Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34828331
PubMed Central
PMC8620696
DOI
10.3390/genes12111725
PII: genes12111725
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, genotyping, hemostasis, pPROM, pregnancy, prelabor rupture of membranes (PROM), restriction fragment length polymorphism (RFLP), single nucleotide polymorphism (SNP), tPROM,
- MeSH
- dospělí MeSH
- faktor stimulující granulocyto-makrofágové kolonie genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- lipoproteiny genetika MeSH
- mladý dospělý MeSH
- předčasný odtok plodové vody genetika MeSH
- receptor 1 pro vaskulární endoteliální růstový faktor genetika MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- toll-like receptor 9 genetika MeSH
- věk matky MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CSF2 protein, human MeSH Prohlížeč
- faktor stimulující granulocyto-makrofágové kolonie MeSH
- FLT1 protein, human MeSH Prohlížeč
- lipoprotein-associated coagulation inhibitor MeSH Prohlížeč
- lipoproteiny MeSH
- receptor 1 pro vaskulární endoteliální růstový faktor MeSH
- TLR9 protein, human MeSH Prohlížeč
- toll-like receptor 9 MeSH
A prelabor rupture of membranes (PROM) and its subtypes, preterm PROM (pPROM) and term PROM (tPROM), are associated with disturbances in the hemostatic system and angiogenesis. This study was designed to demonstrate the role of single nucleotide polymorphisms (SNPs), localized in CSF2 (rs25881), FLT1 (rs722503), TFPI (C-399T) and TLR9 (rs352140) genes, in PROM. A population of 360 women with singleton pregnancy consisted of 180 PROM cases and 180 healthy controls. A single-SNP analysis showed a similar distribution of genotypes in the studied polymorphisms between the PROM or the pPROM women and the healthy controls. Double-SNP TT variants for CSF2 and FLT1 polymorphisms, CC variants for TLR9 and TFPI SNPs, TTC for CSF2, FLT1 and TLR9 polymorphisms, TTT for FLT1, TLR9 and TFPI SNPs and CCCC and TTTC complex variants for all tested SNPs correlated with an increased risk of PROM after adjusting for APTT, PLT parameters and/or pregnancy disorders. The TCT variants for the CSF2, FLT1 and TLR9 SNPs and the CCTC for the CSF2, FLT1, TLR9 and TFPI polymorphisms correlated with a reduced risk of PROM when corrected by PLT and APTT, respectively. We concluded that the polymorphisms of genes, involved in hemostasis and angiogenesis, contributed to PROM.
Zobrazit více v PubMed
Prelabor Rupture of Membranes: ACOG Practice Bulletin, Number 217. Obstet Gynecol. 2020;135:e80–e97. doi: 10.1097/AOG.0000000000003700. PubMed DOI
Ghafoor S. Current and Emerging Strategies for Prediction and Diagnosis of Prelabour Rupture of the Membranes: A Narra-tive Review. Malays. J. Med. Sci. 2021;28:5–17. PubMed PMC
Meloni A., Palmas F., Barberini L., Mereu R., Deiana S.F., Fais M.F., Noto A., Fattuoni C., Mussap M., Ragusa A., et al. PROM and Labour Effects on Urinary Metabolome: A Pilot Study. Dis. Markers. 2018;2018:1042479. doi: 10.1155/2018/1042479. PubMed DOI PMC
Ocviyanti D., Wahono W.T. Risk Factors for Neonatal Sepsis in Pregnant Women with Premature Rupture of the Membrane. J. Pregnancy. 2018;2018:4823404. doi: 10.1155/2018/4823404. PubMed DOI PMC
Ananth C.V., Joseph K., Oyelese Y., Demissie K., Vintzileos A.M. Trends in Preterm Birth and Perinatal Mortality Among Singletons: United States, 1989 Through 2000. Obstet. Gynecol. 2005;105:1084–1091. doi: 10.1097/01.AOG.0000158124.96300.c7. PubMed DOI
Choi E.K., Kim S.Y., Heo J.M., Park K.H., Kim H.Y., Choi B.M., Kim H.J. Perinatal Outcomes Associated with Latency in Late Pre-term Premature Rupture of Membranes. Int. J. Environ. Res. Public Health. 2021;18:672. doi: 10.3390/ijerph18020672. PubMed DOI PMC
Menon R., Richardson L. Preterm prelabor rupture of the membranes: A disease of the fetal membranes. Semin. Perinatol. 2017;41:409–419. doi: 10.1053/j.semperi.2017.07.012. PubMed DOI PMC
Günay T., Erdem G., Bilir R.A., Hocaoglu M., Ozdamar O., Turgut A. The association of the amniotic fluid index (AFI) with perinatal fetal and maternal outcomes in pregnancies complicated by preterm premature rupture of membranes (PPROM) Ginekol. Pol. 2020;91:465–472. doi: 10.5603/GP.2020.0069. PubMed DOI
Tchirikov M., Schlabritz-Loutsevitch N., Maher J., Buchmann J., Naberezhnev Y., Winarno A.S., Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): Etiology, diagnosis, classification, international recommendations of treatment options and outcome. J. Périnat. Med. 2018;46:465–488. doi: 10.1515/jpm-2017-0027. PubMed DOI
Waters T.P., Mercer B.M. The management of preterm premature rupture of the membranes near the limit of fetal viability. Am. J. Obstet. Gynecol. 2009;201:230–240. doi: 10.1016/j.ajog.2009.06.049. PubMed DOI
Schmitz T., Sentilhes L., Lorthe E., Gallot D., Madar H., Doret-Dion M., Beucher G., Charlier C., Cazanave C., Delorme P., et al. Preterm premature rupture of the membranes: Guidelines for clinical practice from the French College of Gynaecologists and Obstetricians (CNGOF) Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;236:1–6. doi: 10.1016/j.ejogrb.2019.02.021. PubMed DOI
Andrys C., Kacerovsky M., Drahosova M., Musilova I., Pliskova L., Hornychova H., Prochazka M., Jacobsson B. Amniotic fluid soluble Toll-like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2013;26:520–527. doi: 10.3109/14767058.2012.741634. PubMed DOI
Erez O., Espinoza J., Chaiworapongsa T., Gotsch F., Kusanovic J.P., Than N.G., Mazaki-Tovi S., Vaisbuch E., Papp Z., Yoon B.H., et al. A link between a hemostatic disorder and preterm PROM: A role for tissue factor and tissue factor pathway inhibitor. J. Matern. Fetal Neonatal Med. 2008;21:732–744. doi: 10.1080/14767050802361807. PubMed DOI PMC
Grote K., Petri M., Liu C., Jehn P., Spalthoff S., Kokemüller H., Luchtefeld M., Tschernig T., Krettek C., Haasper C., et al. Toll-like receptor 2/6-dependent stimulation of mesen-chymal stem cells promotes angiogenesis by paracrine factors. Eur. Cell Mater. 2013;26:66–79. doi: 10.22203/eCM.v026a05. PubMed DOI
Kumar D., Moore R.M., Nash A., Springel E., Mercer B.M., Philipson E., Mansour J.M., Moore J.J. Decidual GM-CSF is a critical common interme-diate necessary for thrombin and TNF induced in-vitro fetal membrane weakening. Placenta. 2014;35:1049–1056. doi: 10.1016/j.placenta.2014.10.001. PubMed DOI
Kumar D., Schatz F., Moore R.M., Mercer B.M., Rangaswamy N., Mansour J.M., Lockwood C.J., Moore J.J. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta. 2011;32:206–213. doi: 10.1016/j.placenta.2011.01.006. PubMed DOI PMC
Moore R.M., Schatz F., Kumar D., Mercer B.M., Abdelrahim A., Rangaswamy N., Bartel C., Mansour J.M., Lockwood C.J., Moore J.J. α-lipoic acid inhibits throm-bin-induced fetal membrane weakening in vitro. Placenta. 2010;31:886–892. doi: 10.1016/j.placenta.2010.07.012. PubMed DOI PMC
Fang Q., Liu X., Al-Mugotir M., Kobayashi T., Abe S., Kohyama T. Thrombin and TNF-α/IL-1beta synergistically in-duce fibroblast-mediated collagen gel degradation. Am. J. Respir. Cell Mol. Biol. 2006;35:714–721. doi: 10.1165/rcmb.2005-0026OC. PubMed DOI PMC
Galis Z.S., Kranzhöfer R., Fenton J.W., Libby P. Thrombin Promotes Activation of Matrix Metalloproteinase-2 Produced by Cultured Vascular Smooth Muscle Cells. Arter. Thromb. Vasc. Biol. 1997;17:483–489. doi: 10.1161/01.ATV.17.3.483. PubMed DOI
Han C.S., Schatz F., Lockwood C.J. Abruption-Associated Prematurity. Clin. Perinatol. 2011;38:407–421. doi: 10.1016/j.clp.2011.06.001. PubMed DOI PMC
Mackenzie A.P., Schatz F., Krikun G., Funai E.F., Kadner S., Lockwood C.J. Mechanisms of abruption-induced premature rupture of the fetal membranes: Thrombin enhanced decidual matrix metalloproteinase-3 (stromelysin-1) expression. Am. J. Obstet. Gynecol. 2004;191:1996–2001. doi: 10.1016/j.ajog.2004.08.003. PubMed DOI
Stephenson C.D., Lockwood C.J., Ma Y., Guller S. Thrombin-dependent regulation of matrix metalloproteinase (MMP)-9 levels in human fetal membranes. J. Matern. Fetal Neonatal Med. 2005;18:17–22. doi: 10.1080/14767050500123632. PubMed DOI
Erez O., Romero R., Vaisbuch E., Kusanovic J.P., Mazaki-Tovi S., Chaiworapongsa T., Gotsch F., Fareed J., Hoppensteadt D., Than N.G., et al. High tissue factor activity and low tissue factor pathway inhibitor concentrations in patients with preterm labor. J. Matern. Fetal Neonatal Med. 2010;23:23–33. doi: 10.3109/14767050902994770. PubMed DOI PMC
Gomez-Lopez N., Hernandez-Santiago S., Lobb A.P., Olson D.M., Vadillo-Ortega F. Normal and Premature Rupture of Fetal Membranes at Term Delivery Differ in Regional Chemotactic Activity and Related Chemokine/Cytokine Production. Reprod. Sci. 2012;20:276–284. doi: 10.1177/1933719112452473. PubMed DOI
Musilova I., Pliskova L., Kutova R., Hornychova H., Jacobsson B., Kacerovsky M. Ureaplasma species and Mycoplasma hominis in cervical fluid of pregnancies complicated by preterm prelabor rupture of membranes. J. Mater. Fetal Neonatal Med. 2016;29:1–7. doi: 10.3109/14767058.2014.984606. PubMed DOI
Oh K.J., Romero R., Park J.Y., Hong J.S., Yoon B.H. The earlier the gestational age, the greater the intensity of the in-tra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J. Perinat. Med. 2019;47:516–527. doi: 10.1515/jpm-2019-0003. PubMed DOI PMC
Perni S.C., Vardhana S., Korneeva I., Tuttle S.L., Paraskevas L.-R., Chasen S.T., Kalish R.B., Witkin S.S. Mycoplasma hominis and Ureaplasma urealyticum in midtrimester amniotic fluid: Association with amniotic fluid cytokine levels and pregnancy outcome. Am. J. Obstet. Gynecol. 2004;191:1382–1386. doi: 10.1016/j.ajog.2004.05.070. PubMed DOI
Tantengco O.A.G., Yanagihara I. Current understanding and treatment of intra-amniotic infection with Ureaplasma spp. J. Obstet. Gynaecol. Res. 2019;45:1796–1808. doi: 10.1111/jog.14052. PubMed DOI
Fitzgerald K.A., Kagan J.C. Toll-like Receptors and the Control of Immunity. Cell. 2020;180:1044–1066. doi: 10.1016/j.cell.2020.02.041. PubMed DOI PMC
Mukherjee S., Huda S., Sinha Babu S.P. Toll-like receptor polymorphism in host immune response to infectious diseases: A review. Scand. J. Immunol. 2019;90:e12771. doi: 10.1111/sji.12771. PubMed DOI
Vijay K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol. 2018;59:391–412. doi: 10.1016/j.intimp.2018.03.002. PubMed DOI PMC
Kacerovsky M., Andrys C., Hornychová H., Pliskova L., Lancz K., Musilová I.K., Drahosova M., Bolehovska R., Tambor V., Jacobsson B. Amniotic fluid soluble Toll-like receptor 4 in pregnancies complicated by preterm prelabor rupture of the membranes. J. Matern. Fetal Neonatal Med. 2012;25:1148–1155. doi: 10.3109/14767058.2011.626821. PubMed DOI
He B., Yang X., Li Y., Huang D., Xu X., Yang W., Dai Y., Zhang H., Chen Z., Cheng W. TLR9 (Toll-Like Receptor 9) Agonist Suppresses Angiogenesis by Dif-ferentially Regulating VEGFA (Vascular Endothelial Growth Factor A) and sFLT1 (Soluble Vascular Endothelial Growth Fac-tor Receptor 1) in Preeclampsia. Hypertension. 2018;71:671–680. doi: 10.1161/HYPERTENSIONAHA.117.10510. PubMed DOI
Mohamed F.E.-Z.A., Hammad S., Luong T.V., Dewidar B., Al-Jehani R., Davies N., Dooley S., Jalan R. Expression of TLR-2 in hepatocellular carcinoma is associated with tumour proliferation, angiogenesis and Caspase-3 expression. Pathol. Res. Pract. 2020;216:152980. doi: 10.1016/j.prp.2020.152980. PubMed DOI
Zhao L., Ma R., Zhang L., Yuan X., Wu J., He L., Liu G., Du R. Inhibition of HIF-1a-mediated TLR4 activation decreases apoptosis and promotes angiogenesis of placental microvascular endothelial cells during severe pre-eclampsia pathogenesis. Placenta. 2019;83:8–16. doi: 10.1016/j.placenta.2019.06.375. PubMed DOI
Saber T., Veale U.J., Balogh E., McCormick J., NicAnUltaigh S., Connolly M., Fearon U. Toll-Like Receptor 2 Induced Angiogenesis and Invasion Is Mediated through the Tie2 Signalling Pathway in Rheumatoid Arthritis. PLoS ONE. 2011;6:e23540. doi: 10.1371/journal.pone.0023540. PubMed DOI PMC
Grote K., Schuett H., Salguero G., Grothusen C., Jagielska J., Drexler H., Mühlradt P.F., Schieffer B. Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood. 2010;115:2543–2552. doi: 10.1182/blood-2009-05-224402. PubMed DOI
El Kebir D., Damlaj A., Makhezer N., Filep J.G. Toll-Like Receptor 9 Signaling Regulates Tissue Factor and Tissue Factor Pathway Inhibitor Expression in Human Endothelial Cells and Coagulation in Mice. Crit. Care Med. 2015;43:e179–e189. doi: 10.1097/CCM.0000000000001005. PubMed DOI PMC
Harmon Q.E., Engel S.M., Olshan A.F., Moran T., Stuebe A.M., Luo J., Wu M.C., Avery C.L. Association of polymorphisms in natural killer cell-related genes with preterm birth. Am. J. Epidemiol. 2013;178:1208–1218. doi: 10.1093/aje/kwt108. PubMed DOI PMC
Gómez L.M., Sammel M.D., Appleby D.H., Elovitz M.A., Baldwin D.A., Jeffcoat M.K., Macones G.A., Parry S. Evidence of a gene-environment interaction that predisposes to spontaneous preterm birth: A role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am. J. Obstet. Gynecol. 2010;202:386.e1–386.e6. doi: 10.1016/j.ajog.2010.01.042. PubMed DOI
Frey H.A., Stout M.J., Pearson L.N., Tuuli M.G., Cahill A.G., Strauss J.F., Gomez L.M., Parry S., Allsworth J.E., Macones G.A. Genetic variation associated with preterm birth in African-American women. Am. J. Obstet. Gynecol. 2016;215:235.e1–235.e8. doi: 10.1016/j.ajog.2016.03.008. PubMed DOI PMC
Amin-Beidokhti M., Gholami M., Abedin-Do A., Pirjani R., Sadeghi H., Karamoddin F., Yassaee V.R., Mirfakhraie R. An intron variant in the FLT1 gene increases the risk of preeclampsia in Iranian women. Clin. Exp. Hypertens. 2018;41:697–701. doi: 10.1080/10641963.2018.1539097. PubMed DOI
Majewska M., Lipka A., Paukszto L., Jastrzebski J.P., Szeszko K., Gowkielewicz M., Lepiarczyk E., Jozwik M., Majewski M.K. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR) Int. J. Mol. Sci. 2019;20:1510. doi: 10.3390/ijms20061510. PubMed DOI PMC
Cao Y., Zhang Z., Xu J., Yuan W., Wang J., Huang X., Shen Y., Du J. The association of idiopathic recurrent pregnancy loss with pol-ymorphisms in hemostasis-related genes. Gene. 2013;530:248–252. doi: 10.1016/j.gene.2013.07.080. PubMed DOI
Guerra-Shinohara E.M., Bertinato J.F., Bueno C.T., da Silva K.C., de Carvalho M.H.B., Francisco R.P.V., Zugaib M., Cerda A., Morelli V.M. Polymorphisms in antithrombin and in tissue factor pathway inhibitor genes are associated with recurrent pregnancy loss. Thromb Haemost. 2012;108:693–700. PubMed
Karody V.R., Reese S., Kumar N., Liedel J., Jarzembowski J., Sampath V. A toll-like receptor 9 (rs352140) variant is associated with placental inflammation in newborn infants. J. Matern. Fetal Neonatal Med. 2016;29:2210–2216. doi: 10.3109/14767058.2015.1081590. PubMed DOI PMC
Razdaibiedina A., Khobzey M., Tkachenko V., Vorobiova I. Effects of Single-Nucleotide Polymorphisms in Cytokine, Toll-Like Receptor, and Progesterone Receptor Genes on Risk of Miscarriage. Obstet. Gynecol. Int. 2018;2018:9272749. doi: 10.1155/2018/9272749. PubMed DOI PMC
Mockenhaupt F.P., Hamann L., von Gaertner C., Bedu-Addo G., von Kleinsorgen C., Schumann R.R., Bienzle U. Common poly-morphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J. Infect. Dis. 2006;194:184–188. doi: 10.1086/505152. PubMed DOI
Moatti D., Haidar B., Fumeron F., Gauci L., Boudvillain O., Seknadji P., Olliver V., Aumont M.C., De Prost D. A new T-287C polymorphism in the 5′ regulatory region of the tissue factor pathway inhibitor gene. Association study of the T-287C and C-399T polymorphisms with coronary artery disease and plasma TFPI levels. Thromb. Haemost. 2000;84:244–249. doi: 10.1055/s-0037-1614003. PubMed DOI
Pandey S., Mittal B., Srivastava M., Singh S., Srivastava K., Lal P., Mittal R.D. Evaluation of Toll-like receptors 3 (c.1377C/T) and 9 (G2848A) gene polymorphisms in cervical cancer susceptibility. Mol. Biol. Rep. 2010;38:4715–4721. doi: 10.1007/s11033-010-0607-z. PubMed DOI
Saeki H., Tsunemi Y., Asano N., Nakamura K., Sekiya T., Hirai K., Kakinuma T., Fujita H., Kagami S., Tamaki K. Analysis of GM-CSF gene polymorphisms (3606T/C and 3928C/T) in Japanese patients with atopic dermatitis. Clin. Exp. Dermatol. 2006;31:278–280. doi: 10.1111/j.1365-2230.2005.02052.x. PubMed DOI
SNPStats Software. [(accessed on 22 September 2021)]. Available online: https://www.snpstats.net/start.htm.
Srinivas S.K., Morrison A., Andrela C.M., Elovitz M. Allelic variations in angiogenic pathway genes are associated with preeclampsia. Am. J. Obstet. Gynecol. 2010;202:445.e1–445.e11. doi: 10.1016/j.ajog.2010.01.040. PubMed DOI
Amosco M.D., Villar V.A.M., Naniong J.M.A., David-Bustamante L.M.G., Jose P.A., Palmes-Saloma C.P. VEGF-A and VEGFR1 SNPs associate with preeclampsia in a Philippine population. Clin. Exp. Hypertens. 2016;38:578–585. doi: 10.3109/10641963.2016.1174252. PubMed DOI PMC
Opstad T.B., Pettersen A.A., Bratseth V., Arnesen H., Seljeflot I. The influence of tissue factor and tissue factor pathway in-hibitor polymorphisms on thrombin generation in stable coronary artery disease. Pathophysiol. Haemost. Thromb. 2010;37:98–103. doi: 10.1159/000327491. PubMed DOI
Keren-Politansky A., Breizman T., Brenner B., Sarig G., Drugan A. The coagulation profile of preterm delivery. Thromb. Res. 2014;133:585–589. doi: 10.1016/j.thromres.2014.01.018. PubMed DOI
Ekin A., Gezer C., Kulhan G., Avcı M.E., Taner C.E. Can platelet count and mean platelet volume during the first trimester of pregnancy predict preterm premature rupture of membranes? J. Obstet. Gynaecol. Res. 2014;41:23–28. doi: 10.1111/jog.12484. PubMed DOI
Gasparyan A.Y., Ayvazyan L., Mikhailidis D.P., Kitas G.D. Mean platelet volume: A link between thrombosis and inflamma-tion? Curr. Pharm. Des. 2011;17:47–58. doi: 10.2174/138161211795049804. PubMed DOI
Roszak A., Lianeri M., Sowińska A., Jagodziński P.P. Involvement of Toll-like Receptor 9 polymorphism in cervical cancer development. Mol. Biol. Rep. 2012;39:8425–8430. doi: 10.1007/s11033-012-1695-8. PubMed DOI PMC
Wu J., Cui H., Dick A.D., Liu L. TLR9 Agonist Regulates Angiogenesis and Inhibits Corneal Neovascularization. Am. J. Pathol. 2014;184:1900–1910. doi: 10.1016/j.ajpath.2014.03.001. PubMed DOI
Bouvier D., Forest J.-C., Blanchon L., Bujold E., Pereira B., Bernard N., Gallot D., Sapin V., Giguère Y. Risk Factors and Outcomes of Preterm Premature Rupture of Membranes in a Cohort of 6968 Pregnant Women Prospectively Recruited. J. Clin. Med. 2019;8:1987. doi: 10.3390/jcm8111987. PubMed DOI PMC
Luisi S., Giorgi M., Riggi S., Messina G., Severi F.M. Neonatal outcome in pregnancy hypotiroidee women. Gynecol. Endocrinol. 2020;36:772–775. doi: 10.1080/09513590.2019.1706083. PubMed DOI
Merello M., Lotte L., Gonfrier S., Trolli S.E.D., Casagrande F., Ruimy R., Bongain A. Enterobacteria vaginal colonization among patients with preterm premature rupture of membranes from 24 to 34 weeks of gestation and neonatal infection risk. J. Gynecol. Obstet. Hum. Reprod. 2019;48:187–191. doi: 10.1016/j.jogoh.2018.12.007. PubMed DOI
Muche A.A., Olayemi O.O., Gete Y.K. Effects of gestational diabetes mellitus on risk of adverse maternal outcomes: A prospec-tive cohort study in Northwest Ethiopia. BMC Pregnancy Childbirth. 2020;20:73. doi: 10.1186/s12884-020-2759-8. PubMed DOI PMC
Workineh Y., Birhanu S., Kerie S., Ayalew E., Yihune M. Determinants of premature rupture of membrane in Southern Ethiopia, 2017: Case control study design. BMC Res. Notes. 2018;11:927. doi: 10.1186/s13104-018-4035-9. PubMed DOI PMC
El-Achi V., De Vries B., O’Brien C., Park F., Tooher J., Hyett J. First-Trimester Prediction of Preterm Prelabour Rupture of Membranes. Fetal Diagn. Ther. 2020;47:624–629. doi: 10.1159/000506541. PubMed DOI
Zhang X., Liao Q., Wang F., Li D. Association of gestational diabetes mellitus and abnormal vaginal flora with adverse pregnancy outcomes. Medicine. 2018;97:e11891. doi: 10.1097/MD.0000000000011891. PubMed DOI PMC
Getahun D., Ananth C.V., Oyelese Y., Peltier M.R., Smulian J.C., Vintzileos A.M. Acute and chronic respiratory diseases in pregnancy: Associations with spontaneous premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2007;20:669–675. doi: 10.1080/14767050701516063. PubMed DOI
Hnat M.D., Mercer B.M., Thurnau G., Goldenberg R., Thom E.A., Meis P.J., Moawad A.H., Iams J.D., Van Dorsten J.P. Perinatal outcomes in women with preterm rupture of membranes between 24 and 32 weeks of gestation and a history of vaginal bleeding. Am. J. Obstet. Gynecol. 2005;193:164–168. doi: 10.1016/j.ajog.2004.10.625. PubMed DOI
Liu L., Wang L., Yang W., Ni W., Jin L., Liu J., Ren A. Gestational hypertension and pre-eclampsia and risk of spontaneous premature rupture of membranes: A population-based cohort study. Int. J. Gynecol. Obstet. 2019;147:195–201. doi: 10.1002/ijgo.12943. PubMed DOI
Ahmed S.R., El-Sammani M., Al-Sheeha M.A., Aitallah A.S., Jabin K.F., Ahmed S.R. Pregnancy outcome in women with threatened miscarriage: A year study. Mater Sociomed. 2012;24:26–28. doi: 10.5455/msm.2012.24.26-28. PubMed DOI PMC
Evrenos A.N., Gungor A.N.C., Gulerman C., Cosar E. Obstetric outcomes of patients with abortus imminens in the first trimester. Arch. Gynecol. Obstet. 2013;289:499–504. doi: 10.1007/s00404-013-2979-5. PubMed DOI
Brown R.G., Marchesi J.R., Lee Y.S., Smith A., Lehne B., Kindinger L.M., Terzidou V., Holmes E., Nicholson J.K., Bennett P.R., et al. Vaginal dysbiosis increases risk of preterm fetal membrane rupture, neonatal sepsis and is exacerbated by erythromycin. BMC Med. 2018;16:9. PubMed PMC
Brown R.G., Al-Memar M., Marchesi J.R., Lee Y.S., Smith A., Chan D., Lewis H., Kindinger L., Terzidou V., Bourne T., et al. Establishment of vaginal microbiota composition in early pregnancy and its association with subsequent preterm prelabor rupture of the fetal membranes. Transl. Res. 2019;207:30–43. doi: 10.1016/j.trsl.2018.12.005. PubMed DOI PMC