• This record comes from PubMed

Temperature-induced changes in egg white antimicrobial concentrations during pre-incubation do not influence bacterial trans-shell penetration but do affect hatchling phenotype in Mallards

. 2021 ; 9 () : e12401. [epub] 20211111

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Microbiome formation and assemblage are essential processes influencing proper embryonal and early-life development in neonates. In birds, transmission of microbes from the outer environment into the egg's interior has been found to shape embryo viability and hatchling phenotype. However, microbial transmission may be affected by egg-white antimicrobial proteins (AMPs), whose concentration and antimicrobial action are temperature-modulated. As both partial incubation and clutch covering with nest-lining feathers during the pre-incubation period can significantly alter temperature conditions acting on eggs, we experimentally investigated the effects of these behavioural mechanisms on concentrations of both the primary and most abundant egg-white AMPs (lysozyme and avidin) using mallard (Anas platyrhychos) eggs. In addition, we assessed whether concentrations of egg-white AMPs altered the probability and intensity of bacterial trans-shell penetration, thereby affecting hatchling morphological traits in vivo. We observed higher concentrations of lysozyme in partially incubated eggs. Clutch covering with nest-lining feathers had no effect on egg-white AMP concentration and we observed no association between concentration of egg-white lysozyme and avidin with either the probability or intensity of bacterial trans-shell penetration. The higher egg-white lysozyme concentration was associated with decreased scaled body mass index of hatchlings. These outcomes demonstrate that incubation prior to clutch completion in precocial birds can alter concentrations of particular egg-white AMPs, though with no effect on bacterial transmission into the egg in vivo. Furthermore, a higher egg white lysozyme concentration compromised hatchling body condition, suggesting a potential growth-regulating role of lysozyme during embryogenesis in precocial birds.

See more in PubMed

Anumalla B, Prabhu NP. Counteracting effect of charged amino acids against the destabilization of proteins by arginine. Applied Biochemistry and Biotechnology. 2019;189:541–555. doi: 10.1007/s12010-019-03026-w. PubMed DOI

Bain MM, McDade K, Burchmore R, Law A, Wilson PW, Schmutz M, Preisinger R, Dunn IC. Enhancing the egg’s natural defence against bacterial penetration by increasing cuticle deposition. Animal Genetics. 2013;44:661–668. doi: 10.1111/age.12071. PubMed DOI

Baron F, Cochet MF, Alabdeh M, Guerin-Dubiard C, Gautier M, Nau F, Andrews SC, Bonnassie S, Jan S. Egg-white proteins have a minor impact on the bactericidal action of egg white toward salmonella enteritidis at 45 degrees C. Frontiers in Microbiology. 2020;11:584986. doi: 10.3389/fmicb.2020.584986. PubMed DOI PMC

Baron F, Jan S. Egg and egg product microbiology. In: Nys Y, Bain M, Immerseel FV, editors. Improving the Safety and Quality of Eggs and Egg Products. Woodhead Publishing Ltd; Cambridge: 2011. pp. 330–350.

Bates D, Machler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. 2015;67:1–48.

Board RG, Fuller R. Nonspecific antimicrobial defences of avian egg, embryo and neonate. Biological Reviews of the Cambridge Philosophical Society. 1974;49(1):15–49. doi: 10.1111/j.1469-185X.1974.tb01297.x. PubMed DOI

Bollinger PB, Bollinger EK, Daniel SL, Gonser RA, Tuttle EM. Partial incubation during egg laying reduces eggshell microbial loads in a temperate-breeding passerine. Journal of Avian Biology. 2018;49 doi: 10.1111/jav.01560. DOI

Bonisoli-Alquati A, Rubolini D, Romano M, Boncoraglio G, Fasola M, Saino N. Effects of egg albumen removal on yellow-legged gull chick phenotype. Functional Ecology. 2007;21:310–316. doi: 10.1111/j.1365-2435.2006.01226.x. DOI

Bonisoli-Alquati A, Rubolini D, Romano M, Cucco M, Fasola M, Caprioli M, Saino N. Egg antimicrobials, embryo sex and chick phenotype in the yellow-legged gull. Behavioral Ecology and Sociobiology. 2010;64:845–855. doi: 10.1007/s00265-010-0901-8. DOI

Boonyarittichaikij R, Verbrugghe E, Dekeukeleire D, Strubbe D, Van Praet S, De Beelde R, Rouffaer L, Pasmans F, Bonte D, Verheyen K, Lens L, Marte A. Mitigating the impact of microbial pressure on great (Parus major) and blue (Cyanistes caeruleus) tit hatching success through maternal immune investment. PLOS ONE. 2018;13(10):e0204022. doi: 10.1371/journal.pone.0204022. PubMed DOI PMC

Calatayud M, Koren O, Collado MC. Maternal microbiome and metabolic health program microbiome development and health of the offspring. Trends in Endocrinology and Metabolism. 2019;30:735–744. doi: 10.1016/j.tem.2019.07.021. PubMed DOI

Campos-Cerda F, Bohannon BJM. The nidobiome: a framework for understanding microbiome assembly in neonates. Trends in Ecology & Evolution. 2020;35:573–582. doi: 10.1016/j.tree.2020.03.007. PubMed DOI

Chen CY, Chen CK, Chen YY, Fang A, Shaw GTW, Hung CM, Wang D. Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome. 2020;8:1–1. doi: 10.1186/s40168-020-00896-9. PubMed DOI PMC

Cook MI, Beissinger SR, Toranzos GA, Arendt WJ. Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecology Letters. 2005a;8:532–537. doi: 10.1111/j.1461-0248.2005.00748.x. PubMed DOI

Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ. Trans-shell infection by pathogenic micro-organisms reduces the shelf life of non-incubated bird’s eggs: a constraint on the onset of incubation? Proceedings of the Royal Society B-Biological Sciences. 2003;270:2233–2240. doi: 10.1098/rspb.2003.2508. PubMed DOI PMC

Cook MI, Beissinger SR, Toranzos GA, Rodriguez RA, Arendt WJ. Microbial infection affects egg viability and incubation behavior in a tropical passerine. Behavioral Ecology. 2005b;16:30–36. doi: 10.1093/beheco/arh131. DOI

Crawley MJ. The R book. Chichester: John Wiley & Sons, Ltd; 2007.

Cucco M, Guasco B, Malacarne G, Ottonelli R. Effects of β-carotene on adult immune condition and antibacterial activity in the eggs of the Grey Partridge. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 2007;147:1038–1046. doi: 10.1016/j.cbpa.2007.03.014. PubMed DOI

Cunningham FE. Changes in egg-white during incubation of fertile egg. Poultry Science. 1974;53:1561–1565. doi: 10.3382/ps.0531561. PubMed DOI

D’Alba L, Jones DN, Badawy HT, Eliason CM, Shawkey MD. Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird. Journal of Experimental Biology. 2014;217:1116–1121. doi: 10.1242/jeb.098343. PubMed DOI

D’Alba L, Oborn A, Shawkey MD. Experimental evidence that keeping eggs dry is a mechanism for the antimicrobial effects of avian incubation. Naturwissenschaften. 2010;97:1089–1095. doi: 10.1007/s00114-010-0735-2. PubMed DOI

D’Alba L, Shawkey MD, Korsten P, Vedder O, Kingma SA, Komdeur J, Beissingger SR. Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behavioral Ecology and Sociobiol. 2010;64:1037–1045. doi: 10.1007/s00265-010-0919. PubMed DOI PMC

D’Alba L, Torres R, Waterhouse GIN, Eliason C, Hauber ME, Shawkey MD. What does the eggshell cuticle do? A functional comparison of avian eggshell cuticles. Physiological and Biochemical Zoology. 2017;90:588–599. doi: 10.1086/693434. PubMed DOI

Dawson RD, O’Brien EL, Mlynowski TJ. The price of insulation: costs and benefits of feather delivery to nests for male tree swallows Tachycineta bicolor. Journal of Avian Biology. 2011;42:93–102. doi: 10.1111/j.1600-048X.2010.05208.x. DOI

Diaz-Lora S, Martin-Vivaldi M, Juarez Garcia-Pelayo N, Azcarate Garcia M, Rodriguez-Ruano SM, Martinez-Bueno M, Jose Soler J. Experimental old nest material predicts hoopoe Upupa epops eggshell and uropygial gland microbiota. Journal of Avian Biology. 2019;50:1–17. doi: 10.1111/jav.02083. DOI

Fang J, Ma MH, Jin YG, Qiu N, Huang Q, Sun SG, Geng F, Guo L. Liquefaction of albumen during the early incubational stages of the avian embryo and its impact on the antimicrobial activity of albumen. Journal of Food Agriculture & Environment. 2012a;10:423–427.

Fang J, Ma MH, Jin YG, Qiu N, Ren GD, Huang X, Wang C. Changes in the antimicrobial potential of egg albumen during the early stages of incubation and its impact on the growth and virulence response of Salmonella Enteritidis. Italian Journal of Animal Science. 2012b;11:e17. doi: 10.4081/ijas.2012.e17. DOI

Finkler MS, Van Orman JB, Sotherland PR. Experimental manipulation of egg quality in chickens: influence of albumen and yolk on the size and body composition of near-term embryos in a precocial bird. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 1998;168:17–24. doi: 10.1007/s003600050116. PubMed DOI

Gan ZB, Marquardt RR. Colorimetric competitive inhibition method for the quantitation of avidin, streptavidin and biotin. Journal of Biochemical and Biophysical Methods. 1999;39:1–6. doi: 10.1016/s0165-022x(98)00051-7. PubMed DOI

Gautron J, Rehault-Godbert S, Pascal G, Nys Y, Hincke MT. Ovocalyxin-36 and other LBP/BPI/PLUNC-like proteins as molecular actors of the mechanisms of the avian egg natural defences. Biochemical Society Transactions. 2011;39:971–976. doi: 10.1042/bst0390971. PubMed DOI

Grellet-Tinner G, Lindsay S, Thompson MB. The biomechanical, chemical and physiological adaptations of the eggs of two Australian megapodes to their nesting strategies and their implications for extinct titanosaur dinosaurs. Journal of Microscopy. 2017;267:237–249. doi: 10.1111/jmi.12572. PubMed DOI

Grizard S, Dini-Andreote F, Tieleman BI, Salles JF. Dynamics of bacterial and fungal communities associated with eggshells during incubation. Ecology and Evolution. 2014;4:1140–1157. doi: 10.1002/ece3.1011. PubMed DOI PMC

Grizard S, Versteegh MA, Ndithia HK, Salles JF, Tieleman BI. Shifts in bacterial communities of eggshells and antimicrobial activities in eggs during incubation in a ground-nesting passerine. PLOS ONE. 2015;10(4):e0121716. doi: 10.1371/journal.pone.0121716. PubMed DOI PMC

Guyot N, Labas V, Harichaux G, Chesse M, Poirier JC, Nys Y, Rehault-Godbert S. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules. Scientific Reports. 2016a;6:27974. doi: 10.1038/srep27974. PubMed DOI PMC

Guyot N, Rehault-Godbert S, Slugocki C, Harichaux G, Labas V, Helloin E, Nys Y. Characterization of egg white antibacterial properties during the first half of incubation: a comparative study between embryonated and unfertilized eggs. Poultry Science. 2016b;95:2956–2970. doi: 10.3382/ps/pew271. PubMed DOI

Hincke MT, Da Silva M, Guyot N, Gautron J, McKee MD, Guabiraba-Brito R, Rehault-Godbert S. Dynamics of structural barriers and innate immune components during incubation of the avian egg: critical interplay between autonomous embryonic development and maternal anticipation. Journal of Innate Immunity. 2019;11:111–124. doi: 10.1159/000493719. PubMed DOI PMC

Hong TH, Iwashita K, Handa A, Shiraki K. Arginine prevents thermal aggregation of hen egg white proteins. Food Research International. 2017;97:272–279. doi: 10.1016/j.foodres.2017.04.013. PubMed DOI

Horz HP, Vianna ME, Gomes B, Conrads G. Evaluation of universal probes and primer sets for assessing total bacterial load in clinical samples: general implications and practical use in endodontic antimicrobial therapy. Journal of Clinical Microbiology. 2005;43:5332–5337. doi: 10.1128/jcm.43.10.5332-5337.2005. PubMed DOI PMC

Ibrahim HR. Innate antimicrobial proteins and peptides of avian egg. Eggs as Functional Foods and Nutraceuticals for Human Health. 2019;14:211–222.

Ibrahim HR, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. Febs Letters. 2001;506:27–32. doi: 10.1016/s0014-5793(01)02872-1. PubMed DOI

Ishikawa S, Suzuki K, Fukuda E, Arihara K, Yamamoto Y, Mukai T, Itoh M. Photodynamic antimicrobial activity of avian eggshell pigments. Febs Letters. 2010;584:770–774. doi: 10.1016/j.febslet.2009.12.041. PubMed DOI

Iwashita K, Handa A, Shiraki K. Co-aggregation of ovotransferrin and lysozyme. Food Hydrocolloids. 2019;89:416–424. doi: 10.1016/j.foodhyd.2018.11.022. DOI

Javůrková V, Albrecht T, Mrazek J, Kreisinger J. Effect of intermittent incubation and clutch covering on the probability of bacterial trans-shell infection. Ibis. 2014;156:374–386. doi: 10.1111/ibi.12126. DOI

Javůrková V, Krkavcová E, Kreisinger J, Hyrsl P, Hyankova L. Effects of experimentally increased in ovo lysozyme on egg hatchability, chicks complement activity, and phenotype in a precocial bird. Journal of Experimental Zoology Part a-Ecological Genetics and Physiology. 2015;323:497–505. doi: 10.1002/jez.1935. PubMed DOI

Kato A, Imoto T, Yagishita K. Binding groups in ovomucin-lysozyme interaction. Agricultural and Biological Chemistry. 1975;39:541–544. doi: 10.1080/00021369.1975.10861614. DOI

Kozuszek R, Kontecka H, Nowaczewski S, Leśnierowski G. Quality of pheasant (Phasianus colchicus L.) eggs with different shell colour. Archiv fur Geflugelkunde. 2009;73:201–207.

Krapu GL, Reynolds RE, Sargeant GA, Renner RW. Patterns of variation in clutch sizes in a guild of temperate-nesting dabbling ducks. Auk. 2004;121:695–706. doi: 10.1642/0004-8038(2004)121[0695:povics]2.0.co;2. DOI

Kreisinger J, Albrecht T. Nest protection in mallards Anas platyrhynchos: untangling the role of crypsis and parental behaviour. Functional Ecology. 2008;22:872–879. doi: 10.1111/j.1365-2435.2008.01445.x. DOI

Krkavcová E, Kreisinger J, Hyankova L, Hyrsl P, Javůrková V. The hidden function of egg white antimicrobials: egg weight-dependent effects of avidin on avian embryo survival and hatchling phenotype. Biology Open. 2018;7(4):bio031518. doi: 10.1242/bio.031518. PubMed DOI PMC

Kuettner KE, Soble LW, Ray RD, Croxen RL, Passovoy M, Eisenstein R. Lysozyme in epiphyseal cartilage.2. Effect of egg white lysozyme on mouse embryonic femurs in organ cultures. Journal of Cell Biology. 1970;44:329. doi: 10.1083/jcb.44.2.329. PubMed DOI PMC

Lee SI, Lee H, Jablonski PG, Choe JC, Husby M. Microbial abundance on the eggs of a passerine bird and related fitness consequences between urban and rural habitats. PLOS ONE. 2017;12(9):e0185411. doi: 10.1371/journal.pone.0185411. PubMed DOI PMC

Lee WY, Kim M, Jablonski PG, Choe JC, Lee SI. Effect of incubation on bacterial communities of eggshells in a temperate bird, the Eurasian Magpie (Pica pica) PLOS ONE. 2014;9(8):e103959. doi: 10.1371/journal.pone.0103959. PubMed DOI PMC

Liu YJ, Qiu N, Ma MH. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries. Poultry Science. 2015;94:2495–2505. doi: 10.3382/ps/pev176. PubMed DOI

Loos ER, Rohwer FC. Laying-stage nest attendance and onset of incubation in prairie nesting ducks. Auk. 2004;121:587–599. doi: 10.1642/0004-8038(2004)121[0587:lnaaoo]2.0.co;2. DOI

Magrath RD. Hatching asynchrony in altricial birds. Biological Reviews. 1990;65:587–622. doi: 10.1111/j.1469-185X.1990.tb01239.x. DOI

Mann K, Mann M. In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Science . 2011;9:7. doi: 10.1186/1477-5956-9-7. PubMed DOI PMC

Martin-Vivaldi M, Soler JJ, Peralta-Sanchez JM, Arco L, Martin-Platero AM, Martinez-Bueno M, Ruiz-Rodriguez M, Valdivia E. Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. Journal of Animal Ecology. 2014;83:1289–1301. doi: 10.1111/1365-2656.12243. PubMed DOI

Martinez-Garcia A, Martin-Vivaldi M, Rodriguez-Ruano SM, Peralta-Sanchez JM, Valdivia E, Soler JJ. Nest bacterial environment affects microbiome of hoopoe eggshells, but not that of the uropygial secretion. PLOS ONE. 2016;11(7):e0158158. doi: 10.1371/journal.pone.0158158. PubMed DOI PMC

Morosinotto C, Thomson RL, Korpimaki E. Plasticity in incubation behaviour under experimentally prolonged vulnerability to nest predation. Behaviour. 2013;150:1767–1786. doi: 10.1163/1568539x-00003119. DOI

Oliveira GD, dos Santos VM, Rodrigues JC, Nascimento ST. Effects of different egg turning frequencies on incubation efficiency parameters. Poultry Science. 2020;99:4417–4420. doi: 10.1016/j.psj.2020.05.045. PubMed DOI PMC

Osorio JS. Gut health, stress, and immunity in neonatal dairy calves: the host side of host-pathogen interactions. Journal of Animal Science and Biotechnology. 2020;11:105. doi: 10.1186/s40104-020-00509-3. PubMed DOI PMC

Osserman EF, Lawlor DP. Serum and urinary lysozyme (muramidase) in monocytic and monomyelocytic leukemia. Journal of Experimental Medicine. 1966;124:921–952. doi: 10.1084/jem.124.5.921. PubMed DOI PMC

Peig J, Green AJ. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos. 2009;118:1883–1891. doi: 10.1111/j.1600-0706.2009.17643.x. DOI

Peralta-Sanchez J, Martin-Platero AM, Wegener-Parfrey L, Martinez-Bueno M, Rodriguez-Ruano S, Navas-Molina JA, Vazquez-Baeza Y, Martin-Galvez D, Martin-Vivaldi M, Ibanez-Alamo JD, Knight R, Soler JJ. Bacterial density rather than diversity correlates with hatching success across different avian species. FEMS Microbiology Ecology. 2018;94(3):fiy022. doi: 10.1093/femsec/fiy022. PubMed DOI

Peralta-Sanchez JM, Moller AP, Soler JJ. Colour composition of nest lining feathers affects hatching success of barn swallows, Hirundo rustica (Passeriformes: Hirundinidae) Biological Journal of the Linnean Society. 2011;102:67–74. doi: 10.1111/j.1095-8312.2010.01557.x. DOI

Pierce EC, Morin M, Little JC, Liu RB, Tannous J, Keller NP, Pogliano K, Wolfe BE, Sanchez LM, Dutton RJ. Bacterial-fungal interactions revealed by genome-wide analysis of bacterial mutant fitness. Nature Microbiology. 2021;6:87–102. doi: 10.1038/s41564-020-00800. PubMed DOI PMC

Pinowski J, Haman A, Jerzak L, Pinowska B, Barkowska M, Grodzki A, Haman K. The thermal properties of some nests of the Eurasian Tree Sparrow Passer montanus. Journal of Thermal Biology. 2006;31:573–581. doi: 10.1016/j.jtherbio.2006.05.007. DOI

Prokop P, Trnka A. Why do grebes cover their nests? Laboratory and field tests of two alternative hypotheses. Journal of Ethology. 2011;29:17–22. doi: 10.1007/s10164-010-0214-4. DOI

Qiu N, Ma MH, Cai ZX, Jin YG, Huang X, Huang Q, Sun SG. Proteomic analysis of egg white proteins during the early phase of embryonic development. Journal of Proteomics. 2012;75:1895–1905. doi: 10.1016/j.jprot.2011.12.037. PubMed DOI

R-Core-Team MinionPro-Regular20R: a language and environment for statistical computing. 2020. http://www.R-project.org/ http://www.R-project.org/

Rohwer FC. Inter- and intraspecific relationships between egg size and clutch size in waterfowl. Auk. 1988;105:161–176. doi: 10.1093/auk/105.1.161. DOI

Romanoff AL, Romanoff AJ. Gross assimilation of yolk and albumen in the development of the egg of gallus domesticus. Anatomical Record. 1933;55:271–278. doi: 10.1002/ar.1090550306. DOI

RStudioTeam . RStudio, Inc; Boston: 2015. RStudio: integrated development for R.

Ruiz-Castellano C, Ruiz-Rodriguez M, Tomas G, Soler JJose. Antimicrobial activity of nest-lining feathers is enhanced by breeding activity in avian nests. FEMS Microbiology Ecology. 2019;95(5):fiz052. doi: 10.1093/femsec/fiz052. PubMed DOI

Ruiz-Castellano C, Tomas G, Ruiz-Rodriguez M, Martin-Galvez D, Soler JJ. Nest material shapes eggs bacterial environment. PLOS ONE. 2016;11:21. doi: 10.1371/journal.pone.0148894. PubMed DOI PMC

Ruiz-De-Castaneda R, Vela AI, Gonzalez-Braojos S, Briones V, Moreno J. Drying eggs to inhibit bacteria: incubation during laying in a cavity nesting passerine. Behavioural Processes. 2011;88:142–148. doi: 10.1016/j.beproc.2011.08.012. PubMed DOI

Ruiz-de Castaneda R, Vela AI, Lobato E, Briones V, Moreno J. Early onset of incubation and eggshell bacterial loads in a temperate-zone cavity-nesting passerinE. Condor. 2012;114:203–211. doi: 10.1525/cond.2011.100230. DOI

Saino N, Dall’ara P, Martinelli R, Moller AP. Early maternal effects and antibacterial immune factors in the eggs, nestlings and adults of the barn swallow. Journal of Evolutionary Biology. 2002;15:735–743. doi: 10.1046/j.1420-9101.2002.00448.x. DOI

Saino N, Martinelli R, Biard C, Gil D, Spottiswoode CN, Rubolini D, Surai PF, Moller AP. Maternal immune factors and the evolution of secondary sexual characters. Behavioral Ecology. 2007;18:513–520. doi: 10.1093/beheco/arm004. DOI

Sakamoto S, Sakamoto M, Goldhaber P, Glimcher MJ. Inhibition of mouse bone collagenase by lysozyme. Calcified Tissue Research. 1974;14:291–299. doi: 10.1007/bf02060303. PubMed DOI

Shawkey MD, Kosciuch KL, Liu M, Rohwer FC, Loos ER, Wang JM, Beissinger SR. Do birds differentially distribute antimicrobial proteins within clutches of eggs? Behavioral Ecology. 2008;19:920–927. doi: 10.1093/beheco/arn019. DOI

Stephenson S, Hannon S, Proctor H. The function of feathers in tree swallow nests: insulation or ectoparasite barrier? Condor. 2009;111:479–487. doi: 10.1525/cond.2009.090074. DOI

Stubblefield WA, Toll PA. Effects of incubation-temperature and warm-water misting on hatching success in artificially incubated mallard duck eggs. Environmental Toxicology and Chemistry. 1993;12:695–700. doi: 10.1002/etc.5620120411. DOI

Sun CJ, Liu JN, Li WB, Xu GY, Yang N. Divergent proteome patterns of egg albumen from domestic chicken, duck, goose, turkey, quail and pigeon. Proteomics. 2017;17:12. doi: 10.1002/pmic.201700145. PubMed DOI

Svobodová J, Smidova L, Gvoždíková JV. Different incubation patterns affect selective antimicrobial properties of the egg interior: experimental evidence from eggs of precocial and altricial birds. Journal of Experimental Biology. 2019;222(6):jeb201442. doi: 10.1242/jeb.201442. PubMed DOI

Valcu CM, Scheltema RA, Schweiggert RM, Valcu M, Teltscher K, Walther DM, Carle R, Kempenaers B. Life history shapes variation in egg composition in the blue tit Cyanistes caeruleus. Communications Biology. 2019;2:6. doi: 10.1038/s42003-018-0247-8. PubMed DOI PMC

Van Veelen HPJ, Salles JF, Tieleman BI. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks. Microbiome. 2017;5 doi: 10.1186/s40168-017-0371-6. PubMed DOI PMC

Van Veelen HPJ, Salles JF, Tieleman BI. Microbiome assembly of avian eggshells and their potential as transgenerational carriers of maternal microbiota. Isme Journal. 2018;12:1375–1388. doi: 10.1038/s41396-018-0067-3. PubMed DOI PMC

Voirol LRP, Weinhold A, Johnston PR, Fatouros NE, Hilker M. Legacy of a butterfly’s parental microbiome in offspring performance. Applied and Environmental Microbiology. 2020;86(12):e00596-20. doi: 10.1128/aem.00596-20. PubMed DOI PMC

Wang C, Pors SE, Olsen RH, Bojesen AM. Transmission and pathogenicity of Gallibacterium anatis and Escherichia coli in embryonated eggs. Veterinary Microbiology. 2018;217:76–81. doi: 10.1016/j.vetmic.2018.03.005. PubMed DOI

Wang JM, Beissinger SR. Partial incubation in birds: its occurrence, function, and quantification. Auk. 2011;128:454–466. doi: 10.1525/auk.2011.10208. DOI

Wang JM, Firestone MK, Beissinger SR. Microbial and environmental effects on avian egg viability: Do tropical mechanisms act in a temperate environment? Ecology. 2011;92:1137–1145. doi: 10.1890/10-0986.1. PubMed DOI

Wellman-Labadie O, Picman J, Hincke MT. Antimicrobial activity of cuticle and outer eggshell protein extracts from three species of domestic birds. British Poultry Science. 2008a;49:133–143. doi: 10.1080/00071660802001722. PubMed DOI

Wellman-Labadie O, Picman J, Hincke MT. Comparative antibacterial activity of avian egg white protein extracts. British Poultry Science. 2008b;49:125–132. doi: 10.1080/00071660801938825. PubMed DOI

Wu JP, Acero-Lopez A. Ovotransferrin: structure, bioactivities, and preparation. Food Research International. 2012;46:480–487. doi: 10.1016/j.foodres.2011.07.012. DOI

Zhu F, Qiu N, Sun H, Meng Y, Zhou Y. Integrated proteomic and n-glycoproteomic analyses of chicken egg during embryonic development. Journal of Agricultural and Food Chemistry. 2019;67:11675–11683. doi: 10.1021/acs.jafc.9b05133. PubMed DOI

See more in PubMed

figshare
10.6084/m9.figshare.14554203.v1

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...