• This record comes from PubMed

Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes

. 2024 Oct 09 ; 16 (40) : 53567-53576. [epub] 20241001

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.

See more in PubMed

Handbook of Bioelectronics Carrara S., Iniewski K., Eds.; Cambridge University Press: Cambridge, 2015. 10.1017/CBO9781139629539. DOI

Bettinger C. J.; Ecker M.; Yoshida Kozai T. D.; Malliaras G. G.; Meng E.; Voit W. Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS Bull. 2020, 45, 655–668. 10.1557/mrs.2020.195. PubMed DOI PMC

Won S. M.; Cai L.; Gutruf P.; Rogers J. A. Wireless and Battery-Free Technologies for Neuroengineering. Nat. Biomed. Eng. 2023, 7, 405–423. 10.1038/s41551-021-00683-3. PubMed DOI PMC

Neuromodulation Krames E. S., Peckham P. H., Rezai A. R., Eds.; Academic Press: London, 2009. 10.1023/B:MYCO.0000003704.30293.b6. DOI

Willner I.; Katz E.. Bioelectronics; Wiley-VCH: Weinheim, 2005.

Ferro M. D.; Melosh N. A. Electronic and Ionic Materials for Neurointerfaces. Adv. Funct. Mater. 2018, 28, 1704335.10.1002/adfm.201704335. DOI

Boehler C.; Vieira D. M.; Egert U.; Asplund M. NanoPt - A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS Appl. Mater. Interfaces 2020, 12 (13), 14855–14865. 10.1021/acsami.9b22798. PubMed DOI

Gablech I.; Głowacki E. D. State-of-the-Art Electronic Materials for Thin Films in Bioelectronics. Adv. Electron. Mater. 2023, 9, 230025810.1002/aelm.202300258. DOI

Merrill D. R.; Bikson M.; Jefferys J. G. R. Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. J. Neurosci. Methods 2005, 141 (2), 171–198. 10.1016/j.jneumeth.2004.10.020. PubMed DOI

Merrill D. R.The Electrochemistry of Charge Injection at the Electrode/Tissue Interface. In Implantable Neural Prostheses 2 Zhou D. D., Greenbaum E., Eds.; Springer Science+Business Media, 2010. pp. 85–138. 10.1007/978-0-387-98120-8_4. DOI

Cogan S. F. Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 2008, 10 (1), 275–309. 10.1146/annurev.bioeng.10.061807.160518. PubMed DOI

Boehler C.; Carli S.; Fadiga L.; Stieglitz T.; Asplund M. Tutorial: Guidelines for Standardized Performance Tests for Electrodes Intended for Neural Interfaces and Bioelectronics. Nat. Protoc. 2020, 15 (11), 3557–3578. 10.1038/s41596-020-0389-2. PubMed DOI

Brummer S. B.; Turner M. J. Electrical Stimulation of the Nervous System: The Principle of Safe Charge Injection with Noble Metal Electrodes. Bioelectrochemistry Bioenerg. 1975, 2 (1), 13–25. 10.1016/0302-4598(75)80002-X. DOI

Brummer S. B.; Turner M. J. Electrical Stimulation with Pt Electrodes: 1-A Method for Determination of “Real” Electrode Areas. IEEE Trans. Biomed. Eng. 1977, BME-24 (5), 436–439. 10.1109/TBME.1977.326178. PubMed DOI

Brummer S. B.; Turner M. J. Electrical Stimulation with Pt Electrodes: II–Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits. IEEE Trans. Biomed. Eng. 1977, BME-24 (5), 440–443. 10.1109/TBME.1977.326179. PubMed DOI

Brummer S. B.; Turner M. J. Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes. IEEE Trans. Biomed. Eng. 1977, 241, 59–63. 10.1109/tbme.1977.326218. PubMed DOI

McHardy J.; Robblee L. S.; Marston J. M.; Brummer S. B. Electrical stimulation with Pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline. Biomaterials 1980, 1, 129–134. 10.1016/0142-9612(80)90034-4. PubMed DOI

Robblee L. S.; McHardy J.; Marston J. M.; Brummer S. B. Electrical Stimulation with Pt Electrodes. V. The Effect of Protein on Pt Dissolution. Biomaterials 1980, 1 (3), 135–139. 10.1016/0142-9612(80)90035-6. PubMed DOI

Matter L.; Abdullaeva O. S.; Shaner S.; Leal J.; Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. Adv. Sci. 2024, 11, 2306244.10.1002/advs.202306244. PubMed DOI PMC

Abdullaeva O. S.; Sahalianov I.; Silverå Ejneby M.; Jakeśová M.; Zozoulenko I.; Liin S. I.; Głowacki E. D. Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels. Adv. Sci. 2022, 9, 2103132.10.1002/advs.202103132. PubMed DOI PMC

Abdel Aziz I.; Maver L.; Giannasi C.; Niada S.; Brini A. T.; Antognazza M. R. Polythiophene-Mediated Light Modulation of Membrane Potential and Calcium Signalling in Human Adipose-Derived Stem/Stromal Cells. J. Mater. Chem. 2020, 10, 9823–9833. 10.1039/d2tc01426b. PubMed DOI PMC

Ehlich J.; Migliaccio L.; Sahalianov I.; Nikić M.; Brodský J.; Gablech I.; Vu X. T.; Ingebrandt S.; Głowacki E. D. Direct Measurement of Oxygen Reduction Reactions at Neurostimulation Electrodes. J. Neural Eng. 2022, 19, 03604510.1088/1741-2552/ac77c0. PubMed DOI

Ponzano G. P. Sodium Hypochlorite: History, Properties, Electrochemical Production. Contrib. Nephrol. 2006, 154, 7–23. 10.1159/000096810. PubMed DOI

Hidalgo E.; Bartolome R.; Dominguez C. Cytotoxicity Mechanisms of Sodium Hypochlorite in Cultured Human Dermal Fibroblasts and Its Bactericidal Effectiveness. Chem. Biol. Interact. 2002, 139 (3), 265–282. 10.1016/S0009-2797(02)00003-0. PubMed DOI

Coaguila-Llerena H.; Raphael da Silva L.; Faria G. Research Methods Assessing Sodium Hypochlorite Cytotoxicity: A Scoping Review. Heliyon 2024, 10 (1), e2306010.1016/j.heliyon.2023.e23060. PubMed DOI PMC

Josephy D.; Eling T.; Mason R. The Horseradish Peroxidase-Catalyzed Oxidation of 3,5,3′,5′- Tetramethylbenzidine. J. Biol. Chem. 1982, 257 (7), 3669–3675. 10.1016/S0021-9258(18)34832-4. PubMed DOI

Palladino P.; Torrini F.; Scarano S.; Minunni M. 3,3′,5,5′-Tetramethylbenzidine as Multi-Colorimetric Indicator of Chlorine in Water in Line with Health Guideline Values. Anal. Bioanal. Chem. 2020, 412 (28), 7861–7869. 10.1007/s00216-020-02918-9. PubMed DOI PMC

Weltin A.; Kieninger J. Electrochemical Methods for Neural Interface Electrodes. J. Neural Eng. 2021, 18 (5), 05200110.1088/1741-2552/ac28d5. PubMed DOI

Doering M.; Kieninger J.; Kübler J.; Hofmann U. G.; Rupitsch S. J.; Urban G. A.; Weltin A. Advanced Electrochemical Potential Monitoring for Improved Understanding of Electrical Neurostimulation Protocols. J. Neural Eng. 2023, 20 (3), 03603610.1088/1741-2552/acdd9d. PubMed DOI

Kumsa D. W.; Hudak E. M.; Bhadra N.; Mortimer J. T. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ⩽ k ⩽ 2.3 in rat subcutaneous tissues. J. Neural Eng. 2019, 16 (2), 02601810.1088/1741-2552/aaf931. PubMed DOI

Miglbauer E.; Abdullaeva O. S.; Gryszel M.; Głowacki E. D. Faradaic Fenton Pixel: Reactive Oxygen Species Delivery Using Au/Cr Electrochemistry. ChemBioChem. 2023, 24, e20230035310.1002/cbic.202300353. PubMed DOI

Mitraka E.; Gryszel M.; Vagin M.; Jafari M. J.; Singh A.; Warczak M.; Mitrakas M.; Berggren M.; Ederth T.; Zozoulenko I.; Crispin X.; Głowacki E. D. Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-Ethylenedioxythiophene) Electrodes. Adv. Sustain. Syst. 2019, 3, 1800110.10.1002/adsu.201800110. DOI

Daubinger P.; Kieninger J.; Unmüssig T.; Urban G. A. Electrochemical Characteristics of Nanostructured Platinum Electrodes-A Cyclic Voltammetry Study. Phys. Chem. Chem. Phys. 2014, 16 (18), 8392–8399. 10.1039/C4CP00342J. PubMed DOI

Kandiel T. A.; Dillert R.; Robben L.; Bahnemann D. W. Photonic Efficiency and Mechanism of Photocatalytic Molecular Hydrogen Production over Platinized Titanium Dioxide from Aqueous Methanol Solutions. Catal. Today 2011, 161 (1), 196–201. 10.1016/j.cattod.2010.08.012. DOI

McHardy J.; Geller D.; Brummer S. B. An Approach to Corrosion Control during Electrical Stimulation. Ann. Biomed. Eng. 1977, 5 (2), 144–149. 10.1007/BF02364014. PubMed DOI

Black R. C.; Hannaker P. Dissolution of Smooth Platinum Electrodes in Biological Fluids. Appl. Neurophysiol. 1979, 42, 366–374. 10.1159/000102382. PubMed DOI

Shepherd R. K.; Carter P. M.; Dalrymple A. N.; Enke Y. L.; Wise A. K.; Nguyen T.; Firth J.; Thompson A.; Fallon J. B. Platinum Dissolution and Tissue Response Following Long-Term Electrical Stimulation at High Charge Densities. J. Neural Eng. 2021, 18, 03602110.1088/1741-2552/abe5ba. PubMed DOI PMC

Topalov A. A.; Cherevko S.; Zeradjanin A. R.; Meier J. C.; Katsounaros I.; Mayrhofer K. J. J. Towards a Comprehensive Understanding of Platinum Dissolution in Acidic Media. Chem. Sci. 2014, 5 (2), 631–638. 10.1039/C3SC52411F. DOI

Park J.; Jin K.; Sahasrabudhe A.; Chiang P.; Maalouf J. H.; Koehler F.; Rosenfeld D.; Rao S.; Tanaka T.; Khudiyev T.; Schiffer Z. J.; Fink Y.; Yizhar O.; Manthiram K.; Anikeeva P. In Situ Electrochemical Generation of Nitric Oxide for Neuronal Modulation. Nat. Nanotechnol. 2020, 15, 690–697. 10.1038/s41565-020-0701-x. PubMed DOI PMC

Wong J. J. Y.; Varga B. V.; Káradóttir R. T.; Hall E. A. H. Electrochemically Induced in Vitro Focal Hypoxia in Human Neurons. Front. Cell Dev. Biol. 2022, 10, 96834110.3389/fcell.2022.968341. PubMed DOI PMC

Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. 10.1016/j.redox.2016.12.035. PubMed DOI PMC

Urban S.; Deschner B. J.; Trinkies L. L.; Kieninger J.; Kraut M.; Dittmeyer R.; Urban G. A.; Weltin A. In Situ Mapping of H2, O2, and H2O2in Microreactors: A Parallel, Selective Multianalyte Detection Method. ACS Sensors 2021, 6 (4), 1583–1594. 10.1021/acssensors.0c02509. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...