The Effect of Different Feeding Applications on the Swimming Behaviour of Siberian Sturgeon: A Method for Improving Restocking Programmes

. 2021 Nov 10 ; 10 (11) : . [epub] 20211110

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827155

Restocking programmes of different fish species have been implemented worldwide. However, the survival of hatchery-reared fish after release to riverine ecosystems is at a very low level. One of the reasons for the high mortality rate of post-released fish is their modified swimming behaviour due to the hatchery rearing practice. To investigate one of the possible causes for modified swimming behaviour, Acipenser baerii larvae were exposed to surface- and bottom-feeding applications with day and night light regimes in a factorial design. We also analysed the effect of 5 and 10 days of starvation after different feeding applications on sturgeon swimming behaviour. The surface-feeding application was previously expected to promote the frequent Siberian sturgeon swim up to the mid- and top-water layers in our rearing facilities. However, our results indicated that the modified behaviour of the Siberian sturgeon in our study was caused by fish starvation and a possible predator-free environment rather than by the method of feed application or the day/night light regimes. These results may be used to improve the implementation of restocking programmes either through modified hatchery rearing practice or the training of foraging skills with predator stimuli.

Zobrazit více v PubMed

Merino G., Barange M., Blanchard J.L., Harle J., Holmes R., Allen I., Allison E.H., Badjeck M.C., Dulvy N.K., Holt J. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Chang. 2012;22:795–806. doi: 10.1016/j.gloenvcha.2012.03.003. DOI

Duarte R., Pinilla V., Serrano A. Looking backward to look forward: Water use and economic growth from a long-term perspective. Appl. Econ. 2014;46:212–224. doi: 10.1080/00036846.2013.844329. DOI

Food and Agriculture Organization of the United Nations . The Future of Food and Agriculture—Trends and Challenges 2017. FAO; Rome, Italy: 2017. The State of World Fisheries and Aquaculture.

Shiklomanov I.A. Appraisal and assessment of world water resources. Water Int. 2000;25:11–32. doi: 10.1080/02508060008686794. DOI

Dudgeon D. Large-scale hydrological changes in tropical Asia: Prospects for riverine biodiversity: The construction of large dams will have an impact on the biodiversity of tropical Asian rivers and their associated wetlands. Bioscience. 2000;50:793–806. doi: 10.1641/0006-3568(2000)050[0793:LSHCIT]2.0.CO;2. DOI

Nilsson C., Berggren K. Alterations of riparian ecosystems caused by river regulation: Dam operations have caused global-scale ecological changes in riparian ecosystems. How to protect river environments and human needs of rivers remains one of the most important questions of our time. Bioscience. 2000;50:783–792.

Dudgeon D., Arthington A.H., Gessner M.O., Kawabata Z.-I., Knowler D.J., Lévêque C., Naiman R.J., Prieur-Richard A.-H., Soto D., Stiassny M.L. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006;81:163–182. doi: 10.1017/S1464793105006950. PubMed DOI

Copp G.H. Effect of regulation on 0+ fish recruitment in the Great Ouse, a lowland river. Regul. Rivers Res. Manag. 1990;5:251–263. doi: 10.1002/rrr.3450050306. DOI

Jurajda P. Effect of channelization and regulation on fish recruitment in a flood plain river. Regul. Rivers Res. Manag. 1995;10:207–215. doi: 10.1002/rrr.3450100215. DOI

Haro A., Richkus W., Whalen K., Hoar A., Busch W.-D., Lary S., Brush T., Dixon D. Population decline of the American eel: Implications for research and management. Fisheries. 2000;25:7–16. doi: 10.1577/1548-8446(2000)025<0007:PDOTAE>2.0.CO;2. DOI

Aarts B.G., Van Den Brink F.W., Nienhuis P.H. Habitat loss as the main cause of the slow recovery of fish faunas of regulated large rivers in Europe: The transversal floodplain gradient. River Res. Appl. 2004;20:3–23. doi: 10.1002/rra.720. DOI

Gao X., Brosse S., Chen Y., Lek S., Chang J. Effects of damming on population sustainability of Chinese sturgeon, Acipenser sinensis: Evaluation of optimal conservation measures. Environ. Biol. Fishes. 2009;86:325–336. doi: 10.1007/s10641-009-9521-4. DOI

Zhang H., Wei Q., Du H., Li L. Present status and risk for extinction of the Dabry’s sturgeon (Acipenser dabryanus) in the Yangtze River watershed: A concern for intensified rehabilitation needs. J. Appl. Ichthyol. 2011;27:181–185. doi: 10.1111/j.1439-0426.2011.01674.x. DOI

Haxton T.J., Cano T.M. A global perspective of fragmentation on a declining taxon the sturgeon (Acipenseriformes) Endanger. Species Res. 2016;31:203–210. doi: 10.3354/esr00767. DOI

Lenhardt M.0, Jaric I., Kalauzi A., Cvijanovic G. Assessment of extinction risk and reasons for decline in sturgeon. Biodivers. Conserv. 2006;15:1967–1976. doi: 10.1007/s10531-005-4317-0. DOI

Bronzi P., Rosenthal H. Present and future sturgeon and caviar production and marketing: A global market overview. J. Appl. Ichthyol. 2014;30:1536–1546. doi: 10.1111/jai.12628. DOI

Bronzi P., Rosenthal H., Gessner J. Global sturgeon aquaculture production: An overview. J. Appl. Ichthyol. 2011;27:169–175. doi: 10.1111/j.1439-0426.2011.01757.x. DOI

Arndt G., Gessner J., Raymakers C. Trends in farming, trade and occurrence of native and exotic sturgeons in natural habitats in Central and Western Europe. J. Appl. Ichthyol. 2002;18:444–448. doi: 10.1046/j.1439-0426.2002.00415.x. DOI

Knapp A., Kitschke C., Von Meibom S. International Sturgeon Enforcement Workshop to Combat Illegal Trade in Caviar. In: Knapp A., Kitschke C., Von Meibom S., editors. Proceeding of International Sturgeon Enforcement Workshop to Combat Illegal Trade in Caviar, Brussels, Belgium, 27–29 June 2006. Traffic the Wildlife Trade Monitoring Network; Cambridge, UK: 2006. 155p

Navodaru I., Staraş M. Conservation of fish stocks in the Danube Delta, Romania: Present status, constraints, and recommendation. Ital. J. Zool. 1998;65:369–371. doi: 10.1080/11250009809386848. DOI

Williot P., Sabeau L., Gessner J., Arlati G., Bronzi P., Gulyas T., Berni P. Sturgeon farming in Western Europe: Recent developments and perspectives. Aquat. Living Resour. 2001;14:367–374. doi: 10.1016/S0990-7440(01)01136-6. DOI

Wei Q., Zou Y., Li P., Li L. Sturgeon aquaculture in China: Progress, strategies and prospects assessed on the basis of nation-wide surveys (2007–2009) J. Appl. Ichthyol. 2011;27:162–168. doi: 10.1111/j.1439-0426.2011.01669.x. DOI

Shen L., Shi Y., Zou Y., Zhou X., Wei Q. Sturgeon Aquaculture in China: Status, challenge and proposals based on nation-wide surveys of 2010–2012. J. Appl. Ichthyol. 2014;30:1547–1551. doi: 10.1111/jai.12618. DOI

Brown C., Day R.L. The future of stock enhancements: Lessons for hatchery practice from conservation biology. Fish Fish. 2002;3:79–94. doi: 10.1046/j.1467-2979.2002.00077.x. DOI

Ireland S.C., Beamesderfer R., Paragamian V., Wakkinen V., Siple J. Success of hatchery-reared juvenile white sturgeon (Acipenser transmontanus) following release in the Kootenai River, Idaho, USA. J. Appl. Ichthyol. 2002;18:642–650. doi: 10.1046/j.1439-0426.2002.00364.x. DOI

Crossman J., Forsythe P., Scribner K., Baker E. Hatchery rearing environment and age affect survival and movements of stocked juvenile lake sturgeon. Fish. Manag. Ecol. 2011;18:132–144. doi: 10.1111/j.1365-2400.2010.00762.x. DOI

Secor D., Houde E. Use of larval stocking in restoration of Chesapeake Bay striped bass. ICES J. Mar. Sci. 1998;55:228–239. doi: 10.1006/jmsc.1997.9996. DOI

Svåsand T., Kristiansen T.S., Pedersen T., Salvanes A.V., Engelsen R., Naevdal G., Nødtvedt M. The enhancement of cod stocks. Fish Fish. 2000;1:173–205. doi: 10.1046/j.1467-2979.2000.00017.x. DOI

Myers R.A., Levin S.A., Lande R., James F.C., Murdoch W.W., Paine R.T. Hatcheries and endangered salmon. Science. 2004;303:1980. doi: 10.1126/science.1095410. PubMed DOI

Baer J., Blasel K., Diekmann M. Benefits of repeated stocking with adult, hatchery-reared brown trout, Salmo trutta, to recreational fisheries? Fish. Manag. Ecol. 2007;14:51–59. doi: 10.1111/j.1365-2400.2006.00523.x. DOI

Bell J.D., Bartley D.M., Lorenzen K., Loneragan N.R. Restocking and stock enhancement of coastal fisheries: Potential, problems and progress. Fish. Res. 2006;80:1–8. doi: 10.1016/j.fishres.2006.03.008. DOI

Saloniemi I., Jokikokko E., Kallio-Nyberg I., Jutila E., Pasanen P. Survival of reared and wild Atlantic salmon smolts: Size matters more in bad years. ICES J. Mar. Sci. 2004;61:782–787. doi: 10.1016/j.icesjms.2004.03.032. DOI

Thorstad E.B., Uglem I., Arechavala-Lopez P., Økland F., Finstad B. Low survival of hatchery-released Atlantic salmon smolts during initial river and fjord migration. Boreal Environ. Res. 2011;16:115–120.

Secor D., Arefjev V., Nikolaev A., Sharov A. Restoration of sturgeons: Lessons from the Caspian Sea sturgeon ranching programme. Fish Fish. 2000;1:215–230. doi: 10.1046/j.1467-2979.2000.00021.x. DOI

Chebanov M., Rosenthal H., Gessner J., van Anrooy R., Doukakis P., Pourkazemi M., Williot P. Sturgeon Hatchery Practices and Management for Release Guidelines. FAO; Ankara, Turkey: 2011. pp. 2–110. FAO Fisheries and Aquaculture Technical Paper No 570.

McNeil W.J. Expansion of cultured Pacific salmon into marine ecosystems. Aquaculture. 1991;98:173–183. doi: 10.1016/0044-8486(91)90382-H. DOI

Salvanes A. 2001. Ocean ranching. In: Steele J.H., Thorpe S.A., Turekian K.K., editors. Marine Policy and Economics. 2nd ed. Elsevier Ltd.; London, UK: 2010. pp. 226–235.

Blaxter J. The enhancement of marine fish stocks. Adv. Mar. Biol. 2000;38:2–54.

Tanaka Y., Yamaguchi H., Gwak W.-S., Tominaga O., Tsusaki T., Tanaka M. Influence of mass release of hatchery-reared Japanese flounder on the feeding and growth of wild juveniles in a nursery ground in the Japan Sea. J. Exp. Mar. Biol. Ecol. 2005;314:137–147. doi: 10.1016/j.jembe.2004.08.021. DOI

Furuta S. Releasing techniques and fry quality. In: Kitajima C., editor. Healthy Fry for Release, and Their Production Techniques. Koseisha-Koseikaku; Tokyo, Japan: 1993. pp. 94–101. (In Japanese)

Miyazaki T., Masuda R., Furuta S., Tsukamoto K. Feeding behaviour of hatchery-reared juveniles of the Japanese flounder following a period of starvation. Aquaculture. 2000;190:129–138. doi: 10.1016/S0044-8486(00)00385-9. DOI

Wishingrad V., Ferrari M.C., Chivers D.P. Behavioural and morphological defences in a fish with a complex antipredator phenotype. Anim. Behav. 2014;95:137–143. doi: 10.1016/j.anbehav.2014.07.006. DOI

Nguyen R.M., Crocker C.E. The effects of substrate composition on foraging behavior and growth rate of larval green sturgeon, Acipenser medirostris. Environ. Biol. Fishes. 2006;76:129–138. doi: 10.1007/s10641-006-9002-y. DOI

Ross R., Bennett R. Comparative behaviour and dietary effects in early life phases of American sturgeons. Fish. Manag. Ecol. 1997;4:17–30. doi: 10.1046/j.1365-2400.1997.d01-158.x. DOI

Chai Y., Tan F.X., Li L.X., Wei Q.W. Effects of delayed initial feeding on growth and survival of Chinese sturgeon (Acipenser sinensis Gray, 1835) larvae. J. Appl. Ichthyol. 2014;30:1590–1595. doi: 10.1111/jai.12626. DOI

Hardy R.S., Zadmajid V., Butts I.A., Litvak M.K. Growth, survivorship, and predator avoidance capability of larval shortnose sturgeon (Acipenser brevirostrum) in response to delayed feeding. PLoS ONE. 2021;16:e0247768. doi: 10.1371/journal.pone.0247768. PubMed DOI PMC

Wickham H., Chang W., Wickham M.H. Create Elegant Data Visualisations Using the Grammar of Graphics. 2nd ed. Springer; New York, NY, USA: 2016. Package ‘ggplot2’; pp. 1–189.

Jokikokko E., Kallio-Nyberg I., Saloniemi I., Jutila E. The survival of semi-wild, wild and hatchery-reared Atlantic salmon smolts of the Simojoki River in the Baltic Sea. J. Fish. Biol. 2006;68:430–442. doi: 10.1111/j.0022-1112.2006.00892.x. DOI

Czerniawski R., Pilecka-Rapacz M., Domagala J. Stocking experiment with Atlantic salmon and sea trout parr reared on either live prey or a pellet diet. J. Appl. Ichthyol. 2011;27:984–989. doi: 10.1111/j.1439-0426.2011.01761.x. DOI

Tomiyama T., Watanabe M., Kawata G., Ebe K. Post-release feeding and growth of hatchery-reared Japanese flounder Paralichthys olivaceus: Relevance to stocking effectiveness. J. Fish. Biol. 2011;78:1423–1436. doi: 10.1111/j.1095-8649.2011.02949.x. PubMed DOI

Krepski T., Czerniawski R. Can we teach a fish how to eat? The impact of bottom and surface feeding on survival and growth of hatchery-reared sea trout parr (Salmo trutta trutta L.) in the wild. PLoS ONE. 2019;9:1–14. doi: 10.1371/journal.pone.0222182. PubMed DOI PMC

Kellison G., Eggleston D., Burke J. Comparative behaviour and survival of hatchery-reared versus wild summer flounder (Paralichthys dentatus) Can. J. Fish. Aquat. 2000;57:1870–1877. doi: 10.1139/f00-139. DOI

Moberg O., Braithwaite V.A., Jensen K.H., Salvanes A.G.V. Effects of habitat enrichment and food availability on the foraging behaviour of juvenile Atlantic Cod (Gadus morhua L.) Environ. Biol. Fishes. 2011;91:449–457. doi: 10.1007/s10641-011-9803-5. DOI

Gisbert E. Early development and allometric growth patterns in Siberian sturgeon and their ecological significance. J. Fish. Biol. 1999;54:852–862. doi: 10.1111/j.1095-8649.1999.tb02037.x. DOI

Gisbert E., Williot P., Castelló-Orvay F. Behavioural modifications in the early life stages of Siberian sturgeon (Acipenser baerii, Brandt) J. Appl. Ichthyol. 1999;15:237–242. doi: 10.1111/j.1439-0426.1999.tb00242.x. DOI

Takahashi K., Masuda R., Yamashita Y. Bottom feeding and net chasing improve foraging behavior in hatchery-reared Japanese flounder Paralichthys olivaceus juveniles for stocking. Fish. Sci. 2013;79:55–60. doi: 10.1007/s12562-012-0572-7. DOI

Steel A., Hansen M., Cocherell D., Fangue N. Behavioral responses of juvenile white sturgeon (Acipenser transmontanus) to manipulations of nutritional state and predation risk. Environ. Biol. Fishes. 2019;102:817–827. doi: 10.1007/s10641-019-00873-8. DOI

Kasumyan A., Kazhlayev A. Formation of Searching Behavioral Reaction and Olfactory Sensitivity to Food Chemical Signals during Onlogeny of Sturgeons (Acipenseridae) J. Ichthyol. 1993;33:51–65.

Tanaka M., Goto T., Tomiyama M., Sudo H. Immigration, settlement and mortality of flounder (Paralichthys olivaceus) larvae and juveniles in a nursery ground, Shijiki Bay, Japan. Neth. J. Sea Res. 1989;24:57–67. doi: 10.1016/0077-7579(89)90170-1. DOI

Furuta S. Comparison of feeding behavior of wild and hatchery-reared Japanese flounder, Paralichthys olivaceus, juveniles by laboratory experiments. Nippon Suisan Gakkaishi. 1998;64:393–397. doi: 10.2331/suisan.64.393. DOI

Yamashita Y., Yamamoto K., Nagahora S., Igarashi K., Ishikawa Y., Sakuma O., Yamada H., Nakamoto Y. Predation by fishes on hatchery-raised Japanese flounder, Paralichthys olivaceus, fry in the coastal waters of Iwate prefecture, northeastern Japan. Aquac. Sci. 1993;41:497–505.

Richmond A.M., Kynard B. Ontogenetic behavior of shortnose sturgeon, Acipenser brevirostrum. Copeia. 1995;1995:172–182. doi: 10.2307/1446812. DOI

Wishingrad V., Musgrove A.B., Chivers D.P., Ferrari M.C. Risk in a changing world: Environmental cues drive anti-predator behaviour in lake sturgeon (Acipenser fulvescens) in the absence of predators. Behaviour. 2015;152:635–652. doi: 10.1163/1568539X-00003246. DOI

Sundström L.F., Petersson E., Höjesjö J., Johnsson J.I., Järvi T. Hatchery selection promotes boldness in newly hatched brown trout (Salmo trutta): Implications for dominance. Behav. Ecol. 2004;15:192–198. doi: 10.1093/beheco/arg089. DOI

Fernö A., Huse G., Jakobsen P.J., Kristiansen T.S., Nilsson J. Fish behaviour, learning, aquaculture and fisheries. In: Brown C., Laland K., Krause J., editors. Fish Cognition and Behavior. 2nd ed. Wiley-Blackwell; Oxford, UK: 2011. pp. 359–404.

Jackson C.D., Brown G.E. Differences in antipredator behaviour between wild and hatchery-reared juvenile Atlantic salmon (Salmo salar) under seminatural conditions. Can. J. Fish. Aquat. 2011;68:2157–2166. doi: 10.1139/f2011-129. DOI

Alvarez D., Nicieza A. Predator avoidance behaviour in wild and hatchery-reared brown trout: The role of experience and domestication. J. Fish. Biol. 2003;63:1565–1577. doi: 10.1111/j.1095-8649.2003.00267.x. DOI

Kawabata Y., Asami K., Kobayashi M., Sato T., Okuzawa K., Yamada H., Yoseda K., Arai N. Effect of shelter acclimation on the post-release movement and putative predation mortality of hatchery-reared black-spot tuskfish Choerodon schoenleinii, determined by acoustic telemetry. Fish. Sci. 2011;77:345–355. doi: 10.1007/s12562-011-0351-x. DOI

Mirza R.S., Chivers D.P. Predator-recognition training enhances survival of brook trout: Evidence from laboratory and field-enclosure studies. Can. J. Zool. 2000;78:2198–2208. doi: 10.1139/z00-164. DOI

Cámara Ruiz M., Espírito Santo C., Mai A., Gessner J., Wuertz S. Can juvenile Baltic sturgeon (Acipenser oxyrinchus) smell the enemy? J. Appl. Ichthyol. 2019;35:835–842. doi: 10.1111/jai.13934. DOI

Brown G.E., Ferrari M.C., Chivers D.P. Learning about danger: Chemical alarm cues and threat-sensitive assessment of predation risk by fishes. In: Brown C., Laland K., Krause J., editors. Fish Cognition and Behavior. 2nd ed. Wiley-Blackwell; Oxford, UK: 2011. pp. 59–80.

Lappalainen J., Dörner H., Wysujack K. Reproduction biology of pikeperch (Sander lucioperca (L.))—A review. Ecol. Freshw. Fish. 2003;12:95–106. doi: 10.1034/j.1600-0633.2003.00005.x. DOI

Komsari M.S., Bani A., Khara H. Growth and population structure of the European perch, Perca fluviatilis Linnaeus, 1758 (Osteichthyes: Percidae) in the Anzali Wetland south-west Caspian Sea. Indian J. Fish. 2015;62:6–11.

Khara H., Sattari M. Occurrence and intensity of parasites in Wels catfish, Silurus glanis L. 1758 from Amirkelayeh wetland, southwest of the Caspian Sea. J. Parasit. Dis. 2016;40:848–852. doi: 10.1007/s12639-014-0591-7. PubMed DOI PMC

Ebrahimzadeh Kouchesfahani N., Forouhar Vajargah M. A short review on the biological characteristics of the species Esox lucius, Linnaeus, 1758 in Caspian Sea Basin (Iran) Transylv. Rev. Syst. Ecol. Res. 2021;1:1–23.

Templeton C.N., Shriner W.M. Multiple selection pressures influence Trinidadian guppy (Poecilia reticulata) antipredator behavior. Behav. Ecol. 2004;15:673–678. doi: 10.1093/beheco/arh065. DOI

Darwish T.L., Mirza R.S., Leduc A.O., Brown G.E. Acquired recognition of novel predator odour cocktails by juvenile glowlight tetras. Anim. Behav. 2005;70:83–89. doi: 10.1016/j.anbehav.2004.09.017. DOI

Hintz W., Grimes G., Garvey J. Shovelnose sturgeon exhibit predator avoidance behaviour in the presence of a hungry predator. J. Appl. Ichthyol. 2013;29:2–5. doi: 10.1111/jai.12033. DOI

Hawkins L.A., Magurran A.E., Armstrong J.D. Ontogenetic learning of predator recognition in hatchery-reared Atlantic salmon, Salmo salar. Anim. Behav. 2008;75:1663–1671. doi: 10.1016/j.anbehav.2007.10.019. DOI

Sloychuk J.R., Chivers D.P., Ferrari M.C. Juvenile lake sturgeon go to school: Life-skills training for hatchery fish. Trans. Am. Fish. Soc. 2016;145:287–294. doi: 10.1080/00028487.2015.1123183. DOI

Wishingrad V., Sloychuk J., Ferrari M., Chivers D. Alarm cues in Lake Sturgeon Acipenser fulvescens Rafinesque, 1817: Potential implications for life-skills training. J. Appl. Ichthyol. 2014;30:1441–1444. doi: 10.1111/jai.12580. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...