• This record comes from PubMed

Clinical and Genetic Study of X-Linked Juvenile Retinoschisis in the Czech Population

. 2021 Nov 18 ; 12 (11) : . [epub] 20211118

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

The aim of this study was to identify RS1 pathogenic variants in Czech patients with X-linked retinoschisis (XLRS) and to describe the associated phenotypes, including natural history, in some cases. Twenty-one affected males from 17 families were included. The coding region of RS1 was directly sequenced and segregation of the identified mutations was performed in available family members. In total, 12 disease-causing variants within RS1 were identified; of these c.20del, c.275G>A, c.[375_379del; 386A>T], c.539C>A and c.575_576insT were novel, all predicted to be null alleles. The c.539C>A mutation occurred de novo. Three patients (aged 8, 11 and 19 years) were misdiagnosed as having intermediate uveitis and treated with systemic steroids. Repeat spectral domain optical coherence tomography examinations in four eyes documented the transition from cystoid macular lesions to macular atrophy in the fourth decade of life. Four individuals were treated with topical dorzolamide and in two of them, complete resolution of the cystic macular lesions bilaterally was achieved, while one patient was noncompliant. Rebound phenomenon after discontinuation of dorzolamide for 7 days was documented in one case. Misdiagnosis of XLRS for uveitis is not uncommon; therefore, identification of disease-causing variants is of considerable benefit to the affected individuals.

See more in PubMed

Molday R.S., Kellner U., Weber B.H. X-linked juvenile retinoschisis: Clinical diagnosis, genetic analysis, and molecular mechanisms. Prog. Retin. Eye Res. 2012;31:195–212. doi: 10.1016/j.preteyeres.2011.12.002. PubMed DOI PMC

George N.D., Yates J.R., Moore A.T. X linked retinoschisis. Br. J. Ophthalmol. 1995;79:697–702. doi: 10.1136/bjo.79.7.697. PubMed DOI PMC

Hu Q.R., Huang L.Z., Chen X.L., Xia H.K., Li T.Q., Li X.X. Genetic analysis and clinical features of X-linked retinoschisis in Chinese patients. Sci. Rep. 2017;7:44060. doi: 10.1038/srep44060. PubMed DOI PMC

Hinds A.M., Fahim A., Moore A.T., Wong S.C., Michaelides M. Bullous X linked retinoschisis: Clinical features and prognosis. Br. J. Ophthalmol. 2018;102:622–624. doi: 10.1136/bjophthalmol-2017-310593. PubMed DOI

George N.D., Yates J.R., Moore A.T. Clinical features in affected males with X-linked retinoschisis. Arch. Ophthalmol. 1996;114:274–280. doi: 10.1001/archopht.1996.01100130270007. PubMed DOI

Kellner U., Brümmer S., Foerster M.H., Wessing A. X-linked congenital retinoschisis. Graefe’s Arch. Clin. Exp. Ophthalmol. 1990;228:432–437. doi: 10.1007/BF00927256. PubMed DOI

Wang N.K., Liu L., Chen H.M., Tsai S., Chang T.C., Tsai T.H., Yang C.M., Chao A.N., Chen K.J., Kao L.Y., et al. Clinical presentations of X-linked retinoschisis in Taiwanese patients confirmed with genetic sequencing. Mol. Vis. 2015;21:487–501. PubMed PMC

Hotta Y., Nakamura M., Okamoto Y., Nomura R., Terasaki H., Miyake Y. Different mutation of the XLRS1 gene causes juvenile retinoschisis with retinal white flecks. Br. J. Ophthalmol. 2001;85:238–239. doi: 10.1136/bjo.85.2.238. PubMed DOI PMC

Fahim A.T., Ali N., Blachley T., Michaelides M. Peripheral fundus findings in X-linked retinoschisis. Br. J. Ophthalmol. 2017;101:1555–1559. doi: 10.1136/bjophthalmol-2016-310110. PubMed DOI

Apushkin M.A., Fishman G.A., Rajagopalan A.S. Fundus findings and longitudinal study of visual acuity loss in patients with X-linked retinoschisis. Retina. 2005;25:612–618. doi: 10.1097/00006982-200507000-00012. PubMed DOI

Pimenides D., George N.D., Yates J.R., Bradshaw K., Roberts S.A., Moore A.T., Trump D. X-linked retinoschisis: Clinical phenotype and RS1 genotype in 86 UK patients. J. Med. Genet. 2005;42:e35. doi: 10.1136/jmg.2004.029769. PubMed DOI PMC

Khandhadia S., Trump D., Menon G., Lotery A.J. X-linked retinoschisis maculopathy treated with topical dorzolamide, and relationship to genotype. Eye. 2011;25:922–928. doi: 10.1038/eye.2011.91. PubMed DOI PMC

Collison F.T., Genead M.A., Fishman G.A., Stone E.M. Resolution of mid-peripheral schisis in x-linked retinoschisis with the use of dorzolamide. Ophthalmic Genet. 2014;35:125–127. doi: 10.3109/13816810.2013.779383. PubMed DOI

Thobani A., Fishman G.A. The use of carbonic anhydrase inhibitors in the retreatment of cystic macular lesions in retinitis pigmentosa and X-linked retinoschisis. Retina. 2011;31:312–315. doi: 10.1097/IAE.0b013e3181e587f9. PubMed DOI PMC

Sauer C.G., Gehrig A., Warneke-Wittstock R., Marquardt A., Ewing C.C., Gibson A., Lorenz B., Jurklies B., Weber B.H. Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nat. Genet. 1997;17:164–170. doi: 10.1038/ng1097-164. PubMed DOI

Gehrig A., Weber B.H., Lorenz B., Andrassi M. First molecular evidence for a de novo mutation in RS1 (XLRS1) associated with X linked juvenile retinoschisis. J. Med. Genet. 1999;36:932–934. PubMed PMC

Khan N.W., Jamison J.A., Kemp J.A., Sieving P.A. Analysis of photoreceptor function and inner retinal activity in juvenile X-linked retinoschisis. Vision Res. 2001;41:3931–3942. doi: 10.1016/S0042-6989(01)00188-2. PubMed DOI

Molday L.L., Hicks D., Sauer C.G., Weber B.H., Molday R.S. Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Investig. Ophthalmol. Vis. Sci. 2001;42:816–825. PubMed

Xiao S., Sun W., Xiao X., Li S., Luo H., Jia X., Ouyang J., Li X., Wang Y., Jiang Y., et al. Clinical and genetic features of retinoschisis in 120 families with RS1 mutations. Br. J. Ophthalmol. 2021 doi: 10.1136/bjophthalmol-2021-319668. PubMed DOI

Kim D.Y., Mukai S. X-linked juvenile retinoschisis (XLRS): A review of genotype-phenotype relationships. Semin. Ophthalmol. 2013;28:392–396. doi: 10.3109/08820538.2013.825299. PubMed DOI

McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update) Doc. Ophthalmol. 2015;130:1–12. doi: 10.1007/s10633-014-9473-7. PubMed DOI

Yi J., Li S., Jia X., Xiao X., Wang P., Guo X., Zhang Q. Novel RS1 mutations associated with X-linked juvenile retinoschisis. Int. J. Mol. Med. 2012;29:644–648. doi: 10.3892/ijmm.2012.882. PubMed DOI PMC

Karczewski K.J., Francioli L.C., Tiao G., Cummings B.B., Alföldi J., Wang Q., Collins R.L., Laricchia K.M., Ganna A., Birnbaum D.P., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–443. doi: 10.1038/s41586-020-2308-7. PubMed DOI PMC

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–424. doi: 10.1038/gim.2015.30. PubMed DOI PMC

The Retinoschisis Consortium Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. Hum. Mol. Genet. 1998;7:1185–1192. doi: 10.1093/hmg/7.7.1185. PubMed DOI

Huang L., Sun L., Wang Z., Chen C., Wang P., Sun W., Luo X., Ding X. Clinical manifestation and genetic analysis in Chinese early onset X-linked retinoschisis. Mol. Genet. Genomic Med. 2020;8:e1421. doi: 10.1002/mgg3.1421. PubMed DOI PMC

Hotta Y., Fujiki K., Hayakawa M., Ohta T., Fujimaki T., Tamaki K., Yokoyama T., Kanai A., Hirakata A., Hida T., et al. Japanese juvenile retinoschisis is caused by mutations of the XLRS1 gene. Hum. Genet. 1998;103:142–144. doi: 10.1007/PL00008705. PubMed DOI

Hiriyanna K.T., Bingham E.L., Yashar B.M., Ayyagari R., Fishman G., Small K.W., Weinberg D.V., Weleber R.G., Lewis R.A., Andreasson S., et al. Novel mutations in XLRS1 causing retinoschisis, including first evidence of putative leader sequence change. Hum. Mutat. 1999;14:423–427. doi: 10.1002/(SICI)1098-1004(199911)14:5<423::AID-HUMU8>3.0.CO;2-D. PubMed DOI

Kim S.Y., Ko H.S., Yu Y.S., Hwang J.M., Lee J.J., Kim S.Y., Kim J.Y., Seong M.W., Park K.H., Park S.S. Molecular genetic characteristics of X-linked retinoschisis in Koreans. Mol. Vis. 2009;15:833–843. PubMed PMC

Riveiro-Alvarez R., Trujillo-Tiebas M.J., Gimenez-Pardo A., Garcia-Hoyos M., Lopez-Martinez M.A., Aguirre-Lamban J., Garcia-Sandoval B., Vazquez-Fernandez del Pozo S., Cantalapiedra D., Avila-Fernandez A., et al. Correlation of genetic and clinical findings in Spanish patients with X-linked juvenile retinoschisis. Investig. Ophthalmol. Vis. Sci. 2009;50:4342–4350. doi: 10.1167/iovs.09-3418. PubMed DOI

Mashima Y., Shinoda K., Ishida S., Ozawa Y., Kudoh J., Iwata T., Oguchi Y., Shimizu N. Identification of four novel mutations of the XLRS1 gene in Japanese patients with X-linked juvenile retinoschisis. Mutation in brief no. 234. Online. Hum. Mutat. 1999;13:338. doi: 10.1002/(SICI)1098-1004(1999)13:4<338::AID-HUMU16>3.0.CO;2-0. PubMed DOI

Inoue Y., Yamamoto S., Okada M., Tsujikawa M., Inoue T., Okada A.A., Kusaka S., Saito Y., Wakabayashi K., Miyake Y., et al. X-linked retinoschisis with point mutations in the XLRS1 gene. Arch. Ophthalmol. 2000;118:93–96. doi: 10.1001/archopht.118.1.93. PubMed DOI

Curat C.A., Eck M., Dervillez X., Vogel W.F. Mapping of epitopes in discoidin domain receptor 1 critical for collagen binding. J. Biol. Chem. 2001;276:45952–45958. doi: 10.1074/jbc.M104360200. PubMed DOI

Wang T., Waters C.T., Rothman A.M., Jakins T.J., Römisch K., Trump D. Intracellular retention of mutant retinoschisin is the pathological mechanism underlying X-linked retinoschisis. Hum. Mol. Genet. 2002;11:3097–3105. doi: 10.1093/hmg/11.24.3097. PubMed DOI

Robson A.G., Mengher L.S., Tan M.H., Moore A.T. An unusual fundus phenotype of inner retinal sheen in X-linked retinoschisis. Eye. 2009;23:1876–1878. doi: 10.1038/eye.2008.358. PubMed DOI

Vijayasarathy C., Ziccardi L., Zeng Y., Smaoui N., Caruso R.C., Sieving P.A. Null retinoschisin-protein expression from an RS1 c354del1-ins18 mutation causing progressive and severe XLRS in a cross-sectional family study. Investig. Ophthalmol. Vis. Sci. 2009;50:5375–5383. doi: 10.1167/iovs.09-3839. PubMed DOI PMC

Kjellström S., Vijayasarathy C., Ponjavic V., Sieving P.A., Andréasson S. Long-term 12 year follow-up of X-linked congenital retinoschisis. Ophthalmic. Genet. 2010;31:114–125. doi: 10.3109/13816810.2010.482555. PubMed DOI PMC

Bennett L.D., Wang Y.Z., Klein M., Pennesi M.E., Jayasundera T., Birch D.G. Structure/Psychophysical Relationships in X-Linked Retinoschisis. Investig. Ophthalmol. Vis. Sci. 2016;57:332–337. doi: 10.1167/iovs.15-18354. PubMed DOI PMC

Stringa F., Tsamis E., Papayannis A., Chwiejczak K., Jalil A., Biswas S., Ahmad H., Stanga P.E. Segmented swept source optical coherence tomography angiography assessment of the perifoveal vasculature in patients with X-linked juvenile retinoschisis: A serial case report. Int. Med. Case. Rep. J. 2017;10:329–335. doi: 10.2147/IMCRJ.S136310. PubMed DOI PMC

Padrón-Pérez N., Català-Mora J., Díaz J., Arias L., Prat J., Caminal J.M. Swept-source and optical coherence tomography angiography in patients with X-linked retinoschisis. Eye. 2018;32:707–715. doi: 10.1038/eye.2017.281. PubMed DOI PMC

Mastropasqua R., Toto L., Di Antonio L., Parodi M.B., Sorino L., Antonucci I., Stuppia L., Di Nicola M., Mariotti C. Optical Coherence Tomography Angiography Findings in X-Linked Retinoschisis. Ophthalmic Surg. Lasers Imaging Retina. 2018;49:e20–e31. doi: 10.3928/23258160-20180907-03. PubMed DOI

Han I.C., Whitmore S.S., Critser D.B., Lee S.Y., DeLuca A.P., Daggett H.T., Affatigato L.M., Mullins R.F., Tucker B.A., Drack A.V., et al. Wide-Field Swept-Source OCT and Angiography in X-Linked Retinoschisis. Ophthalmol. Retina. 2019;3:178–185. doi: 10.1016/j.oret.2018.09.006. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...