Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
850622
European Union's Horizon 2020 research and innovation program
949191
European Union's Horizon 2020 research and innovation program
Knut and Alice Wallenberg Foundation
European Research Council - International
PubMed
34825522
PubMed Central
PMC8787424
DOI
10.1002/advs.202103132
Knihovny.cz E-resources
- Keywords
- Xenopus laevis oocytes, electrochemistry, organic bioelectronics, potassium channels, reactive oxygen species,
- MeSH
- Bridged Bicyclo Compounds, Heterocyclic metabolism MeSH
- Potassium Channels, Voltage-Gated metabolism MeSH
- Models, Animal MeSH
- Oocytes metabolism MeSH
- Oxidation-Reduction MeSH
- Hydrogen Peroxide metabolism MeSH
- Polymers metabolism MeSH
- Reactive Oxygen Species metabolism MeSH
- Xenopus laevis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bridged Bicyclo Compounds, Heterocyclic MeSH
- Potassium Channels, Voltage-Gated MeSH
- Hydrogen Peroxide MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Browser
- Polymers MeSH
- Reactive Oxygen Species MeSH
H2 O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2 O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2 O2 ). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2 O2 -sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2 O2 delivery system, paving the way to ROS-based organic bioelectronics.
Department of Biomedical and Clinical Sciences Linköping University Linköping SE 58185 Sweden
Wallenberg Center for Molecular Medicine Linköping University Linköping SE 58185 Sweden
See more in PubMed
Lee L. Y., Loscalzo J., Systems Biology and Network Medicine: An Integrated Approach to Redox Biology and Pathobiology, Elsevier, New York: 2020.
Forman H. J., Ursini F., Maiorino M., J. Mol. Cell. Cardiol. 2014, 73, 2. PubMed PMC
Suzuki Y. J., Forman H. J., Sevanian A., Free Radicals Biol. Med. 1997, 22, 269. PubMed
Di Meo S., Reed T. T., Venditti P., Victor V. M., Oxid. Med. Cell. Longevity 2016, 2016, 1245049. PubMed PMC
Holmström K. M., Finkel T., Nat. Rev. Mol. Cell Biol. 2014, 15, 411. PubMed
Patel R., Rinker L., Peng J., Chilian W. M., Reactive Oxygen Species (ROS) in Living Cells (Eds: Filip C., Albu E.), IntechOpen, London: 2018.
D'Autréaux B., Toledano M. B., Nat. Rev. Mol. Cell Biol. 2007, 8, 813. PubMed
Roy J., Galano J. M., Durand T., Le Guennec J. Y., Lee J. C. Y., FASEB J. 2017, 31, 3729. PubMed
Sies H., Berndt C., Jones D. P., Annu. Rev. Biochem. 2017, 86, 715. PubMed
Di Marzo N., Chisci E., Giovannoni R., Cells 2018, 7, 156. PubMed PMC
Sies H., Chance B., FEBS Lett. 1970, 11, 172. PubMed
Sies H., Curr. Opin. Toxicol. 2018, 7, 122.
Winterbourn C. C., Antioxid. Redox Signaling 2018, 29, 541. PubMed
Forman H. J., Maiorino M., Ursini F., Biochemistry 2010, 49, 835. PubMed PMC
Bienert G. P., Schjoerring J. K., Jahn T. P., Biochim. Biophys. Acta, Biomembr. 2006, 1758, 994. PubMed
Rhee S. G., Exp. Mol. Med. 1999, 31, 53. PubMed
Rampon C., Volovitch M., Joliot A., Vriz S., Antioxidants 2018, 7, 159. PubMed PMC
Sies H., Redox Biol. 2017, 11, 613. PubMed PMC
Genestra M., Cell. Signalling 2007, 19, 1807. PubMed
Sies H., J. Biol. Chem. 2014, 289, 8735. PubMed PMC
Glorieux C., Calderon P. B., Biol. Chem. 2017, 398, 1095. PubMed
Gamper N., Ooi L., Antioxid. Redox Signaling 2015, 22, 486. PubMed PMC
Gamper N., Zaika O., Li Y., Martin P., Hernandez C. C., Perez M. R., Wang A. Y. C., Jaffe D. B., Shapiro M. S., EMBO J. 2006, 25, 4996. PubMed PMC
Wang H. S., Pan Z., Shi W., Brown B. S., Wymore R. S., Cohen I. S., Dixon J. E., McKinnon D., Science 1998, 282, 1890. PubMed
Cooper E. C., Aldape K. D., Abosch A., Barbaro N. M., Berger M. S., Peacock W. S., Jan Y. N., Jan L. Y., Proc. Natl. Acad. Sci. USA 2000, 97, 4914. PubMed PMC
Barrese V., Stott J. B., Greenwood I. A., Annu. Rev. Pharmacol. Toxicol. 2018, 58, 625. PubMed
Sahoo N., Hoshi T., Heinemann S. H., Antioxid. Redox Signaling 2014, 21, 933. PubMed PMC
Miceli F., Soldovieri M. V., Ambrosino P., Manocchio L., Mosca I., Taglialatela M., Curr. Med. Chem. 2017, 25, 2637. PubMed
Greene D. L., Hoshi N., Cell. Mol. Life Sci. 2017, 74, 495. PubMed PMC
Nappi P., Miceli F., Soldovieri M. V., Ambrosino P., Barrese V., Taglialatela M., Pfluegers Arch. 2020, 472, 881. PubMed
Abd‐Elsayed A., Jackson M., Gu S. L., Fiala K., Gu J., Mol. Pain 2019, 15, 174480691986425. PubMed PMC
Rivera‐Arconada I., Roza C., Lopez‐Garcia J. A., Front. Mol. Neurosci. 2009, 2, 10. PubMed PMC
Esin E., Yalcin S., OncoTargets Ther. 2014, 7, 599. PubMed PMC
Phillips A. W., Parameswaran R., Lichter E., Jeong J., Meng L., Burke M., Koehler K., Lee Y. V., Tian B., ACS Appl. Mater. Interfaces 2021, 13, 15490. PubMed
Abdel Aziz I., Malferrari M., Roggiani F., Tullii G., Rapino S., Antognazza M. R., iScience 2020, 23, 101091. PubMed PMC
Antognazza M. R., Aziz I. A., Lodola F., Oxid. Med. Cell. Longevity 2019, 2019, 2867516. PubMed PMC
Lodola F., Rosti V., Tullii G., Desii A., Tapella L., Catarsi P., Lim D., Moccia F., Antognazza M. R., Sci. Adv. 2019, 5, eaav4620. PubMed PMC
Park J., Jin K., Sahasrabudhe A., Chiang P., Maalouf J. H., Koehler F., Rosenfeld D., Rao S., Tanaka T., Khudiyev T., Schiffer Z. J., Fink Y., Yizhar O., Manthiram K., Anikeeva P., Nat. Nanotechnol. 2020, 15, 690. PubMed PMC
Mitraka E., Gryszel M., Vagin M., Jafari M. J., Singh A., Warczak M., Mitrakas M., Berggren M., Ederth T., Zozoulenko I., Crispin X., Głowacki E. D., Adv. Sustainable Syst. 2019, 3, 1800110.
Valiollahi R., Vagin M., Gueskine V., Singh A., Grigoriev S. A., Pushkarev A. S., Pushkareva I. V., Fahlman M., Liu X., Khan Z., Berggren M., Zozoulenko I., Crispin X., Sustainable Energy Fuels 2019, 3, 3387.
Plieth W., Electrochemistry for Materials Science, Elsevier, Amsterdam: 2008.
Grdeń M., Łukaszewski M., Jerkiewicz G., Czerwiński A., Electrochim. Acta 2008, 53, 7583.
Plauck A., Stangland E. E., Dumesic J. A., Mavrikakis M., Proc. Natl. Acad. Sci. USA 2016, 113, E1973. PubMed PMC
Gueskine V., Singh A., Vagin M., Crispin X., Zozoulenko I., J. Phys. Chem. C 2020, 124, 13263.
Josephy P. D., Eling T., Mason R. P., J. Biol. Chem. 1982, 257, 3669. PubMed
Hille B., Ion Channels of Excitable Membranes, Sinauer Associates Inc, Sunderland, MA: 2001.
Warczak M., Gryszel M., Jakešová M., Đerek V., Głowacki E. D., Chem. Commun. 2018, 54, 1960. PubMed
Rabl H., Wielend D., Tekoglu S., Seelajaroen H., Neugebauer H., Heitzmann N., Apaydin D. H., Scharber M. C., Sariciftci N. S., ACS Appl. Energy Mater. 2020, 3, 10611. PubMed PMC
Jakešová M., Apaydin D. H., Sytnyk M., Oppelt K., Heiss W., Sariciftci N. S., Głowacki E. D., Adv. Funct. Mater. 2016, 26, 5248.
Gryszel M., Sytnyk M., Jakesova M., Romanazzi G., Gabrielsson R., Heiss W., Głowacki E. D., ACS Appl. Mater. Interfaces 2018, 10, 13253. PubMed
Wei R., Gryszel M., Migliaccio L., Głowacki E. D., J. Mater. Chem. C 2020, 8, 10897.
Gryszel M., Rybakiewicz R., Głowacki E. D., Adv. Sustainable Syst. 2019, 3, 1900027.
Wadnerkar N., Gueskine V., Głowacki E. D., Zozoulenko I., J. Phys. Chem. A 2020, 124, 9605. PubMed PMC
Jakešová M., Ejneby M. S., Đerek V., Schmidt T., Gryszel M., Brask J., Schindl R., Simon D. T., Berggren M., Elinder F., Głowacki E. D., Sci. Adv. 2019, 5, eaav5265. PubMed PMC
Ejneby M. S., Migliaccio L., Gicevic M., Jakešová M., Elinder F., Głowacki E. D., Adv. Mater. Technol. 2020, 5, 1900860.
Gryszel M., Głowacki E. D., Chem. Commun. 2020, 56, 1705. PubMed
Wise D. L., Houghton G., Chem. Eng. Sci. 1966, 21, 999.
van Stroe‐Biezen S. A. M., Everaerts F. M., Janssen L. J. J., Tacken R. A., Anal. Chim. Acta 1993, 273, 553.