093/aje/kwj019. PubMed DOI
Maslow A.L., Sui X., Colabianchi N., Hussey J., Blair S.N. Muscular strength and incident hypertension in normotensive and prehypertensive men. Med. Sci. Sports Exerc. 2010;42:288–295. doi: 10.1249/MSS.0b013e3181b2f0a4. PubMed DOI PMC
Van Daele C.M., Chirinos J.A., De Meyer T., De Buyzere M.L., Langlois M.R., Bekaert S., Segers P., Gillebert T.C., Rietzschel E.R. Muscle strength is a major determinant of the blood pressure response to isometric stress testing: The Asklepios population study. J. Hypertens. 2020;38:224–234. doi: 10.1097/HJH.0000000000002272. PubMed DOI
Mallah M.A., Liu M., Liu Y., Xu H.F., Wu X.J., Chen X.T., Wang H., Liu C.-L., Tian Y.-R., Li M.-X., et al. Association of handgrip strength with the prevalence of hypertension in a Chinese Han population. Chronic. Dis. Transl. Med. 2019;5:113–121. doi: 10.1016/j.cdtm.2019.05.004. PubMed DOI PMC
McAuley P., Pittsley J., Myers J., Abella J., Froelicher V.F. Fitness and fatness as mortality predictors in healthy older men: The veterans exercise testing study. J. Gerontol. A Biol. Sci. Med. Sci. 2009;64:695–699. doi: 10.1093/gerona/gln039. PubMed DOI
Yu R., Yau F., Ho S.C., Woo J. Associations of cardiorespiratory fitness, physical activity, and obesity with metabolic syndrome in Hong Kong Chinese midlife women. BMC Public Health. 2013;13:614. doi: 10.1186/1471-2458-13-614. PubMed DOI PMC
Kasović M., Kalčik Z., Štefan L., Štefan A., Knjaz D., Braš M. Normative data for blood pressure in Croatian war veterans: A population-based study. Int. J. Environ. Res. Public Health. 2021;18:4175. doi: 10.3390/ijerph18084175. PubMed DOI PMC
Peraica T., Vidović A., Petrović Z.K., Kozarić-Kovačić D. Quality of life of Croatian veterans’ wives and veterans with posttraumatic stress disorder. Health Qual. Life Outcomes. 2014;12:136. doi: 10.1186/s12955-014-0136-x. PubMed DOI PMC
Williamson V., Harwood H., Greenberg K., Stevelink S.A.M., Greenberg N. Impact of military service on physical health later in life: A qualitative study of geriatric UK veterans and non-veterans. BMJ Open. 2019;9:e028189. doi: 10.1136/bmjopen-2018-028189. PubMed DOI PMC
Smith E.A., Malone R.E. “Everywhere the soldier will be”: Wartime tobacco promotion in the US military. Am. J. Public Health. 2009;99:1595–1602. doi: 10.2105/AJPH.2008.152983. PubMed DOI PMC
Littman A.J., Jacobson I.G., Boyko E.J., Powell T.M., Smith T.C. Weight change following US military service. Int. J. Obes. 2013;37:244–253. doi: 10.1038/ijo.2012.46. PubMed DOI PMC
Muntner P., Shimbo D., Carey R.M., Charleston J.B., Gaillard T., Misra S., Myers M.G., Ogedegbe G., Schwartz J.E., Townsend R.R., et al. Measurement of blood pressure in humans: A scientific statement from the American Heart Association. Hypertension. 2019;73:35–66. doi: 10.1161/HYP.0000000000000087. PubMed DOI PMC
Flack J.M., Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc. Med. 2020;30:160–164. doi: 10.1016/j.tcm.2019.05.003. PubMed DOI
Rikli R.E., Jones C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontologist. 2013;53:255–267. doi: 10.1093/geront/gns071. PubMed DOI
Suni J.H., Oja P., Miilunpalo S.I., Pasanen M.E., Vuori I.M., Bös K. Health-related fitness test battery for adults: Associations with perceived health, mobility, and back function and symptoms. Arch. Phys. Med. Rehabil. 1998;79:559–569. doi: 10.1016/S0003-9993(98)90073-9. PubMed DOI
Yee X.S., Ng Y.S., Allen J.C., Latib A., Tay E.L., Abu Bakar H.M., Ho C.Y.J., Koh W.C.C., Kwek H.H.T., Tay L. Performance on sit-to-stand tests in relation to measures of functional fitness and sarcopenia diagnosis in community-dwelling older adults. Eur. Rev. Aging Phys. Act. 2021;18:1. doi: 10.1186/s11556-020-00255-5. PubMed DOI PMC
Abe T., Yaginuma Y., Fujita E., Thiebaud R.S., Kawanishi M., Akamine T. Associations of sit-up ability with sarcopenia classification measures in Japanese older women. Interv. Med. Appl. Sci. 2016;8:152–157. doi: 10.1556/1646.8.2016.4.7. PubMed DOI PMC
Pietiläinen K.H., Kaye S., Karmi A., Suojanen L., Rissanen A., Virtanen K.A. Agreement of bioelectrical impedance with dual-energy X-ray absorptiometry and MRI to estimate changes in body fat, fat-free and visceral fat during a 12-month weight loss intervention. Br. J. Nutr. 2013;9:1910–1916. doi: 10.1017/S0007114512003698. PubMed DOI
Lee M.M., Jebb S.A., Oke J., Piernas C. Reference values for fat-free mass and fat mass measured by bioelectrical impedance in 390,565 UK adults. J. Cachexia Sarcopenia Muscle. 2020;11:487–496. doi: 10.1002/jcsm.12523. PubMed DOI PMC
Hopkins W., Marshall S., Batterham A., Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009;41:3–13. doi: 10.1249/MSS.0b013e31818cb278. PubMed DOI
Mišigoj-Duraković M., Sorić M., Matika D., Jukić I., Duraković Z. Which is more important for reducing the odds of metabolic syndrome in men: Cardiorespiratory or muscular fitness? Obesity. 2016;24:238–244. doi: 10.1002/oby.21264. PubMed DOI
Acharya T., Tringali S., Singh M., Huang J. Resistant hypertension and associated comorbidities in a veterans affairs population. J. Clin. Hypertens. 2014;16:741–745. doi: 10.1111/jch.12410. PubMed DOI PMC
Kokkinos P.F., Andreas P.E., Coutoulakis E., Colleran J.A., Narayan P., Dotson C.O., Choucair W., Farmer C., Fernhall B. Determinants of exercise blood pressure response in normotensive and hypertensive women: Role of cardiorespiratory fitness. J. Cardiopulm. Rehabil. 2002;22:178–183. doi: 10.1097/00008483-200205000-00009. PubMed DOI
Willardson J., Tudor-Locke C. Survival of the strongest: A brief review examining the association between muscular fitness and mortality. Strength Cond. J. 2005;27:80–85. doi: 10.1519/00126548-200506000-00017. DOI
Artero E.G., Lee D.C., Lavie C.J., España-Romero V., Sui X., Church T.S., Blair S.N. Effects of muscular strength on cardiovascular risk factors and prognosis. J. Cardiopulm. Rehabil. Prev. 2012;32:351–358. doi: 10.1097/HCR.0b013e3182642688. PubMed DOI PMC