Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes

. 2021 Oct 28 ; 12 (11) : . [epub] 20211028

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34828331

A prelabor rupture of membranes (PROM) and its subtypes, preterm PROM (pPROM) and term PROM (tPROM), are associated with disturbances in the hemostatic system and angiogenesis. This study was designed to demonstrate the role of single nucleotide polymorphisms (SNPs), localized in CSF2 (rs25881), FLT1 (rs722503), TFPI (C-399T) and TLR9 (rs352140) genes, in PROM. A population of 360 women with singleton pregnancy consisted of 180 PROM cases and 180 healthy controls. A single-SNP analysis showed a similar distribution of genotypes in the studied polymorphisms between the PROM or the pPROM women and the healthy controls. Double-SNP TT variants for CSF2 and FLT1 polymorphisms, CC variants for TLR9 and TFPI SNPs, TTC for CSF2, FLT1 and TLR9 polymorphisms, TTT for FLT1, TLR9 and TFPI SNPs and CCCC and TTTC complex variants for all tested SNPs correlated with an increased risk of PROM after adjusting for APTT, PLT parameters and/or pregnancy disorders. The TCT variants for the CSF2, FLT1 and TLR9 SNPs and the CCTC for the CSF2, FLT1, TLR9 and TFPI polymorphisms correlated with a reduced risk of PROM when corrected by PLT and APTT, respectively. We concluded that the polymorphisms of genes, involved in hemostasis and angiogenesis, contributed to PROM.

Zobrazit více v PubMed

Prelabor Rupture of Membranes: ACOG Practice Bulletin, Number 217. Obstet Gynecol. 2020;135:e80–e97. doi: 10.1097/AOG.0000000000003700. PubMed DOI

Ghafoor S. Current and Emerging Strategies for Prediction and Diagnosis of Prelabour Rupture of the Membranes: A Narra-tive Review. Malays. J. Med. Sci. 2021;28:5–17. PubMed PMC

Meloni A., Palmas F., Barberini L., Mereu R., Deiana S.F., Fais M.F., Noto A., Fattuoni C., Mussap M., Ragusa A., et al. PROM and Labour Effects on Urinary Metabolome: A Pilot Study. Dis. Markers. 2018;2018:1042479. doi: 10.1155/2018/1042479. PubMed DOI PMC

Ocviyanti D., Wahono W.T. Risk Factors for Neonatal Sepsis in Pregnant Women with Premature Rupture of the Membrane. J. Pregnancy. 2018;2018:4823404. doi: 10.1155/2018/4823404. PubMed DOI PMC

Ananth C.V., Joseph K., Oyelese Y., Demissie K., Vintzileos A.M. Trends in Preterm Birth and Perinatal Mortality Among Singletons: United States, 1989 Through 2000. Obstet. Gynecol. 2005;105:1084–1091. doi: 10.1097/01.AOG.0000158124.96300.c7. PubMed DOI

Choi E.K., Kim S.Y., Heo J.M., Park K.H., Kim H.Y., Choi B.M., Kim H.J. Perinatal Outcomes Associated with Latency in Late Pre-term Premature Rupture of Membranes. Int. J. Environ. Res. Public Health. 2021;18:672. doi: 10.3390/ijerph18020672. PubMed DOI PMC

Menon R., Richardson L. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017;41:409–419. doi: 10.1053/j.semperi.2017.07.012. PubMed DOI PMC

Günay T., Erdem G., Bilir R.A., Hocaoglu M., Ozdamar O., Turgut A. The association of the amniotic fluid index (AFI) with perinatal fetal and maternal outcomes in pregnancies complicated by preterm premature rupture of membranes (PPROM) Ginekol. Pol. 2020;91:465–472. doi: 10.5603/GP.2020.0069. PubMed DOI

Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev Y., Winarno A.S., Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): Etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Périnat. Med. 2018;46:465–488. doi: 10.1515/jpm-2017-0027. PubMed DOI

Waters T.P., Mercer B.M. The management of preterm premature rupture of the membranes near the limit of fetal viability. Am. J. Obstet. Gynecol. 2009;201:230–240. doi: 10.1016/j.ajog.2009.06.049. PubMed DOI

Schmitz T., Sentilhes L., Lorthe E., Gallot D., Madar H., Doret-Dion M., Beucher G., Charlier C., Cazanave C., Delorme P., et al. Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF) Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;236:1–6. doi: 10.1016/j.ejogrb.2019.02.021. PubMed DOI

Andrys C., Kacerovsky M., Drahosova M., Musilova I., Pliskova L., Hornychova H., Prochazka M., Jacobsson B. Amniotic fluid soluble Toll-like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2013;26:520–527. doi: 10.3109/14767058.2012.741634. PubMed DOI

Erez O., Espinoza J., Chaiworapongsa T., Gotsch F., Kusanovic J.P., Than N.G., Mazaki-Tovi S., Vaisbuch E., Papp Z., Yoon B.H., et al. A link between a hemostatic disorder and preterm PROM: A role for tissue factor and tissue factor pathway inhibitor. J. Matern. Fetal Neonatal Med. 2008;21:732–744. doi: 10.1080/14767050802361807. PubMed DOI PMC

Grote K., Petri M., Liu C., Jehn P., Spalthoff S., Kokemüller H., Luchtefeld M., Tschernig T., Krettek C., Haasper C., et al. Toll-like receptor 2/6-dependent stimulation of mesen-chymal stem cells promotes angiogenesis by paracrine factors. Eur. Cell Mater. 2013;26:66–79. doi: 10.22203/eCM.v026a05. PubMed DOI

Kumar D., Moore R.M., Nash A., Springel E., Mercer B.M., Philipson E., Mansour J.M., Moore J.J. Decidual GM-CSF is a critical common interme-diate necessary for thrombin and TNF induced in-vitro fetal membrane weakening. Placenta. 2014;35:1049–1056. doi: 10.1016/j.placenta.2014.10.001. PubMed DOI

Kumar D., Schatz F., Moore R.M., Mercer B.M., Rangaswamy N., Mansour J.M., Lockwood C.J., Moore J.J. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta. 2011;32:206–213. doi: 10.1016/j.placenta.2011.01.006. PubMed DOI PMC

Moore R.M., Schatz F., Kumar D., Mercer B.M., Abdelrahim A., Rangaswamy N., Bartel C., Mansour J.M., Lockwood C.J., Moore J.J. α-lipoic acid inhibits throm-bin-induced fetal membrane weakening in vitro. Placenta. 2010;31:886–892. doi: 10.1016/j.placenta.2010.07.012. PubMed DOI PMC

Fang Q., Liu X., Al-Mugotir M., Kobayashi T., Abe S., Kohyama T. Thrombin and TNF-α/IL-1beta synergistically in-duce fibroblast-mediated collagen gel degradation. Am. J. Respir. Cell Mol. Biol. 2006;35:714–721. doi: 10.1165/rcmb.2005-0026OC. PubMed DOI PMC

Galis Z.S., Kranzhöfer R., Fenton J.W., Libby P. Thrombin Promotes Activation of Matrix Metalloproteinase-2 Produced by Cultured Vascular Smooth Muscle Cells. Arter. Thromb. Vasc. Biol. 1997;17:483–489. doi: 10.1161/01.ATV.17.3.483. PubMed DOI

Han C.S., Schatz F., Lockwood C.J. Abruption-Associated Prematurity. Clin. Perinatol. 2011;38:407–421. doi: 10.1016/j.clp.2011.06.001. PubMed DOI PMC

Mackenzie A.P., Schatz F., Krikun G., Funai E.F., Kadner S., Lockwood C.J. Mechanisms of abruption-induced premature rupture of the fetal membranes: Thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am. J. Obstet. Gynecol. 2004;191:1996–2001. doi: 10.1016/j.ajog.2004.08.003. PubMed DOI

Stephenson C.D., Lockwood C.J., Ma Y., Guller S. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J. Matern. Fetal Neonatal Med. 2005;18:17–22. doi: 10.1080/14767050500123632. PubMed DOI

Erez O., Romero R., Vaisbuch E., Kusanovic J.P., Mazaki-Tovi S., Chaiworapongsa T., Gotsch F., Fareed J., Hoppensteadt D., Than N.G., et al. High tissue factor activity and low tissue factor pathway inhibitor concentrations in patients with preterm labor. J. Matern. Fetal Neonatal Med. 2010;23:23–33. doi: 10.3109/14767050902994770. PubMed DOI PMC

Gomez-Lopez N., Hernandez-Santiago S., Lobb A.P., Olson D.M., Vadillo-Ortega F. Normal and Premature Rupture of Fetal Membranes at Term Delivery Differ in Regional Chemotactic Activity and Related Chemokine/Cytokine Production. Reprod. Sci. 2012;20:276–284. doi: 10.1177/1933719112452473. PubMed DOI

Musilova I., Pliskova L., Kutova R., Hornychova H., Jacobsson B., Kacerovsky M. Ureaplasma species and Mycoplasma hominis in cervical fluid of pregnancies complicated by preterm prelabor rupture of membranes. J. Mater. Fetal Neonatal Med. 2016;29:1–7. doi: 10.3109/14767058.2014.984606. PubMed DOI

Oh K.J., Romero R., Park J.Y., Hong J.S., Yoon B.H. The earlier the gestational age, the greater the intensity of the in-tra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med. 2019;47:516–527. doi: 10.1515/jpm-2019-0003. PubMed DOI PMC

Perni S.C., Vardhana S., Korneeva I., Tuttle S.L., Paraskevas L.-R., Chasen S.T., Kalish R.B., Witkin S.S. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: Association with amniotic fluid cytokine levels and pregnancy outcome. Am. J. Obstet. Gynecol. 2004;191:1382–1386. doi: 10.1016/j.ajog.2004.05.070. PubMed DOI

Tantengco O.A.G., Yanagihara I. Current understanding and treatment of intra-amniotic infection with Ureaplasma spp. J. Obstet. Gynaecol. Res. 2019;45:1796–1808. doi: 10.1111/jog.14052. PubMed DOI

Fitzgerald K.A., Kagan J.C. Toll-like Receptors and the Control of Immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC

Mukherjee S., Huda S., Sinha Babu S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand. J. Immunol. 2019;90:e12771. doi: 10.1111/sji.12771. PubMed DOI

Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC

Kacerovsky M., Andrys C., Hornychová H., Pliskova L., Lancz K., Musilová I.K., Drahosova M., Bolehovska R., Tambor V., Jacobsson B. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2012;25:1148–1155. doi: 10.3109/14767058.2011.626821. PubMed DOI

He B., Yang X., Li Y., Huang D., Xu X., Yang W., Dai Y., Zhang H., Chen Z., Cheng W. TLR9 (Toll-Like Receptor 9) Agonist Suppresses Angiogenesis by Dif-ferentially Regulating VEGFA (Vascular Endothelial Growth Factor A) and sFLT1 (Soluble Vascular Endothelial Growth Fac-tor Receptor 1) in Preeclampsia. Hypertension. 2018;71:671–680. doi: 10.1161/HYPERTENSIONAHA.117.10510. PubMed DOI

Mohamed F.E.-Z.A., Hammad S., Luong T.V., Dewidar B., Al-Jehani R., Davies N., Dooley S., Jalan R. Expression of TLR-2 in hepatocellular carcinoma is associated with tumour proliferation, angiogenesis and Caspase-3 expression. Pathol. Res. Pract. 2020;216:152980. doi: 10.1016/j.prp.2020.152980. PubMed DOI

Zhao L., Ma R., Zhang L., Yuan X., Wu J., He L., Liu G., Du R. Inhibition of HIF-1a-mediated TLR4 activation decreases apoptosis and promotes angiogenesis of placental microvascular endothelial cells during severe pre-eclampsia pathogenesis. Placenta. 2019;83:8–16. doi: 10.1016/j.placenta.2019.06.375. PubMed DOI

Saber T., Veale U.J., Balogh E., McCormick J., NicAnUltaigh S., Connolly M., Fearon U. Toll-Like Receptor 2 Induced Angiogenesis and Invasion Is Mediated through the Tie2 Signalling Pathway in Rheumatoid Arthritis. PLoS ONE. 2011;6:e23540. doi: 10.1371/journal.pone.0023540. PubMed DOI PMC

Grote K., Schuett H., Salguero G., Grothusen C., Jagielska J., Drexler H., Mühlradt P.F., Schieffer B. Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood. 2010;115:2543–2552. doi: 10.1182/blood-2009-05-224402. PubMed DOI

El Kebir D., Damlaj A., Makhezer N., Filep J.G. Toll-Like Receptor 9 Signaling Regulates Tissue Factor and Tissue Factor Pathway Inhibitor Expression in Human Endothelial Cells and Coagulation in Mice. Crit. Care Med. 2015;43:e179–e189. doi: 10.1097/CCM.0000000000001005. PubMed DOI PMC

Harmon Q.E., Engel S.M., Olshan A.F., Moran T., Stuebe A.M., Luo J., Wu M.C., Avery C.L. Association of polymorphisms in natural killer cell-related genes with preterm birth. Am. J. Epidemiol. 2013;178:1208–1218. doi: 10.1093/aje/kwt108. PubMed DOI PMC

Gómez L.M., Sammel M.D., Appleby D.H., Elovitz M.A., Baldwin D.A., Jeffcoat M.K., Macones G.A., Parry S. Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: A role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am. J. Obstet. Gynecol. 2010;202:386.e1–386.e6. doi: 10.1016/j.ajog.2010.01.042. PubMed DOI

Frey H.A., Stout M.J., Pearson L.N., Tuuli M.G., Cahill A.G., Strauss J.F., Gomez L.M., Parry S., Allsworth J.E., Macones G.A. Genetic variation associated with preterm birth in African-American women. Am. J. Obstet. Gynecol. 2016;215:235.e1–235.e8. doi: 10.1016/j.ajog.2016.03.008. PubMed DOI PMC

Amin-Beidokhti M., Gholami M., Abedin-Do A., Pirjani R., Sadeghi H., Karamoddin F., Yassaee V.R., Mirfakhraie R. An intron variant in the FLT1 gene increases the risk of preeclampsia in Iranian women. Clin. Exp. Hypertens. 2018;41:697–701. doi: 10.1080/10641963.2018.1539097. PubMed DOI

Majewska M., Lipka A., Paukszto L., Jastrzebski J.P., Szeszko K., Gowkielewicz M., Lepiarczyk E., Jozwik M., Majewski M.K. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR) Int. J. Mol. Sci. 2019;20:1510. doi: 10.3390/ijms20061510. PubMed DOI PMC

Cao Y., Zhang Z., Xu J., Yuan W., Wang J., Huang X., Shen Y., Du J. The association of idiopathic recurrent pregnancy loss with pol-ymorphisms in hemostasis-related genes. Gene. 2013;530:248–252. doi: 10.1016/j.gene.2013.07.080. PubMed DOI

Guerra-Shinohara E.M., Bertinato J.F., Bueno C.T., da Silva K.C., de Carvalho M.H.B., Francisco R.P.V., Zugaib M., Cerda A., Morelli V.M. Polymorphisms in antithrombin and in tissue factor pathway inhibitor genes are associated with recurrent pregnancy loss. Thromb Haemost. 2012;108:693–700. PubMed

Karody V.R., Reese S., Kumar N., Liedel J., Jarzembowski J., Sampath V. A toll-like receptor 9 (rs352140) variant is associated with placental inflammation in newborn infants. J. Matern. Fetal Neonatal Med. 2016;29:2210–2216. doi: 10.3109/14767058.2015.1081590. PubMed DOI PMC

Razdaibiedina A., Khobzey M., Tkachenko V., Vorobiova I. Effects of Single-Nucleotide Polymorphisms in Cytokine, Toll-Like Receptor, and Progesterone Receptor Genes on Risk of Miscarriage. Obstet. Gynecol. Int. 2018;2018:9272749. doi: 10.1155/2018/9272749. PubMed DOI PMC

Mockenhaupt F.P., Hamann L., von Gaertner C., Bedu-Addo G., von Kleinsorgen C., Schumann R.R., Bienzle U. Common poly-morphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 2006;194:184–188. doi: 10.1086/505152. PubMed DOI

Moatti D., Haidar B., Fumeron F., Gauci L., Boudvillain O., Seknadji P., Olliver V., Aumont M.C., De Prost D. A new T-287C polymorphism in the 5′ regulatory region of the tissue factor pathway inhibitor gene. Association study of the T-287C and C-399T polymorphisms with coronary artery disease and plasma TFPI levels. Thromb. Haemost. 2000;84:244–249. doi: 10.1055/s-0037-1614003. PubMed DOI

Pandey S., Mittal B., Srivastava M., Singh S., Srivastava K., Lal P., Mittal R.D. Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol. Biol. Rep. 2010;38:4715–4721. doi: 10.1007/s11033-010-0607-z. PubMed DOI

Saeki H., Tsunemi Y., Asano N., Nakamura K., Sekiya T., Hirai K., Kakinuma T., Fujita H., Kagami S., Tamaki K. Analysis of GM-CSF gene polymorphisms (3606T/C and 3928C/T) in Japanese patients with atopic dermatitis. Clin. Exp. Dermatol. 2006;31:278–280. doi: 10.1111/j.1365-2230.2005.02052.x. PubMed DOI

SNPStats Software. [(accessed on 22 September 2021)]. Available online: https://www.snpstats.net/start.htm.

Srinivas S.K., Morrison A., Andrela C.M., Elovitz M. Allelic variations in angiogenic pathway genes are associated with preeclampsia. Am. J. Obstet. Gynecol. 2010;202:445.e1–445.e11. doi: 10.1016/j.ajog.2010.01.040. PubMed DOI

Amosco M.D., Villar V.A.M., Naniong J.M.A., David-Bustamante L.M.G., Jose P.A., Palmes-Saloma C.P. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population. Clin. Exp. Hypertens. 2016;38:578–585. doi: 10.3109/10641963.2016.1174252. PubMed DOI PMC

Opstad T.B., Pettersen A.A., Bratseth V., Arnesen H., Seljeflot I. The influence of tissue factor and tissue factor pathway in-hibitor polymorphisms on thrombin generation in stable coronary artery disease. Pathophysiol. Haemost. Thromb. 2010;37:98–103. doi: 10.1159/000327491. PubMed DOI

Keren-Politansky A., Breizman T., Brenner B., Sarig G., Drugan A. The coagulation profile of preterm delivery. Thromb. Res. 2014;133:585–589. doi: 10.1016/j.thromres.2014.01.018. PubMed DOI

Ekin A., Gezer C., Kulhan G., Avcı M.E., Taner C.E. Can platelet count and mean platelet volume during the first trimester of pregnancy predict preterm premature rupture of membranes? J. Obstet. Gynaecol. Res. 2014;41:23–28. doi: 10.1111/jog.12484. PubMed DOI

Gasparyan A.Y., Ayvazyan L., Mikhailidis D.P., Kitas G.D. Mean platelet volume: A link between thrombosis and inflamma-tion? Curr. Pharm. Des. 2011;17:47–58. doi: 10.2174/138161211795049804. PubMed DOI

Roszak A., Lianeri M., Sowińska A., Jagodziński P.P. Involvement of Toll-like Receptor 9 polymorphism in cervical cancer development. Mol. Biol. Rep. 2012;39:8425–8430. doi: 10.1007/s11033-012-1695-8. PubMed DOI PMC

Wu J., Cui H., Dick A.D., Liu L. TLR9 Agonist Regulates Angiogenesis and Inhibits Corneal Neovascularization. Am. J. Pathol. 2014;184:1900–1910. doi: 10.1016/j.ajpath.2014.03.001. PubMed DOI

Bouvier D., Forest J.-C., Blanchon L., Bujold E., Pereira B., Bernard N., Gallot D., Sapin V., Giguère Y. Risk Factors and Outcomes of Preterm Premature Rupture of Membranes in a Cohort of 6968 Pregnant Women Prospectively Recruited. J. Clin. Med. 2019;8:1987. doi: 10.3390/jcm8111987. PubMed DOI PMC

Luisi S., Giorgi M., Riggi S., Messina G., Severi F.M. Neonatal outcome in pregnancy hypotiroidee women. Gynecol. Endocrinol. 2020;36:772–775. doi: 10.1080/09513590.2019.1706083. PubMed DOI

Merello M., Lotte L., Gonfrier S., Trolli S.E.D., Casagrande F., Ruimy R., Bongain A. Enterobacteria vaginal colonization among patients with preterm premature rupture of membranes from 24 to 34 weeks of gestation and neonatal infection risk. J. Gynecol. Obstet. Hum. Reprod. 2019;48:187–191. doi: 10.1016/j.jogoh.2018.12.007. PubMed DOI

Muche A.A., Olayemi O.O., Gete Y.K. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: A prospec-tive cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth. 2020;20:73. doi: 10.1186/s12884-020-2759-8. PubMed DOI PMC

Workineh Y., Birhanu S., Kerie S., Ayalew E., Yihune M. Determinants of premature rupture of membrane in Southern Ethiopia, 2017: Case control study design. BMC Res. Notes. 2018;11:927. doi: 10.1186/s13104-018-4035-9. PubMed DOI PMC

El-Achi V., De Vries B., O’Brien C., Park F., Tooher J., Hyett J. First-Trimester Prediction of Preterm Prelabour Rupture of Membranes. Fetal Diagn. Ther. 2020;47:624–629. doi: 10.1159/000506541. PubMed DOI

Zhang X., Liao Q., Wang F., Li D. Association of gestational diabetes mellitus and abnormal vaginal flora with adverse pregnancy outcomes. Medicine. 2018;97:e11891. doi: 10.1097/MD.0000000000011891. PubMed DOI PMC

Getahun D., Ananth C.V., Oyelese Y., Peltier M.R., Smulian J.C., Vintzileos A.M. Acute and chronic respiratory diseases in pregnancy: Associations with spontaneous premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2007;20:669–675. doi: 10.1080/14767050701516063. PubMed DOI

Hnat M.D., Mercer B.M., Thurnau G., Goldenberg R., Thom E.A., Meis P.J., Moawad A.H., Iams J.D., Van Dorsten J.P. Perinatal outcomes in women with preterm rupture of membranes between 24 and 32 weeks of gestation and a history of vaginal bleeding. Am. J. Obstet. Gynecol. 2005;193:164–168. doi: 10.1016/j.ajog.2004.10.625. PubMed DOI

Liu L., Wang L., Yang W., Ni W., Jin L., Liu J., Ren A. Gestational hypertension and pre-eclampsia and risk of spontaneous premature rupture of membranes: A population-based cohort study. Int. J. Gynecol. Obstet. 2019;147:195–201. doi: 10.1002/ijgo.12943. PubMed DOI

Ahmed S.R., El-Sammani M., Al-Sheeha M.A., Aitallah A.S., Jabin K.F., Ahmed S.R. Pregnancy outcome in women with threatened miscarriage: A year study. Mater Sociomed. 2012;24:26–28. doi: 10.5455/msm.2012.24.26-28. PubMed DOI PMC

Evrenos A.N., Gungor A.N.C., Gulerman C., Cosar E. Obstetric outcomes of patients with abortus imminens in the first trimester. Arch. Gynecol. Obstet. 2013;289:499–504. doi: 10.1007/s00404-013-2979-5. PubMed DOI

Brown R.G., Marchesi J.R., Lee Y.S., Smith A., Lehne B., Kindinger L.M., Terzidou V., Holmes E., Nicholson J.K., Bennett P.R., et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018;16:9. PubMed PMC

Brown R.G., Al-Memar M., Marchesi J.R., Lee Y.S., Smith A., Chan D., Lewis H., Kindinger L., Terzidou V., Bourne T., et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl. Res. 2019;207:30–43. doi: 10.1016/j.trsl.2018.12.005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace