Faradaic Fenton Pixel: Reactive Oxygen Species Delivery Using Au/Cr Electrochemistry
Status Publisher Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
949191
European Research Council (ERC)
23-07432S
Grant Agency of the Czech Republic
Brno City Municipality
Knut and Alice Wallenberg
PubMed
37184620
DOI
10.1002/cbic.202300353
Knihovny.cz E-zdroje
- Klíčová slova
- Fenton reaction, bioelectronics, oxygen reduction reaction, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Reactive oxygen species (ROS) are an integral part of many anticancer therapies. Fenton-like processes involving reactions of peroxides with transition metal ions are a particularly potent and tunable subset of ROS approaches. Precise on-demand dosing of the Fenton reaction is an area of great interest. Herein, we present a concept of an electrochemical faradaic pixel that produces controlled amounts of ROS via a Fenton-like process. The pixel comprises a cathode and anode, where the cathode reduces dissolved oxygen to hydrogen peroxide. The anode is made of chromium, which is electrochemically corroded to yield chromium ions. Peroxide and chromium interact to form a highly oxidizing mixture of hydroxyl radicals and hexavalent Cr ions. After benchmarking the electrochemical properties of this type of device, we demonstrate how it can be used under in vitro conditions with a cancer cell line. The faradaic Fenton pixel is a general and scalable concept that can be used for on-demand delivery of redox-active products for controlling a physiological outcome.
Central European Institute of Technology Brno University of Technology 612 00 Brno Czech Republic
Division of Nursing and Medical Technology Luleå University of Technology 97187 Luleå Sweden
Laboratory of Organic Electronics Linköping University Bredgatan 33 60174 Norrköping Sweden
Zobrazit více v PubMed
H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Ca-Cancer J. Clin. 2021, 71, 209.
S. Kwon, H. Ko, D. G. You, K. Kataoka, J. H. Park, Acc. Chem. Res. 2019, 52, 1771.
D. Trachootham, J. Alexandre, P. Huang, Nat. Rev. Drug Discovery 2009, 8, 579.
J. Wang, J. Yi, Cancer Biol. Ther. 2008, 7, 1875.
B. Perillo, M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, A. Migliaccio, Exp. Mol. Med. 2020, 52, 192.
H. Ranji-Burachaloo, P. A. Gurr, D. E. Dunstan, G. G. Qiao, ACS Nano 2018, 12, 11819.
P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, et al., Ca-Cancer J. Clin. 2011, 61, 250.
B. Halliwell, Am. J. Med. 1991, 91, 3 C.
X. Meng, X. Zhang, M. Liu, B. Cai, N. He, Z. Wang, Appl. Mater. Today 2020, 21, 100864.
M. Liu, Y. Xu, Y. Zhao, Z. Wang, D. Shi, Front. Chem. Sci. Eng. 2022, 16, 345.
S. Giannakis, Appl. Catal. B 2019, 248, 309.
Z. Tang, P. Zhao, H. Wang, Y. Liu, W. Bu, Chem. Rev. 2021, 121, 1981.
A. D. Bokare, W. Choi, J. Hazard. Mater. 2014, 275, 121.
A. Prieto, J. Hernández, E. Herrero, J. M. Feliu, J. Solid State Electrochem. 2003, 7, 599.
M. S. El-Deab, T. Okajima, T. Ohsaka, J. Electrochem. Soc. 2003, 150, A851.
P. D. Josephy, T. Eling, R. P. Mason, J. Biol. Chem. 1982, 257, 3669.
A. D. Bokare, W. Choi, Environ. Sci. Technol. 2010, 44, 7232.
X. Shi, A. Chiu, C. T. Chen, B. Halliwell, V. Castranova, V. Vallyathan, J. Toxicol. Environ. Health Part B 1999, 2, 87.
M. Schneider, L. Simunkova, M. Manko, M. M. Lohrengel, W. Hoogsteen, J. Solid State Electrochem. 2019, 23, 345.
A. Sanchez-Hachair, A. Hofmann, Comptes Rendus Chim. 2018, 21, 890.
B. Beverskog, I. Puigdomenech, Corros. Sci. 1997, 39, 43.
M. Todeschini, A. Bastos Da Silva Fanta, F. Jensen, J. Birkedal Wagner, A. Han, ACS Appl. Mater. Interfaces 2017, 9, 37374.
O. S. Abdullaeva, I. Sahalianov, M. Silverå Ejneby, M. Jakešová, I. Zozoulenko, S. I. Liin, E. D. Głowacki, Adv. Sci. 2021, 2103132, 1.
Jiří Ehlich, L. Migliaccio, I. Sahalianov, M. Nikić, J. Brodský, I. Gablech, X. T. Vu, S. Ingebrandt, E. D. Głowacki, J. Neural Eng. 2022, 19, 036045; Ehlich, L. Migliaccio, I. Sahalianov, M. Nikić, J. Brodský, I. Gablech, X. T. Vu, S. Ingebrandt, E. D.
Głowacki, J. Neural Eng. 2022, 19, 036045.
K. Setsukinai, Y. Urano, K. Kakinuma, H. J. Majima, T. Nagano, J. Biol. Chem. 2003, 278, 3170.
M. Sebesta, P. J. Egelberg, A. Langberg, J.-H. Lindskov, K. Alm, B. Janicke, Proc. SPIE 2016, 97181, 1.
L. V Croft, J. A. Mulders, D. J. Richard, K. O. Byrne, Theranostics Methods Protoc. Methods Mol. Biol. 2019, 2054, 171.
B. Janicke, A. Kårnäs, P. Egelberg, K. Alm, Cytom. Part A 2017, 91 A, 460.
E. Makdasi, O. Laskar, E. Milrot, O. Schuster, S. Shmaya, S. Yitzhaki, Toxins (Basel). 2019, 11, 1.
J. Verduijn, L. Van der Meeren, D. V. Krysko, A. G. Skirtach, Cell Death Dis. 2021, 7, 1.
K. Alm, Z. El-Schich, M. F. Miniotis, A. G. Wingren, B. Janicke, S. Oredsson, Tech, Rijeka, Croat. 2013, 335-351.
C. A. Sequeira, J. Karvani Ali Abadi, Am. J. Biomed. Sci. Res. 2022, 17, 91.
P. Turjanski, N. Olaiz, P. Abou-Adal, C. Suárez, M. Risk, G. Marshall, Electrochim. Acta 2009, 54, 6199.
R. V. Davalos, L. M. Mir, B. Rubinsky, Ann. Biomed. Eng. 2005, 33, 223.
G. Sersa, D. Miklavcic, M. Cemazar, Z. Rudolf, G. Pucihar, M. Snoj, EJSO 2008, 34, 232.
E. Nilsson, H. Von Euler, J. Berendson, A. Thörne, P. Wersäll, I. Näslund, A. S. Lagerstedt, K. Narfström, J. M. Olsson, Bioelectrochemistry 2000, 51, 1.
M. Kurokawa, H. Sakagami, F. Kokubu, H. Noda, M. Takeda, M. Adachi, J. Cancer Res. Clin. Oncol. 1997, 123, 370.
N. R. Perkons, E. J. Stein, C. Nwaezeapu, J. C. Wildenberg, K. Saleh, R. Itkin-Ofer, D. Ackerman, M. C. Soulen, S. J. Hunt, G. J. Nadolski, et al., Commun. Biol. 2018, 1, 1.