Shattering the Water Window: Comprehensive Mapping of Faradaic Reactions on Bioelectronics Electrodes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
39351783
PubMed Central
PMC11472339
DOI
10.1021/acsami.4c12268
Knihovny.cz E-resources
- Keywords
- bioelectronics, electrochemistry, neurostimulation, platinum electrodes, reactive chlorine species, reactive oxygen species, water window,
- Publication type
- Journal Article MeSH
It is generally accepted that for safe use of neural interface electrodes, irreversible faradaic reactions should be avoided in favor of capacitive charge injection. However, in some cases, faradaic reactions can be desirable for controlling specific (electro)physiological outcomes or for biosensing purposes. This study aims to systematically map the basic faradaic reactions occurring at bioelectronic electrode interfaces. We analyze archetypical platinum-iridium (PtIr), the most commonly used electrode material in biomedical implants. By providing a detailed guide to these reactions and the factors that influence them, we offer a valuable resource for researchers seeking to suppress or exploit faradaic reactions in various electrode materials. We employed a combination of electrochemical techniques and direct quantification methods, including amperometric, potentiometric, and spectrophotometric assays, to measure O2, H2, pH, H2O2, Cl2/OCl-, and soluble platinum and iridium ions. We compared phosphate-buffered saline (PBS) with an unbuffered electrolyte and complex cell culture media containing proteins. Our results reveal that the "water window"─the potential range without significant water electrolysis─varies depending on the electrolyte used. In the culture medium that is rich with redox-active species, a window of potentials where no faradaic process occurs essentially does not exist. Under cathodic polarizations, significant pH increases (alkalization) were observed, while anodic water splitting competes with other processes in media, preventing prevalent acidification. We quantified the oxygen reduction reaction and accumulation of H2O2 as a byproduct. PtIr efficiently deoxygenates the electrolyte under low cathodic polarizations, generating local hypoxia. Under anodic polarizations, chloride oxidation competes with oxygen evolution, producing relatively high and cytotoxic concentrations of hypochlorite (OCl-) under certain conditions. These oxidative processes occur alongside PtIr dissolution through the formation of soluble salts. Our findings indicate that the conventional understanding of the water window is an oversimplification. Important faradaic reactions, such as oxygen reduction and chloride oxidation, occur within or near the edges of the water window. Furthermore, the definition of the water window significantly depends on the electrolyte composition, with PBS yielding different results compared with culture media.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 Brno 611 37 Czech Republic
See more in PubMed
Handbook of Bioelectronics Carrara S., Iniewski K., Eds.; Cambridge University Press: Cambridge, 2015. 10.1017/CBO9781139629539. DOI
Bettinger C. J.; Ecker M.; Yoshida Kozai T. D.; Malliaras G. G.; Meng E.; Voit W. Recent advances in neural interfaces—Materials chemistry to clinical translation. MRS Bull. 2020, 45, 655–668. 10.1557/mrs.2020.195. PubMed DOI PMC
Won S. M.; Cai L.; Gutruf P.; Rogers J. A. Wireless and Battery-Free Technologies for Neuroengineering. Nat. Biomed. Eng. 2023, 7, 405–423. 10.1038/s41551-021-00683-3. PubMed DOI PMC
Neuromodulation Krames E. S., Peckham P. H., Rezai A. R., Eds.; Academic Press: London, 2009. 10.1023/B:MYCO.0000003704.30293.b6. DOI
Willner I.; Katz E.. Bioelectronics; Wiley-VCH: Weinheim, 2005.
Ferro M. D.; Melosh N. A. Electronic and Ionic Materials for Neurointerfaces. Adv. Funct. Mater. 2018, 28, 1704335.10.1002/adfm.201704335. DOI
Boehler C.; Vieira D. M.; Egert U.; Asplund M. NanoPt - A Nanostructured Electrode Coating for Neural Recording and Microstimulation. ACS Appl. Mater. Interfaces 2020, 12 (13), 14855–14865. 10.1021/acsami.9b22798. PubMed DOI
Gablech I.; Głowacki E. D. State-of-the-Art Electronic Materials for Thin Films in Bioelectronics. Adv. Electron. Mater. 2023, 9, 230025810.1002/aelm.202300258. DOI
Merrill D. R.; Bikson M.; Jefferys J. G. R. Electrical Stimulation of Excitable Tissue: Design of Efficacious and Safe Protocols. J. Neurosci. Methods 2005, 141 (2), 171–198. 10.1016/j.jneumeth.2004.10.020. PubMed DOI
Merrill D. R.The Electrochemistry of Charge Injection at the Electrode/Tissue Interface. In Implantable Neural Prostheses 2 Zhou D. D., Greenbaum E., Eds.; Springer Science+Business Media, 2010. pp. 85–138. 10.1007/978-0-387-98120-8_4. DOI
Cogan S. F. Neural Stimulation and Recording Electrodes. Annu. Rev. Biomed. Eng. 2008, 10 (1), 275–309. 10.1146/annurev.bioeng.10.061807.160518. PubMed DOI
Boehler C.; Carli S.; Fadiga L.; Stieglitz T.; Asplund M. Tutorial: Guidelines for Standardized Performance Tests for Electrodes Intended for Neural Interfaces and Bioelectronics. Nat. Protoc. 2020, 15 (11), 3557–3578. 10.1038/s41596-020-0389-2. PubMed DOI
Brummer S. B.; Turner M. J. Electrical Stimulation of the Nervous System: The Principle of Safe Charge Injection with Noble Metal Electrodes. Bioelectrochemistry Bioenerg. 1975, 2 (1), 13–25. 10.1016/0302-4598(75)80002-X. DOI
Brummer S. B.; Turner M. J. Electrical Stimulation with Pt Electrodes: 1-A Method for Determination of “Real” Electrode Areas. IEEE Trans. Biomed. Eng. 1977, BME-24 (5), 436–439. 10.1109/TBME.1977.326178. PubMed DOI
Brummer S. B.; Turner M. J. Electrical Stimulation with Pt Electrodes: II–Estimation of Maximum Surface Redox (Theoretical Non-Gassing) Limits. IEEE Trans. Biomed. Eng. 1977, BME-24 (5), 440–443. 10.1109/TBME.1977.326179. PubMed DOI
Brummer S. B.; Turner M. J. Electrochemical Considerations for Safe Electrical Stimulation of the Nervous System with Platinum Electrodes. IEEE Trans. Biomed. Eng. 1977, 241, 59–63. 10.1109/tbme.1977.326218. PubMed DOI
McHardy J.; Robblee L. S.; Marston J. M.; Brummer S. B. Electrical stimulation with Pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline. Biomaterials 1980, 1, 129–134. 10.1016/0142-9612(80)90034-4. PubMed DOI
Robblee L. S.; McHardy J.; Marston J. M.; Brummer S. B. Electrical Stimulation with Pt Electrodes. V. The Effect of Protein on Pt Dissolution. Biomaterials 1980, 1 (3), 135–139. 10.1016/0142-9612(80)90035-6. PubMed DOI
Matter L.; Abdullaeva O. S.; Shaner S.; Leal J.; Asplund M. Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. Adv. Sci. 2024, 11, 2306244.10.1002/advs.202306244. PubMed DOI PMC
Abdullaeva O. S.; Sahalianov I.; Silverå Ejneby M.; Jakeśová M.; Zozoulenko I.; Liin S. I.; Głowacki E. D. Faradaic Pixels for Precise Hydrogen Peroxide Delivery to Control M-Type Voltage-Gated Potassium Channels. Adv. Sci. 2022, 9, 2103132.10.1002/advs.202103132. PubMed DOI PMC
Abdel Aziz I.; Maver L.; Giannasi C.; Niada S.; Brini A. T.; Antognazza M. R. Polythiophene-Mediated Light Modulation of Membrane Potential and Calcium Signalling in Human Adipose-Derived Stem/Stromal Cells. J. Mater. Chem. 2020, 10, 9823–9833. 10.1039/d2tc01426b. PubMed DOI PMC
Ehlich J.; Migliaccio L.; Sahalianov I.; Nikić M.; Brodský J.; Gablech I.; Vu X. T.; Ingebrandt S.; Głowacki E. D. Direct Measurement of Oxygen Reduction Reactions at Neurostimulation Electrodes. J. Neural Eng. 2022, 19, 03604510.1088/1741-2552/ac77c0. PubMed DOI
Ponzano G. P. Sodium Hypochlorite: History, Properties, Electrochemical Production. Contrib. Nephrol. 2006, 154, 7–23. 10.1159/000096810. PubMed DOI
Hidalgo E.; Bartolome R.; Dominguez C. Cytotoxicity Mechanisms of Sodium Hypochlorite in Cultured Human Dermal Fibroblasts and Its Bactericidal Effectiveness. Chem. Biol. Interact. 2002, 139 (3), 265–282. 10.1016/S0009-2797(02)00003-0. PubMed DOI
Coaguila-Llerena H.; Raphael da Silva L.; Faria G. Research Methods Assessing Sodium Hypochlorite Cytotoxicity: A Scoping Review. Heliyon 2024, 10 (1), e2306010.1016/j.heliyon.2023.e23060. PubMed DOI PMC
Josephy D.; Eling T.; Mason R. The Horseradish Peroxidase-Catalyzed Oxidation of 3,5,3′,5′- Tetramethylbenzidine. J. Biol. Chem. 1982, 257 (7), 3669–3675. 10.1016/S0021-9258(18)34832-4. PubMed DOI
Palladino P.; Torrini F.; Scarano S.; Minunni M. 3,3′,5,5′-Tetramethylbenzidine as Multi-Colorimetric Indicator of Chlorine in Water in Line with Health Guideline Values. Anal. Bioanal. Chem. 2020, 412 (28), 7861–7869. 10.1007/s00216-020-02918-9. PubMed DOI PMC
Weltin A.; Kieninger J. Electrochemical Methods for Neural Interface Electrodes. J. Neural Eng. 2021, 18 (5), 05200110.1088/1741-2552/ac28d5. PubMed DOI
Doering M.; Kieninger J.; Kübler J.; Hofmann U. G.; Rupitsch S. J.; Urban G. A.; Weltin A. Advanced Electrochemical Potential Monitoring for Improved Understanding of Electrical Neurostimulation Protocols. J. Neural Eng. 2023, 20 (3), 03603610.1088/1741-2552/acdd9d. PubMed DOI
Kumsa D. W.; Hudak E. M.; Bhadra N.; Mortimer J. T. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-imbalanced, biphasic pulses for 0.566 ⩽ k ⩽ 2.3 in rat subcutaneous tissues. J. Neural Eng. 2019, 16 (2), 02601810.1088/1741-2552/aaf931. PubMed DOI
Miglbauer E.; Abdullaeva O. S.; Gryszel M.; Głowacki E. D. Faradaic Fenton Pixel: Reactive Oxygen Species Delivery Using Au/Cr Electrochemistry. ChemBioChem. 2023, 24, e20230035310.1002/cbic.202300353. PubMed DOI
Mitraka E.; Gryszel M.; Vagin M.; Jafari M. J.; Singh A.; Warczak M.; Mitrakas M.; Berggren M.; Ederth T.; Zozoulenko I.; Crispin X.; Głowacki E. D. Electrocatalytic Production of Hydrogen Peroxide with Poly(3,4-Ethylenedioxythiophene) Electrodes. Adv. Sustain. Syst. 2019, 3, 1800110.10.1002/adsu.201800110. DOI
Daubinger P.; Kieninger J.; Unmüssig T.; Urban G. A. Electrochemical Characteristics of Nanostructured Platinum Electrodes-A Cyclic Voltammetry Study. Phys. Chem. Chem. Phys. 2014, 16 (18), 8392–8399. 10.1039/C4CP00342J. PubMed DOI
Kandiel T. A.; Dillert R.; Robben L.; Bahnemann D. W. Photonic Efficiency and Mechanism of Photocatalytic Molecular Hydrogen Production over Platinized Titanium Dioxide from Aqueous Methanol Solutions. Catal. Today 2011, 161 (1), 196–201. 10.1016/j.cattod.2010.08.012. DOI
McHardy J.; Geller D.; Brummer S. B. An Approach to Corrosion Control during Electrical Stimulation. Ann. Biomed. Eng. 1977, 5 (2), 144–149. 10.1007/BF02364014. PubMed DOI
Black R. C.; Hannaker P. Dissolution of Smooth Platinum Electrodes in Biological Fluids. Appl. Neurophysiol. 1979, 42, 366–374. 10.1159/000102382. PubMed DOI
Shepherd R. K.; Carter P. M.; Dalrymple A. N.; Enke Y. L.; Wise A. K.; Nguyen T.; Firth J.; Thompson A.; Fallon J. B. Platinum Dissolution and Tissue Response Following Long-Term Electrical Stimulation at High Charge Densities. J. Neural Eng. 2021, 18, 03602110.1088/1741-2552/abe5ba. PubMed DOI PMC
Topalov A. A.; Cherevko S.; Zeradjanin A. R.; Meier J. C.; Katsounaros I.; Mayrhofer K. J. J. Towards a Comprehensive Understanding of Platinum Dissolution in Acidic Media. Chem. Sci. 2014, 5 (2), 631–638. 10.1039/C3SC52411F. DOI
Park J.; Jin K.; Sahasrabudhe A.; Chiang P.; Maalouf J. H.; Koehler F.; Rosenfeld D.; Rao S.; Tanaka T.; Khudiyev T.; Schiffer Z. J.; Fink Y.; Yizhar O.; Manthiram K.; Anikeeva P. In Situ Electrochemical Generation of Nitric Oxide for Neuronal Modulation. Nat. Nanotechnol. 2020, 15, 690–697. 10.1038/s41565-020-0701-x. PubMed DOI PMC
Wong J. J. Y.; Varga B. V.; Káradóttir R. T.; Hall E. A. H. Electrochemically Induced in Vitro Focal Hypoxia in Human Neurons. Front. Cell Dev. Biol. 2022, 10, 96834110.3389/fcell.2022.968341. PubMed DOI PMC
Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Urban S.; Deschner B. J.; Trinkies L. L.; Kieninger J.; Kraut M.; Dittmeyer R.; Urban G. A.; Weltin A. In Situ Mapping of H2, O2, and H2O2in Microreactors: A Parallel, Selective Multianalyte Detection Method. ACS Sensors 2021, 6 (4), 1583–1594. 10.1021/acssensors.0c02509. PubMed DOI