Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
850622
European Union's Horizon 2020 research and innovation program
949191
European Union's Horizon 2020 research and innovation program
Knut and Alice Wallenberg Foundation
European Research Council - International
PubMed
34825522
PubMed Central
PMC8787424
DOI
10.1002/advs.202103132
Knihovny.cz E-zdroje
- Klíčová slova
- Xenopus laevis oocytes, electrochemistry, organic bioelectronics, potassium channels, reactive oxygen species,
- MeSH
- bicyklické sloučeniny heterocyklické metabolismus MeSH
- draslíkové kanály řízené napětím metabolismus MeSH
- modely u zvířat MeSH
- oocyty metabolismus MeSH
- oxidace-redukce MeSH
- peroxid vodíku metabolismus MeSH
- polymery metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bicyklické sloučeniny heterocyklické MeSH
- draslíkové kanály řízené napětím MeSH
- peroxid vodíku MeSH
- poly(3,4-ethylene dioxythiophene) MeSH Prohlížeč
- polymery MeSH
- reaktivní formy kyslíku MeSH
H2 O2 plays a significant role in a range of physiological processes where it performs vital tasks in redox signaling. The sensitivity of many biological pathways to H2 O2 opens up a unique direction in the development of bioelectronics devices to control levels of reactive-oxygen species (ROS). Here a microfabricated ROS modulation device that relies on controlled faradaic reactions is presented. A concentric pixel arrangement of a peroxide-evolving cathode surrounded by an anode ring which decomposes the peroxide, resulting in localized peroxide delivery is reported. The conducting polymer (poly(3,4-ethylenedioxythiophene) (PEDOT), is exploited as the cathode. PEDOT selectively catalyzes the oxygen reduction reaction resulting in the production of hydrogen peroxide (H2 O2 ). Using electrochemical and optical assays, combined with modeling, the performance of the devices is benchmarked. The concentric pixels generate tunable gradients of peroxide and oxygen concentrations. The faradaic devices are prototyped by modulating human H2 O2 -sensitive Kv7.2/7.3 (M-type) channels expressed in a single-cell model (Xenopus laevis oocytes). The Kv7 ion channel family is responsible for regulating neuronal excitability in the heart, brain, and smooth muscles, making it an ideal platform for faradaic ROS stimulation. The results demonstrate the potential of PEDOT to act as an H2 O2 delivery system, paving the way to ROS-based organic bioelectronics.
Department of Biomedical and Clinical Sciences Linköping University Linköping SE 58185 Sweden
Wallenberg Center for Molecular Medicine Linköping University Linköping SE 58185 Sweden
Zobrazit více v PubMed
Lee L. Y., Loscalzo J., Systems Biology and Network Medicine: An Integrated Approach to Redox Biology and Pathobiology, Elsevier, New York: 2020.
Forman H. J., Ursini F., Maiorino M., J. Mol. Cell. Cardiol. 2014, 73, 2. PubMed PMC
Suzuki Y. J., Forman H. J., Sevanian A., Free Radicals Biol. Med. 1997, 22, 269. PubMed
Di Meo S., Reed T. T., Venditti P., Victor V. M., Oxid. Med. Cell. Longevity 2016, 2016, 1245049. PubMed PMC
Holmström K. M., Finkel T., Nat. Rev. Mol. Cell Biol. 2014, 15, 411. PubMed
Patel R., Rinker L., Peng J., Chilian W. M., Reactive Oxygen Species (ROS) in Living Cells (Eds: Filip C., Albu E.), IntechOpen, London: 2018.
D'Autréaux B., Toledano M. B., Nat. Rev. Mol. Cell Biol. 2007, 8, 813. PubMed
Roy J., Galano J. M., Durand T., Le Guennec J. Y., Lee J. C. Y., FASEB J. 2017, 31, 3729. PubMed
Sies H., Berndt C., Jones D. P., Annu. Rev. Biochem. 2017, 86, 715. PubMed
Di Marzo N., Chisci E., Giovannoni R., Cells 2018, 7, 156. PubMed PMC
Sies H., Chance B., FEBS Lett. 1970, 11, 172. PubMed
Sies H., Curr. Opin. Toxicol. 2018, 7, 122.
Winterbourn C. C., Antioxid. Redox Signaling 2018, 29, 541. PubMed
Forman H. J., Maiorino M., Ursini F., Biochemistry 2010, 49, 835. PubMed PMC
Bienert G. P., Schjoerring J. K., Jahn T. P., Biochim. Biophys. Acta, Biomembr. 2006, 1758, 994. PubMed
Rhee S. G., Exp. Mol. Med. 1999, 31, 53. PubMed
Rampon C., Volovitch M., Joliot A., Vriz S., Antioxidants 2018, 7, 159. PubMed PMC
Sies H., Redox Biol. 2017, 11, 613. PubMed PMC
Genestra M., Cell. Signalling 2007, 19, 1807. PubMed
Sies H., J. Biol. Chem. 2014, 289, 8735. PubMed PMC
Glorieux C., Calderon P. B., Biol. Chem. 2017, 398, 1095. PubMed
Gamper N., Ooi L., Antioxid. Redox Signaling 2015, 22, 486. PubMed PMC
Gamper N., Zaika O., Li Y., Martin P., Hernandez C. C., Perez M. R., Wang A. Y. C., Jaffe D. B., Shapiro M. S., EMBO J. 2006, 25, 4996. PubMed PMC
Wang H. S., Pan Z., Shi W., Brown B. S., Wymore R. S., Cohen I. S., Dixon J. E., McKinnon D., Science 1998, 282, 1890. PubMed
Cooper E. C., Aldape K. D., Abosch A., Barbaro N. M., Berger M. S., Peacock W. S., Jan Y. N., Jan L. Y., Proc. Natl. Acad. Sci. USA 2000, 97, 4914. PubMed PMC
Barrese V., Stott J. B., Greenwood I. A., Annu. Rev. Pharmacol. Toxicol. 2018, 58, 625. PubMed
Sahoo N., Hoshi T., Heinemann S. H., Antioxid. Redox Signaling 2014, 21, 933. PubMed PMC
Miceli F., Soldovieri M. V., Ambrosino P., Manocchio L., Mosca I., Taglialatela M., Curr. Med. Chem. 2017, 25, 2637. PubMed
Greene D. L., Hoshi N., Cell. Mol. Life Sci. 2017, 74, 495. PubMed PMC
Nappi P., Miceli F., Soldovieri M. V., Ambrosino P., Barrese V., Taglialatela M., Pfluegers Arch. 2020, 472, 881. PubMed
Abd‐Elsayed A., Jackson M., Gu S. L., Fiala K., Gu J., Mol. Pain 2019, 15, 174480691986425. PubMed PMC
Rivera‐Arconada I., Roza C., Lopez‐Garcia J. A., Front. Mol. Neurosci. 2009, 2, 10. PubMed PMC
Esin E., Yalcin S., OncoTargets Ther. 2014, 7, 599. PubMed PMC
Phillips A. W., Parameswaran R., Lichter E., Jeong J., Meng L., Burke M., Koehler K., Lee Y. V., Tian B., ACS Appl. Mater. Interfaces 2021, 13, 15490. PubMed
Abdel Aziz I., Malferrari M., Roggiani F., Tullii G., Rapino S., Antognazza M. R., iScience 2020, 23, 101091. PubMed PMC
Antognazza M. R., Aziz I. A., Lodola F., Oxid. Med. Cell. Longevity 2019, 2019, 2867516. PubMed PMC
Lodola F., Rosti V., Tullii G., Desii A., Tapella L., Catarsi P., Lim D., Moccia F., Antognazza M. R., Sci. Adv. 2019, 5, eaav4620. PubMed PMC
Park J., Jin K., Sahasrabudhe A., Chiang P., Maalouf J. H., Koehler F., Rosenfeld D., Rao S., Tanaka T., Khudiyev T., Schiffer Z. J., Fink Y., Yizhar O., Manthiram K., Anikeeva P., Nat. Nanotechnol. 2020, 15, 690. PubMed PMC
Mitraka E., Gryszel M., Vagin M., Jafari M. J., Singh A., Warczak M., Mitrakas M., Berggren M., Ederth T., Zozoulenko I., Crispin X., Głowacki E. D., Adv. Sustainable Syst. 2019, 3, 1800110.
Valiollahi R., Vagin M., Gueskine V., Singh A., Grigoriev S. A., Pushkarev A. S., Pushkareva I. V., Fahlman M., Liu X., Khan Z., Berggren M., Zozoulenko I., Crispin X., Sustainable Energy Fuels 2019, 3, 3387.
Plieth W., Electrochemistry for Materials Science, Elsevier, Amsterdam: 2008.
Grdeń M., Łukaszewski M., Jerkiewicz G., Czerwiński A., Electrochim. Acta 2008, 53, 7583.
Plauck A., Stangland E. E., Dumesic J. A., Mavrikakis M., Proc. Natl. Acad. Sci. USA 2016, 113, E1973. PubMed PMC
Gueskine V., Singh A., Vagin M., Crispin X., Zozoulenko I., J. Phys. Chem. C 2020, 124, 13263.
Josephy P. D., Eling T., Mason R. P., J. Biol. Chem. 1982, 257, 3669. PubMed
Hille B., Ion Channels of Excitable Membranes, Sinauer Associates Inc, Sunderland, MA: 2001.
Warczak M., Gryszel M., Jakešová M., Đerek V., Głowacki E. D., Chem. Commun. 2018, 54, 1960. PubMed
Rabl H., Wielend D., Tekoglu S., Seelajaroen H., Neugebauer H., Heitzmann N., Apaydin D. H., Scharber M. C., Sariciftci N. S., ACS Appl. Energy Mater. 2020, 3, 10611. PubMed PMC
Jakešová M., Apaydin D. H., Sytnyk M., Oppelt K., Heiss W., Sariciftci N. S., Głowacki E. D., Adv. Funct. Mater. 2016, 26, 5248.
Gryszel M., Sytnyk M., Jakesova M., Romanazzi G., Gabrielsson R., Heiss W., Głowacki E. D., ACS Appl. Mater. Interfaces 2018, 10, 13253. PubMed
Wei R., Gryszel M., Migliaccio L., Głowacki E. D., J. Mater. Chem. C 2020, 8, 10897.
Gryszel M., Rybakiewicz R., Głowacki E. D., Adv. Sustainable Syst. 2019, 3, 1900027.
Wadnerkar N., Gueskine V., Głowacki E. D., Zozoulenko I., J. Phys. Chem. A 2020, 124, 9605. PubMed PMC
Jakešová M., Ejneby M. S., Đerek V., Schmidt T., Gryszel M., Brask J., Schindl R., Simon D. T., Berggren M., Elinder F., Głowacki E. D., Sci. Adv. 2019, 5, eaav5265. PubMed PMC
Ejneby M. S., Migliaccio L., Gicevic M., Jakešová M., Elinder F., Głowacki E. D., Adv. Mater. Technol. 2020, 5, 1900860.
Gryszel M., Głowacki E. D., Chem. Commun. 2020, 56, 1705. PubMed
Wise D. L., Houghton G., Chem. Eng. Sci. 1966, 21, 999.
van Stroe‐Biezen S. A. M., Everaerts F. M., Janssen L. J. J., Tacken R. A., Anal. Chim. Acta 1993, 273, 553.