Association of Single Nucleotide Polymorphisms from Angiogenesis-Related Genes, ANGPT2, TLR2 and TLR9, with Spontaneous Preterm Labor
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35877427
PubMed Central
PMC9322696
DOI
10.3390/cimb44070203
PII: cimb44070203
Knihovny.cz E-zdroje
- Klíčová slova
- angiogenesis, genotyping, pregnancy, restriction fragment length polymorphism, single nucleotide polymorphism, spontaneous preterm labor,
- Publikační typ
- časopisecké články MeSH
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous preterm labor (PTL), as well as with possible genetic alterations on PTL-related coagulation. This case-control genetic association study aimed to identify single nucleotide polymorphisms (SNPs) for the aforementioned genes, which are correlated with genetic risk or protection against PTL in Polish women. The study was conducted in 320 patients treated between 2016 and 2020, including 160 women with PTL and 160 term controls in labor. We found that ANGPT2 rs3020221 AA homozygotes were significantly less common in PTL cases than in controls, especially after adjusting for activated partial thromboplastin time (APTT) and platelet (PLT) parameters. TC heterozygotes for TLR2 rs3804099 were associated with PTL after correcting for anemia, vaginal bleeding, and history of threatened miscarriage or PTL. TC and CC genotypes in TLR9 rs187084 were significantly less common in women with PTL, compared to the controls, after adjusting for bleeding and gestational diabetes. For the first time, it was shown that three polymorphisms-ANGPT2 rs3020221, TLR2 rs3804099 and TLR9 rs187084 -were significantly associated with PTL, adjusted by pregnancy development influencing factors.
Biomedical Research Center University Hospital Hradec Kralove 500 03 Hradec Kralove Czech Republic
Department of Gynecology and Obstetrics Medical University of Lodz 93 338 Lodz Poland
Zobrazit více v PubMed
Merced C., Goya M., Pratcorona L., Rodó C., Llurba E., Higueras T., Cabero L., Carreras E. Cervical pessary for preventing preterm birth in twin pregnancies with maternal short cervix after an episode of threatened preterm labor: Randomised controlled trial. Am. J. Obstet. Gynecol. 2019;221:55.e1–55.e14. doi: 10.1016/j.ajog.2019.02.035. PubMed DOI
Bomba-Opoń D.A., Wielgoś M. Nowoczesna terapia porodu przedwczesnego. In: Wielgoś M., editor. Diagnostyka Prenatalna z Elementami Perinatologii. Via Medica; Gdańsk, Poland: 2009. pp. 218–227.
Hamilton B.E., Martin J.A., Osterman M.J., Curtin S.C., Matthews T.J. Births: Final data for 2014. Natl. Vital Stat. Rep. 2015;64:1–64. PubMed
Treyvaud K. Parent and family outcomes following very preterm or very low birth weight birth: A review. Semin. Fetal Neonatal Med. 2014;19:131–135. doi: 10.1016/j.siny.2013.10.008. PubMed DOI
Leijnse J.E., de Heus R., de Jager W., Rodenburg W., Peeters L.L., Franx A., Eijkelkamp N. First trimester placental vascularization and angiogenetic factors are associated with adverse pregnancy outcome. Pregnancy Hypertens. 2018;13:87–94. doi: 10.1016/j.preghy.2018.04.008. PubMed DOI
Patni S., Bryant A.H., Wynen L.P., Seager A.L., Morgan G., Thornton C.A. Functional activity but not gene expression of toll-like receptors is decreased in the preterm versus term human placenta. Placenta. 2015;36:1031–1038. doi: 10.1016/j.placenta.2015.06.017. PubMed DOI
Umapathy A., Chamley L.W., James J.L. Reconciling the distinct roles of angiogenic/anti-angiogenic factors in the placenta and maternal circulation of normal and pathological pregnancies. Angiogenesis. 2020;23:105–117. doi: 10.1007/s10456-019-09694-w. PubMed DOI
Alfaidy N., Hoffmann P., Boufettal H., Samouh N., Aboussaouira T., Benharouga M., Feige J.J., Brouillet S. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis. Biomed. Res. Int. 2014;2014:451906. doi: 10.1155/2014/451906. PubMed DOI PMC
Pereira R.D., De Long N.E., Wang R.C., Yazdi F.T., Holloway A.C., Raha S. Angiogenesis in the placenta: The role of reactive oxygen species signaling. Biomed. Res. Int. 2015;2015:814543. doi: 10.1155/2015/814543. PubMed DOI PMC
Brosens I., Pijnenborg R., Vercruysse L., Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 2011;204:193–201. doi: 10.1016/j.ajog.2010.08.009. PubMed DOI PMC
Witzenbichler B., Maisonpierre P.C., Jones P., Yancopoulos G.D., Isner J.M. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J. Biol. Chem. 1998;273:18514–18521. doi: 10.1074/jbc.273.29.18514. PubMed DOI
Tzepi I.-M., Giamarellos-Bourboulis E.J., Carrer D.-P., Tsaganos T., Claus R.A., Vaki I., Pelekanou A., Kotsaki A., Tziortzioti V., Topouzis S., et al. Angiopoietin-2 enhances survival in experimental sepsis induced by multidrug-resistant Pseudomonas aeruginosa. J. Pharmacol. Exp. Ther. 2012;343:278–287. doi: 10.1124/jpet.112.195180. PubMed DOI
Polyzou E.N., Evangelinakis N., Pistiki A., Kotsaki A., Siristatidis C.S., Chrelias C.G., Salamalekis E., Kassanos D.P., Giamarellos-Bourboulis E.J. Angiopoietin-2 primes infection-induced preterm delivery. PLoS ONE. 2014;9:e86523. doi: 10.1371/journal.pone.0086523. PubMed DOI PMC
Abrahams V.M., Mor G. Toll-like receptors and their role in the trophoblast. Placenta. 2005;26:540–547. doi: 10.1016/j.placenta.2004.08.010. PubMed DOI
Patni S., Wynen L.P., Seager A.L., Morgan G., White J.O., Thornton C.A. Expression and activity of Toll-like receptors 1-9 in the human term placenta and changes associated with labor at term. Biol. Reprod. 2009;80:243–248. doi: 10.1095/biolreprod.108.069252. PubMed DOI
Aplin A.C., Ligresti G., Fogel E., Zorzi P., Smith K., Nicosia R.F. Regulation of angiogenesis, mural cell recruitment and adventitial macrophage behavior by Toll-like receptors. Angiogenesis. 2014;17:147–161. doi: 10.1007/s10456-013-9384-3. PubMed DOI
Grote K., Schuett H., Salguero G., Grothusen C., Jagielska J., Drexler H., Mühlradt P.F., Schieffer B. Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood. 2010;115:2543–2552. doi: 10.1182/blood-2009-05-224402. PubMed DOI
Grote K., Petri M., Liu C., Jehn P., Spalthoff S., Kokemüller H., Luchtefeld M., Tschernig T., Krettek C., Haasper C., et al. Toll-like receptor 2/6-dependent stimulation of mesenchymal stem cells promotes angiogenesis by paracrine factors. Eur. Cell Mater. 2013;26:66–79. doi: 10.22203/eCM.v026a05. PubMed DOI
Hilbert T., Dornbusch K., Baumgarten G., Hoeft A., Frede S., Klaschik S. Pulmonary vascular inflammation: Effect of TLR signalling on angiopoietin/TIE regulation. Clin. Exp. Pharmacol. Physiol. 2017;44:123–131. doi: 10.1111/1440-1681.12680. PubMed DOI
Wu J., Su W., Powner M.B., Liu J., Copland D.A., Fruttiger M., Madeddu P., Dick A.D., Liu L. Pleiotropic action of CpG-ODN on endothelium and macrophages attenuates angiogenesis through distinct pathways. Sci. Rep. 2016;6:31873. doi: 10.1038/srep31873. PubMed DOI PMC
Srinivas S.K., Morrison A.C., Andrela C.M., Elovitz M.A. Allelic variations in angiogenic pathway genes are associated with preeclampsia. Am. J. Obstet. Gynecol. 2010;202:445.e1–445.e11. doi: 10.1016/j.ajog.2010.01.040. PubMed DOI
Valenzuela F.J., Perez-Sepulveda A., Torres M.J., Correa P., Repetto G.M., Illanes S.E. Pathogenesis of preeclampsia: The genetic component. J. Pregnancy. 2012;2012:632732. doi: 10.1155/2012/632732. PubMed DOI PMC
Ajabi N., Mashayekhi F., Osalou M.A. Angiopoietin-2 1087G > A rs3020221 gene polymorphism is associated with in vitro fertilization and embryo transfer outcome. Middle East Fertil. Soc. J. 2017;22:336–339. doi: 10.1016/j.mefs.2017.05.010. DOI
Konac E., Onen H.I., Metindir J., Alp E., Biri A.A., Ekmekci A. Lack of association between −460 C/T and 936 C/T of the vascular endothelial growth factor and angiopoietin-2 exon 4 G/A polymorphisms and ovarian, cervical, and endometrial cancers. DNA Cell Biol. 2007;26:453–463. doi: 10.1089/dna.2007.0585. PubMed DOI
Pietrowski D., Tempfer C., Bettendorf H., Bürkle B., Nagele F., Unfried G., Keck C. Angiopoietin-2 polymorphism in women with idiopathic recurrent miscarriage. Fertil. Steril. 2003;80:1026–1029. doi: 10.1016/S0015-0282(03)01011-2. PubMed DOI
Mirkamandar E., Nemati M., Hayatbakhsh M.M., Bassagh A., Khosravimashizi A., Jafarzadeh A. Association of a single nucleotide polymorphism in the TLR2 gene (rs3804099), but not in the TLR4 gene (rs4986790), with Helicobacter pylori infection and peptic ulcer. Turk. J. Gastroenterol. 2018;29:283–291. doi: 10.5152/tjg.2018.17484. PubMed DOI PMC
Zhang P., Zhang N., Liu L., Zheng K., Zhu L., Zhu J., Cao L., Jiang Y., Liu G., He Q. Polymorphisms of toll-like receptors 2 and 9 and severity and prognosis of bacterial meningitis in Chinese children. Sci. Rep. 2017;7:42796. doi: 10.1038/srep42796. PubMed DOI PMC
Randhawa A.K., Shey M., Keyser A., Peixoto B., Wells R.D., De Kock M., Lerumo L., Hughes J., Hussey G., Hawkridge A., et al. South African Tuberculosis Vaccine Initiative Team. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants. PLoS Pathog. 2011;7:e1002174. doi: 10.1371/journal.ppat.1002174. PubMed DOI PMC
Schurz H., Daya M., Moller M., Hoal E.G., Salie M. TLR1, 2, 4, 6 and 9 Variants Associated with Tuberculosis Susceptibility: A Systematic Review and Meta-Analysis. PLoS ONE. 2015;10:e0139711. doi: 10.1371/journal.pone.0139711. PubMed DOI PMC
Shey M., Randhawa A.K., Bowmaker M., Smith E., Scriba T., De Kock M., Mahomed H., Hussey G., Hawn T.R., Hanekom W.A. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced interleukin-6 secretion. Genes Immun. 2010;11:561–572. doi: 10.1038/gene.2010.14. PubMed DOI PMC
Wang M.G., Zhang M.M., Wang Y., Wu S.Q., Zhang M., He J.Q. Association of TLR8 and TLR9 polymorphisms with tuberculosis in a Chinese Han population: A case-control study. BMC Infect. Dis. 2018;18:561. doi: 10.1186/s12879-018-3485-y. PubMed DOI PMC
Fischer J., Weber A., Böhm S., Dickhöfer S., El Maadidi S., Deichsel D., Knop V., Klinker H., Möller B., Rasenack J., et al. Sex-specific effects of TLR9 promoter variants on spontaneous clearance of HCV infection. Gut. 2017;66:1829–1837. doi: 10.1136/gutjnl-2015-310239. PubMed DOI
Ambrocio-Ortiz E., Pérez-Rubio G., Abarca-Rojano E., Montaño M., Ramos C., Hernández-Zenteno R.D., Del Angel-Pablo A.D., Reséndiz-Hernández J.M., Ramírez-Venegas A., Falfán-Valencia R. Influence of proinflammatory cytokine gene polymorphisms on the risk of COPD and the levels of plasma protein. Cytokine. 2018;111:364–370. doi: 10.1016/j.cyto.2018.09.017. PubMed DOI
Keren-Politansky A., Breizman T., Brenner B., Sarig G., Drugan A. The coagulation profile of preterm delivery. Thromb. Res. 2014;133:585–589. doi: 10.1016/j.thromres.2014.01.018. PubMed DOI
Bremme K.A. Haemostatic changes in pregnancy. Best Pr. Res. Clin. Haematol. 2003;16:153–168. doi: 10.1016/S1521-6926(03)00021-5. PubMed DOI
Cerneca F., Ricci G., Simeone R., Malisano M., Alberico S., Guaschino S. Coagulation and fibrinolysis changes in normal pregnancy. Increased levels of procoagulants and reduced levels of inhibitors during pregnancy induce a hypercoagulable state, combined with a reactive fibrinolysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997;73:31–36. doi: 10.1016/S0301-2115(97)02734-6. PubMed DOI
Hellgren M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost. 2003;29:125–130. doi: 10.1055/s-2003-38897. PubMed DOI
Chaiworapongsa T., Espinoza J., Yoshimatsu J., Kim Y.M., Bujold E., Edwin S., Yoon B.H., Romero R. Activation of coagulation system in preterm labor and preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 2002;11:368–373. doi: 10.1080/jmf.11.6.368.373. PubMed DOI
Elovitz M.A., Baron J., Phillippe M. The role of thrombin in preterm parturition. Am. J. Obstet. Gynecol. 2001;185:1059–1063. doi: 10.1067/mob.2001.117638. PubMed DOI
Magee L.A., Pels A., Helewa M., Rey E., von Dadelszen P., Canadian Hypertensive Disorders of Pregnancy Working Group Diagnosis, evaluation, and management of the hypertensive disorders of pregnancy: Executive summary. J. Obstet. Gynaecol. Can. 2014;36:416–441. doi: 10.1016/S1701-2163(15)30588-0. PubMed DOI
SNP Database (dbSNP) of the National Center for Biotechnology Information (NCBI) [(accessed on 22 February 2022)]; Available online: https://www.ncbi.nlm.nih.gov/snp/
Amin-Beidokhti M., Gholami M., Abedin-Do A., Pirjani R., Sadeghi H., Karamoddin F., Yassaee V.R., Mirfakhraie R. An intron variant in the FLT1 gene increases the risk of preeclampsia in Iranian women. Clin. Exp. Hypertens. 2019;41:697–701. doi: 10.1080/10641963.2018.1539097. PubMed DOI
Denschlag D., Bettendorf H., Watermann D., Keck C., Tempfer C., Pietrowski D. Polymorphism of the p53 tumor suppressor gene is associated with susceptibility to uterine leiomyoma. Fertil. Steril. 2005;84:162–166. doi: 10.1016/j.fertnstert.2005.01.103. PubMed DOI
Elloumi N., Fakhfakh R., Abida O., Ayadi L., Marzouk S., Hachicha H., Fourati M., Bahloul Z., Mhiri M.N., Kammoun K., et al. Relevant genetic polymorphisms and kidney expression of Toll-like receptor (TLR)-5 and TLR-9 in lupus nephritis. Clin. Exp. Immunol. 2017;190:328–339. doi: 10.1111/cei.13022. PubMed DOI PMC
Meena N.K., Ahuja V., Meena K., Paul J. Association of TLR5 gene polymorphisms in ulcerative colitis patients of north India and their role in cytokine homeostasis. PLoS ONE. 2015;10:e0120697. doi: 10.1371/journal.pone.0120697. PubMed DOI PMC
Saeki H., Tsunemi Y., Asano N., Nakamura K., Sekiya T., Hirai K., Kakinuma T., Fujita H., Kagami S., Tamaki K. Analysis of GM-CSF gene polymorphisms (3606T/C and 3928C/T) in Japanese patients with atopic dermatitis. Clin. Exp. Dermatol. 2006;31:278–280. doi: 10.1111/j.1365-2230.2005.02052.x. PubMed DOI
Zhao Y., Bu H., Hong K., Yin H., Zou Y.-L., Geng S.-J., Zheng M.-M., He J.-Y. Genetic polymorphisms of CCL1 rs2072069 G/A and TLR2 rs3804099 T/C in pulmonary or meningeal tuberculosis patients. Int. J. Clin. Exp. Pathol. 2015;8:12608–12620. PubMed PMC
SNPStats Software. [(accessed on 22 February 2022)]. Available online: https://www.snpstats.net/start.htm.
Bagamery K., Landau R., Kvell K., Graham J. Different platelet activation levels in non-pregnant, normotensive pregnant, pregnancy-induced hypertensive and pre-eclamptic women. A pilot study of flow cytometric analysis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005;121:117–118. doi: 10.1016/j.ejogrb.2004.12.004. PubMed DOI
Erez O., Romero R., Hoppensteadt D., Fareed J., Chaiworapongsa T., Kusanovic J.P., Mazaki-Tovi S., Gotsch F., Than N.G., Vaisbuch E., et al. Premature labor: A state of platelet activation? J. Perinat. Med. 2008;36:377–387. doi: 10.1515/JPM.2008.082. PubMed DOI PMC
Lok C.A.R., Nieuwland R., Sturk A., Hau C.M., Boer K., Van Bavel E., Vanderpost J.A.M. Microparticle-associated P-selectin reflects platelet activation in preeclampsia. Platelets. 2007;18:68–72. doi: 10.1080/09537100600864285. PubMed DOI
Missfelder-Lobos H., Teran E., Lees C., Albaiges G., Nicolaides K.H. Platelet changes and subsequent development of pre-eclampsia and fetal growth restriction in women with abnormal uterine artery Doppler screening. Ultrasound Obstet. Gynecol. 2002;19:443–448. doi: 10.1046/j.1469-0705.2002.00672.x. PubMed DOI
Artunc Ulkumen B., Pala H.G., Calik E., Oruc Koltan S. Platelet distribution width (PDW): A putative marker for threatened preterm labour. Pak. J. Med. Sci. 2014;30:745–748. doi: 10.12669/pjms.304.4991. PubMed DOI PMC
Tygart S.G., McRoyan D.K., Spinnato J.A., McRoyan C.J., Kitay D.Z. Longitudinal study of platelet indices during normal pregnancy. Am. J. Obstet. Gynecol. 1986;154:883–887. doi: 10.1016/0002-9378(86)90476-X. PubMed DOI
Badfar G., Shohani M., Soleymani A., Azami M. Maternal anemia during pregnancy and small for gestational age: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2019;32:1728–1734. doi: 10.1080/14767058.2017.1411477. PubMed DOI
Druk L., Hants Y., Farkash R., Ruchlemer R., Samueloff A., Grisaru-Granovsky S. Iron deficiency anemia at admission for labor and delivery is associated with an increased risk for Cesarean section and adverse maternal and neonatal outcomes. Transfusion. 2015;55:2799–2806. doi: 10.1111/trf.13252. PubMed DOI
Mahmood T., Rehman A.U., Tserenpil G., Siddiqui F., Ahmed M., Siraj F., Kumar B. The Association between Iron-deficiency Anemia and Adverse Pregnancy Outcomes: A Retrospective Report from Pakistan. Cureus. 2019;11:e5854. doi: 10.7759/cureus.5854. PubMed DOI PMC
Parks S., Hoffman M.K., Goudar S.S., Patel A., Saleem S., Ali S.A., Goldenberg R.L., Hibberd P.L., Moore J., Wallace D., et al. Maternal anaemia and maternal, fetal, and neonatal outcomes in a prospective cohort study in India and Pakistan. BJOG. 2019;126:737–743. doi: 10.1111/1471-0528.15585. PubMed DOI PMC
Ronkainen J., Lowry E., Heiskala A., Uusitalo I., Koivunen P., Kajantie E., Vääräsmäki M., Järvelin M.-R., Sebert S. Maternal hemoglobin associates with preterm delivery and small for gestational age in two Finnish birth cohorts. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019;238:44–48. doi: 10.1016/j.ejogrb.2019.04.045. PubMed DOI
Young M.F., Oaks B.M., Tandon S., Martorell R., Dewey K.G., Wendt A.S. Maternal hemoglobin concentrations across pregnancy and maternal and child health: A systematic review and meta-analysis. Ann. N.Y. Acad. Sci. 2019;1450:47–68. doi: 10.1111/nyas.14093. PubMed DOI PMC
Jung J., Rahman M., Rahman S., Swe K.T., Islam R., Rahman O., Akter S. Effects of hemoglobin levels during pregnancy on adverse maternal and infant outcomes: A systematic review and meta-analysis. Ann. N.Y. Acad. Sci. 2019;1450:69–82. doi: 10.1111/nyas.14112. PubMed DOI
Ramaeker D.M., Simhan H.N. Sonographic cervical length, vaginal bleeding, and the risk of preterm birth. Am. J. Obstet. Gynecol. 2012;206:224.e1–224.e4. doi: 10.1016/j.ajog.2011.10.879. PubMed DOI
Expert Panel on GYN and OB Imaging. Shipp T.D., Poder L., Feldstein V.A., Oliver E.R., Promes S.B., Strachowski L.M., Sussman B.L., Wang E.Y., Weber T.M., et al. ACR Appropriateness Criteria® Second and Third Trimester Vaginal Bleeding. J. Am. Coll. Radiol. 2020;17:S497–S504. doi: 10.1016/j.jacr.2020.09.004. PubMed DOI
Petriglia G., Palaia I., Musella A., Marchetti C., Antonilli M., Brunelli R., Ostuni R. Threatened abortion and late-pregnancy complications: A case-control study and review of literature. Minerva Ginecol. 2015;67:491–497. PubMed
Saraswat L., Bhattacharya S., Maheshwari A., Bhattacharya S. Maternal and perinatal outcome in women with threatened miscarriage in the first trimester: A systematic review. BJOG. 2010;117:245–257. doi: 10.1111/j.1471-0528.2009.02427.x. PubMed DOI
Saber T., Veale D.J., Balogh E., McCormick J., NicAnUltaigh S., Connolly M., Fearon U. Toll-like receptor 2 induced angiogenesis and invasion is mediated through the Tie2 signalling pathway in rheumatoid arthritis. PLoS ONE. 2011;6:e23540. doi: 10.1371/journal.pone.0023540. PubMed DOI PMC
Chen K.-H., Gu W., Zeng L., Jiang D.-P., Zhang L.-Y., Zhou J., Du D.-Y., Hu P., Liu Q., Huang S.-N., et al. Identification of haplotype tag SNPs within the entire TLR2 gene and their clinical relevance in patients with major trauma. Shock. 2011;35:35–41. doi: 10.1097/SHK.0b013e3181eb45b3. PubMed DOI
Varzari A., Deyneko I.V., Vladei I., Grallert H., Schieck M., Tudor E., Illig T. Genetic variation in TLR pathway and the risk of pulmonary tuberculosis in a Moldavian population. Infect. Genet. Evol. 2018;68:84–90. doi: 10.1016/j.meegid.2018.12.005. PubMed DOI
Ma X., Liu Y., Gowen B.B., Graviss E.A., Clark A.G., Musser J.M. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS ONE. 2007;2:e1318. doi: 10.1371/journal.pone.0001318. PubMed DOI PMC
Naderi M., Hashemi M., Hazire-Yazdi L., Taheri M., Moazeni-Roodi A., Eskandari E., Bahari G. Association between toll-like receptor2 Arg677Trp and 597T/C gene polymorphisms and pulmonary tuberculosis in Zahedan, Southeast Iran. Braz. J. Infect. Dis. 2013;17:516–520. doi: 10.1016/j.bjid.2012.12.009. PubMed DOI PMC
Xue X., Qiu Y., Jiang D., Jin T., Yan M., Zhu X., Chu Y. The association analysis of TLR2 and TLR4 gene with tuberculosis in the Tibetan Chinese population. Oncotarget. 2017;8:113082–113089. doi: 10.18632/oncotarget.22996. PubMed DOI PMC
Junjie X., Songyao J., Minmin S., Yanyan S., Baiyong S., Xiaxing D., Jiabin J., Xi Z., Hao C. The association between Toll-like receptor 2 single-nucleotide polymorphisms and hepatocellular carcinoma susceptibility. BMC Cancer. 2012;12:57. doi: 10.1186/1471-2407-12-57. PubMed DOI PMC
Kim M.K., Park S.W., Kim S.K., Park H.J., Eun Y.G., Kwon K.H., Kim J. Association of Toll-like receptor 2 polymorphisms with papillary thyroid cancer and clinicopathologic features in a Korean population. J. Korean Med. Sci. 2012;27:1333–1338. doi: 10.3346/jkms.2012.27.11.1333. PubMed DOI PMC
Zeng H.-M., Pan K.-F., Zhang Y., Zhang L., Ma J.-L., Zhou T., Su H.-J., Li W.-Q., Li J.-Y., You W.-C. The correlation between polymorphisms of Toll-like receptor 2 and Toll-like receptor 9 and susceptibility to gastric cancer. Zhonghua Yu Fang Yi Xue Za Zhi. 2011;45:588–592. doi: 10.3760/cma.j.issn.0253-9624.2011.07.004. PubMed DOI
Semlali A., Parine N.R., Al-Numair N.S., Almutairi M., Hawsawi Y.M., Al Amri A., Aljebreen A.M., Arafah M., Almadi M.A., Azzam N.A., et al. Potential role of Toll-like receptor 2 expression and polymorphisms in colon cancer susceptibility in the Saudi Arabian population. OncoTargets Ther. 2018;11:8127–8141. doi: 10.2147/OTT.S168478. PubMed DOI PMC
Oyarzún C.P.M., Glembotsky A.C., Goette N.P., Lev P.R., De Luca G., Pietto M.C.B., Moiraghi B., Ríos M.A.C., Vicente A., Marta R.F., et al. Platelet Toll-Like Receptors Mediate Thromboinflammatory Responses in Patients with Essential Thrombocythemia. Front. Immunol. 2020;11:705. doi: 10.3389/fimmu.2020.00705. PubMed DOI PMC
Oluboyo A., Chukwu S.I., O Oluboyo B., Odewusi O.O. Evaluation of Angiopoietins 1 and 2 in Malaria-Infested Children. J. Environ. Public Health. 2020;2020:2169763. doi: 10.1155/2020/2169763. PubMed DOI PMC
Jäckel S., Kiouptsi K., Lillich M., Hendrikx T., Khandagale A., Kollar B., Hörmann N., Reiss C., Subramaniam S., Wilms E., et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130:542–553. doi: 10.1182/blood-2016-11-754416. PubMed DOI
Biswas S., Zimman A., Gao D., Byzova T.V., Podrez E.A. TLR2 Plays a Key Role in Platelet Hyperreactivity and Accelerated Thrombosis Associated With Hyperlipidemia. Circ. Res. 2017;121:951–962. doi: 10.1161/CIRCRESAHA.117.311069. PubMed DOI PMC
Allam R., Anders H.J. The role of innate immunity in autoimmune tissue injury. Curr. Opin. Rheumatol. 2008;20:538–544. doi: 10.1097/BOR.0b013e3283025ed4. PubMed DOI
Brentano F., Kyburz D., Gay S. Toll-like receptors and rheumatoid arthritis. Methods Mol. Biol. 2009;517:329–343. doi: 10.1007/978-1-59745-541-1_20. PubMed DOI
Lampropoulou V., Hoehlig K., Roch T., Neves P., Calderón-Gómez E., Sweenie C.H., Hao Y., Freitas A.A., Steinhoff U., Anderton S.M., et al. TLR-activated B cells suppress T cell-mediated autoimmunity. J. Immunol. 2008;180:4763–4773. doi: 10.4049/jimmunol.180.7.4763. PubMed DOI
Lien E., Zipris D. The role of Toll-like receptor pathways in the mechanism of type 1 diabetes. Curr. Mol. Med. 2009;9:52–68. doi: 10.2174/156652409787314453. PubMed DOI
Papadimitraki E.D., Bertsias G.K., Boumpas D.T. Toll like receptors and autoimmunity: A critical appraisal. J. Autoimmun. 2007;29:310–318. doi: 10.1016/j.jaut.2007.09.001. PubMed DOI
Wen L., Ley R.E., Volchkov P.Y., Stranges P.B., Avanesyan L., Stonebraker A.C., Hu C., Wong F.S., Szot G.L., Bluestone J.A., et al. Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature. 2008;455:1109–1113. doi: 10.1038/nature07336. PubMed DOI PMC
Tai N., Wong F.S., Wen L. TLR9 deficiency promotes CD73 expression in T cells and diabetes protection in nonobese diabetic mice. J. Immunol. 2013;191:2926–2937. doi: 10.4049/jimmunol.1300547. PubMed DOI PMC
Wong F.S., Hu C., Zhang L., Du W., Alexopoulou L., Flavell R.A., Wen L. The role of Toll-like receptors 3 and 9 in the development of autoimmune diabetes in NOD mice. Ann. N.Y. Acad. Sci. 2008;1150:146–148. doi: 10.1196/annals.1447.039. PubMed DOI
Zhang Y., Lee A.S., Shameli A., Geng X., Finegood D., Santamaria P., Dutz J.P. TLR9 blockade inhibits activation of diabetogenic CD8+ T cells and delays autoimmune diabetes. J. Immunol. 2010;184:5645–5653. doi: 10.4049/jimmunol.0901814. PubMed DOI
Liu M., Peng J., Tai N., Pearson J.A., Hu C., Guo J., Hou L., Zhao H., Wong F.S., Wen L. Toll-like receptor 9 negatively regulates pancreatic islet beta cell growth and function in a mouse model of type 1 diabetes. Diabetologia. 2018;61:2333–2343. doi: 10.1007/s00125-018-4705-0. PubMed DOI PMC
Wifi M.-N.A., Assem M., Elsherif R.H., El-Azab H.A.-F., Saif A. Toll-like receptors-2 and -9 (TLR2 and TLR9) gene polymorphism in patients with type 2 diabetes and diabetic foot. Med. Balt. 2017;96:e6760. doi: 10.1097/MD.0000000000006760. PubMed DOI PMC
Alvarez A.E., Marson F.A.L., Bertuzzo C.S., Bastos J.C.S., Baracat E.C.E., Brandao M.B., Tresoldi A.T., das Neves Romaneli M.T., Almeida C.C.B., de Oliveira T., et al. Association between single nucleotide polymorphisms in TLR4, TLR2, TLR9, VDR, NOS2 and CCL5 genes with acute viral bronchiolitis. Gene. 2018;645:7–17. doi: 10.1016/j.gene.2017.12.022. PubMed DOI PMC
Chen X., Wang S., Liu L., Chen Z., Qiang F., Kan Y., Shen Y., Wu J., Shen H., Hu Z. A genetic variant in the promoter region of Toll-like receptor 9 and cervical cancer susceptibility. DNA Cell Biol. 2012;31:766–771. doi: 10.1089/dna.2011.1427. PubMed DOI
Tian S., Zhang L., Yang T., Wei X., Zhang L., Yu Y., Li Y., Cao D., Yang X. The Associations between Toll-Like Receptor 9 Gene Polymorphisms and Cervical Cancer Susceptibility. Mediat. Inflamm. 2018;2018:9127146. doi: 10.1155/2018/9127146. PubMed DOI PMC
Gębura K., Świerkot J., Wysoczańska B., Korman L., Nowak B., Wiland P., Bogunia-Kubik K. Polymorphisms within Genes Involved in Regulation of the NF-κB Pathway in Patients with Rheumatoid Arthritis. Int. J. Mol. Sci. 2017;18:1432. doi: 10.3390/ijms18071432. PubMed DOI PMC
Chauhan A., Pandey N., Desai A., Raithatha N., Patel P., Choxi Y., Kapadia R., Khandelwal R., Jain N. Association of TLR4 and TLR9 gene polymorphisms and haplotypes with cervicitis susceptibility. PLoS ONE. 2019;14:e0220330. doi: 10.1371/journal.pone.0220330. PubMed DOI PMC
Hamann L., Hamprecht A., Gomma A., Schumann R.R. Rapid and inexpensive real-time PCR for genotyping functional polymorphisms within the Toll-like receptor -2, -4, and -9 genes. J. Immunol. Methods. 2004;285:281–291. doi: 10.1016/j.jim.2003.12.005. PubMed DOI
Bharti D., Kumar A., Mahla R., Kumar S., Ingle H., Shankar H., Joshi B., Raut A.A., Kumar H. The role of TLR9 polymorphism in susceptibility to pulmonary tuberculosis. Immunogenetics. 2014;66:675–681. doi: 10.1007/s00251-014-0806-1. PubMed DOI
Heger L.A., Hortmann M., Albrecht M., Colberg C., Peter K., Witsch T., Stallmann D., Zirlik A., Bode C., Duerschmied D., et al. Inflammation in acute coronary syndrome: Expression of TLR2 mRNA is increased in platelets of patients with ACS. PLoS ONE. 2019;14:e0224181. doi: 10.1371/journal.pone.0224181. PubMed DOI PMC
Panigrahi S., Ma Y., Hong L., Gao D., West X.Z., Salomon R.G., Byzova T.V., Podrez E.A. Engagement of platelet toll-like receptor 9 by novel endogenous ligands promotes platelet hyperreactivity and thrombosis. Circ. Res. 2013;112:103–112. doi: 10.1161/CIRCRESAHA.112.274241. PubMed DOI PMC
Aslam R., Speck E.R., Kim M., Crow A.R., Bang K.W.A., Nestel F.P., Ni H., Lazarus A., Freedman J., Semple J.W. Platelet Toll-like receptor expression modulates lipopolysaccharide-induced thrombocytopenia and tumor necrosis factor-alpha production in vivo. Blood. 2006;107:637–641. doi: 10.1182/blood-2005-06-2202. PubMed DOI
Wujcicka W.I., Kacerovsky M., Krekora M., Kaczmarek P., Grzesiak M. Single Nucleotide Polymorphisms from CSF2, FLT1, TFPI and TLR9 Genes Are Associated with Prelabor Rupture of Membranes. Genes. 2021;12:1725. doi: 10.3390/genes12111725. PubMed DOI PMC
Liu Y., Ke Z., Liao W., Chen H., Wei S., Lai X., Chen X. Pregnancy outcomes and superiorities of prophylactic cervical cerclage and therapeutic cervical cerclage in cervical insufficiency pregnant women. Arch. Gynecol. Obstet. 2018;297:1503–1508. doi: 10.1007/s00404-018-4766-9. PubMed DOI