Ex Vivo Vibration Spectroscopic Analysis of Colorectal Polyps for the Early Diagnosis of Colorectal Carcinoma
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU20-09-00229
Ministry of Health
PubMed
34829393
PubMed Central
PMC8621094
DOI
10.3390/diagnostics11112048
PII: diagnostics11112048
Knihovny.cz E-resources
- Keywords
- chemometrics, colon polyps, colorectal carcinoma, early cancer diagnosis, vibrational spectroscopy,
- Publication type
- Journal Article MeSH
Colorectal cancer is one of the most common and often fatal cancers in humans, but it has the highest chance of a cure if detected at an early precancerous stage. Carcinogenesis in the colon begins as an uncontrolled growth forming polyps. Some of these polyps can finally be converted to colon cancer. Early diagnosis of adenomatous polyps is the main approach for screening and preventing colorectal cancer, and vibration spectroscopy can be used for this purpose. This work is focused on evaluating FTIR and Raman spectroscopy as a tool in the ex vivo analysis of colorectal polyps, which could be important for the early diagnosis of colorectal carcinoma. Multivariate analyses (PCA and LDA) were used to assist the spectroscopic discrimination of normal colon tissue, as well as benign and malignant colon polyps. The spectra demonstrated evident differences in the characteristic bands of the main tissue constituents, i.e., proteins, nucleic acids, lipids, polysaccharides, etc. Suitable models for discriminating the three mentioned diagnostic groups were proposed based on multivariate analyses of the spectroscopic data. LDA classification was especially successful in the case of a combined set of 55 variables from the FTIR, FT Raman and dispersion Raman spectra. This model can be proposed for ex vivo colorectal cancer diagnostics in combination with the colonoscopic extraction of colon polyps for further testing. This pilot study is a precursor for the further evaluation of the diagnostic potential for the simultaneous in vivo application of colonoscopic Raman probes.
See more in PubMed
Ciocalteu A., Gheonea D.I., Saftoiu A., Streba L., Dragoescu N.A., Tenea-Cojan T.S. Current strategies for malignant pedunculated colorectal polyps. World J. Gastrointest. Oncol. 2018;10:465. doi: 10.4251/wjgo.v10.i12.465. PubMed DOI PMC
Johnstone M.S., Lynch G., Park J., McSorley S., Edwards J. Novel methods of risk stratifying patients for metachronous, pre-malignant colorectal polyps: A systematic review. Crit. Rev. Oncol. Hematol. 2021;164:103421. doi: 10.1016/j.critrevonc.2021.103421. PubMed DOI
Nguyen L.H., Goel A., Chung D.C. Pathways of colorectal carcinogenesis. Gastroenterology. 2020;158:291–302. doi: 10.1053/j.gastro.2019.08.059. PubMed DOI PMC
Aceto G.M., Catalano T., Curia M.C. Molecular aspects of colorectal adenomas: The interplay among microenvironment, oxidative stress, and predisposition. Bio. Med. Res. Int. 2020;2020:1726309. doi: 10.1155/2020/1726309. PubMed DOI PMC
Shaukat A., Shyne M., Mandel J.S., Snover D., Church T.R. Colonoscopy with polypectomy reduces long-term incidence of colorectal cancer in both men and women: Extended results from the minnesota colon cancer control study. Gastroenterology. 2021;160:1397–1399. doi: 10.1053/j.gastro.2020.11.014. PubMed DOI
Romiti A., Roberto M., Marchetti P., Di Cerbo A., Falcone R., Campisi G., Ferri M., Balducci G., Ramacciato G., Ruco L., et al. Study of histopathologic parameters to define the prognosis of stage II colon cancer. Int. J. Colorectal Dis. 2019;34:905–913. doi: 10.1007/s00384-019-03279-1. PubMed DOI
Kallenbach-Thieltges A., Großerüschkamp F., Mosig A., Diem M., Tannapfel A., Gerwert K. Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections. J. Biophotonics. 2013;6:88–100. doi: 10.1002/jbio.201200132. PubMed DOI
Marzouk O., Schofield J. Review of histopathological and molecular prognostic features in colorectal cancer. Cancers. 2011;3:2767–2810. doi: 10.3390/cancers3022767. PubMed DOI PMC
Noothalapati H., Iwasaki K., Yamamoto T. Non-invasive diagnosis of colorectal cancer by Raman spectroscopy: Recent developments in liquid biopsy and endoscopy approaches. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021;258:119818. doi: 10.1016/j.saa.2021.119818. PubMed DOI
Kallaway C., Almond L.M., Barr H., Wood J., Hutchings J., Kendall C., Stone N. Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagn. Photodyn. Ther. 2013;10:207–219. doi: 10.1016/j.pdpdt.2013.01.008. PubMed DOI
Dong L., Sun X., Chao Z., Zhang S., Zheng J., Gurung R., Du J., Shi J., Xu Y., Zhang Y. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;122:288–294. doi: 10.1016/j.saa.2013.11.031. PubMed DOI
Kim Y.I., Jeong S., Jung K.O., Song M.G., Lee C.H., Chung S.J., Park J.Y., Cha M.G., Lee S.G., Jun B.H., et al. Simultaneous detection of EGFR and VEGF in colorectal cancer using fluorescence-Raman endoscopy. Sci. Rep. 2017;7:1035. doi: 10.1038/s41598-017-01020-y. PubMed DOI PMC
Petersen D., Naveed P., Ragheb A., Niedieker D., El-Mashtoly S.F., Brechmann T., Kötting C., Schmiegel W.H., Freier E., Pox C., et al. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017;181:270–275. doi: 10.1016/j.saa.2017.03.054. PubMed DOI
Bergholt M.S., Lin K., Wang J., Zheng W., Xu H., Huang Q., Ren J.-L., Ho K.Y., The M., Srivastava S., et al. Simultaneous fingerprint and high-wavenumber fiber-optic Raman spectroscopy enhances real-time in vivo diagnosis of adenomatous polyps during colonoscopy. J. Biophotonics. 2016;9:333–342. doi: 10.1002/jbio.201400141. PubMed DOI
Jenkins C.A., Jenkins R.A., Pryse M.M., Welsby K.A., Jitsumura M., Thornton C.A., Dunstan P.R., Harris D.A. A high-throughput serum Raman spectroscopy platform and methodology for colorectal cancer diagnostics. Analyst. 2018;143:6014–6024. doi: 10.1039/C8AN01323C. PubMed DOI
Synytsya A., Judexova M., Hoskovec D., Miskovicova M., Petruzelka L. Raman spectroscopy at different excitation wavelengths (1064, 785 and 532 nm) as a tool for diagnosis of colon cancer. J. Raman Spectrosc. 2014;45:903–911. doi: 10.1002/jrs.4581. DOI
Li Q.B., Xu Z., Zhang N.W., Zhang L., Wang F., Yang L.M., Wang J.S., Zhou S., Zhang Y.F., Zhou X.S., et al. In vivo and in situ detection of colorectal cancer using Fourier transform infrared spectroscopy. World J. Gastroenterol. 2005;11:327. doi: 10.3748/wjg.v11.i3.327. PubMed DOI PMC
Li S., Chen G., Zhang Y., Guo Z., Liu Z., Xu J., Li X., Lin L. Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques. Opt. Express. 2014;22:25895–25908. doi: 10.1364/OE.22.025895. PubMed DOI
Zheng F., Chen K., Qin Y. Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer. J. Biomed. Opt. 2007;12:034002. doi: 10.1117/1.2748060. PubMed DOI
Chen K., Qin Y., Zheng F., Sun M., Shi D. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells. Opt. Lett. 2006;31:2015–2017. doi: 10.1364/OL.31.002015. PubMed DOI
Yan X.L., Dong R.X., Zhang L., Zhang X.J., Zhang Z.W. Raman spectra of single cell from gastrointestinal cancer patients. World J. Gastroenterol. 2005;11:3290. doi: 10.3748/wjg.v11.i21.3290. PubMed DOI PMC
Petersen D., Mavarani L., Niedieker D., Freier E., Tannapfel A., Kötting C., Gerwert K., El-Mashtoly S.F. Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy. Analyst. 2017;142:1207–1215. doi: 10.1039/C6AN02072K. PubMed DOI
Lloyd G.R., Wood J., Kendall C., Cook T., Shepherd N., Stone N. Histological imaging of a human colon polyp sample using Raman spectroscopy and self organising maps. Vib. Spectrosc. 2012;60:43–49. doi: 10.1016/j.vibspec.2012.02.015. DOI
Liu W., Wang H., Du J., Jing C. Raman microspectroscopy of nucleus and cytoplasm for human colon cancer diagnosis. Biosens. Bioelectron. 2017;97:70–74. doi: 10.1016/j.bios.2017.05.045. PubMed DOI
Li X., Yang T., Li S., Zhang S., Jin L. Discrimination of rectal cancer through human serum using surface-enhanced Raman spectroscopy. Appl. Phys. B. 2015;119:393–398. doi: 10.1007/s00340-015-6088-y. DOI
Miskovicova M., Fryba V., Petruzelka L., Setnicka V., Synytsya A., Tatarkovic M., Ulrych J., Vocka M. Novel spectroscopic biomarkers are applicable in non-invasive early detection and staging classification of colorectal cancer. Neoplasma. 2020;67:1349–1358. doi: 10.4149/neo_2020_200506N494. PubMed DOI
Tatarkovič M., Miškovičová M., Šťovíčková L., Synytsya A., Petruželka L., Setnička V. The potential of chiroptical and vibrational spectroscopy of blood plasma for the discrimination between colon cancer patients and the control group. Analyst. 2015;140:2287–2293. doi: 10.1039/C4AN01880J. PubMed DOI
Wang J., Lin D., Lin J., Yu Y., Huang Z., Chen Y., Lin J., Feng S., Li B., Liu N., et al. Label-free detection of serum proteins using surface-enhanced Raman spectroscopy for colorectal cancer screening. J. Biomed. Opt. 2014;19:087003. doi: 10.1117/1.JBO.19.8.087003. PubMed DOI
Synytsya A., Judexová M., Hrubý T., Tatarkovič M., Miškovičová M., Petruželka L., Setnička V. Analysis of human blood plasma and hen egg white by chiroptical spectroscopic methods. Anal. Bioanal. Chem. 2013;405:5441–5453. doi: 10.1007/s00216-013-6946-6. PubMed DOI
Liu W., Sun Z., Chen J., Jing C. Raman spectroscopy in colorectal cancer diagnostics: Comparison of PCA-LDA and PLS-DA models. J. Spectrosc. 2016;2016:1603609. doi: 10.1155/2016/1603609. DOI
Choi J.S., Kim J., Hong Y.J., Bae W.Y., Choi E.H., Jeong J.W., Park H.K. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells. Biomed. Opt. Express. 2017;8:2649–2659. doi: 10.1364/BOE.8.002649. PubMed DOI PMC
Kaznowska E., Depciuch J., Szmuc K., Cebulski J. Use of FTIR spectroscopy and PCA-LDC analysis to identify cancerous lesions within the human colon. J. Pharm. Biomed. Anal. 2017;134:259–268. doi: 10.1016/j.jpba.2016.11.047. PubMed DOI
Li X., Yang T., Li S., Wang D., Song Y., Zhang S. Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer. Laser Phys. 2016;26:035702. doi: 10.1088/1054-660X/26/3/035702. DOI
Khanmohammadi M., Garmarudi A.B., Samani S., Ghasemi K., Ashuri A. Application of linear discriminant analysis and attenuated total reflectance Fourier transform infrared microspectroscopy for diagnosis of colon cancer. Pathol. Oncol. Res. 2011;17:435–441. doi: 10.1007/s12253-010-9326-y. PubMed DOI
Molckovsky A., Song L.M.W.K., Shim M.G., Marcon N.E., Wilson B.C. Diagnostic potential of near-infrared Raman spectroscopy in the colon: Differentiating adenomatous from hyperplastic polyps. Gastrointest. Endosc. 2003;57:396–402. doi: 10.1067/mge.2003.105. PubMed DOI
Manavbasi Y., Süleymanoglu E. Nucleic acid-phospholipid recognition: Fourier transform infrared spectrometric characterization of ternary phospho-lipid-inorganic cation-DNA complex and its relevance to chemicopharmaceutical design of nanometric liposome based gene delivery formulations. Arch. Pharm. Res. 2007;30:1027–1040. doi: 10.1007/BF02993973. PubMed DOI
Movasaghi Z., Rehman S., Rehman D.I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 2008;43:134–179. doi: 10.1080/05704920701829043. DOI
Yao H., Shi X., Zhang Y. The use of FTIR-ATR spectrometry for evaluation of surgical resection margin in colorectal cancer: A pilot study of 56 samples. J. Spectrosc. 2014;2014:213890. doi: 10.1155/2014/213890. DOI
Ramesh J., Salman A., Mordechai S., Argov S., Goldstein J., Sinelnikov I., Walfish S., Guterman H. FTIR microscopic studies on normal, polyp, and malignant human colonic tissues. Subsurf. Sens. Technol. Appl. 2001;2:99–117. doi: 10.1023/A:1011570719170. DOI
Barth A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Biol. 2000;74:141–173. doi: 10.1016/S0079-6107(00)00021-3. PubMed DOI
Kondepati V.R., Heise H.M., Oszinda T., Mueller R., Keese M., Backhaus J. Detection of structural disorders in colorectal cancer DNA with Fourier-transform infrared spectroscopy. Vib. Spectrosc. 2008;46:150–157. doi: 10.1016/j.vibspec.2007.12.010. DOI
Olsztyńska-Janus S., Komorowska M. Conformational changes of L-phenylalanine induced by near infrared radiation. ATR-FTIR studies. Struct. Chem. 2012;23:1399–1407. doi: 10.1007/s11224-012-0061-8. DOI
Olsztynska S., Komorowska M., Vrielynck L., Dupuy N. Vibrational spectroscopic study of L-phenylalanine: Effect of pH. Appl. Spectrosc. 2001;55:901–907. doi: 10.1366/0003702011952703. DOI
Hernández B., Pflüger F., Adenier A., Kruglik S.G., Ghomi M. Vibrational analysis of amino acids and short peptides in hydrated media. VIII. Amino acids with aromatic side chains: L-phenylalanine, L-tyrosine, and L-tryptophan. J. Phys. Chem. B. 2010;114:15319–15330. doi: 10.1021/jp106786j. PubMed DOI
Czamara K., Majzner K., Pacia M.Z., Kochan K., Kaczor A., Baranska M. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 2015;46:4–20. doi: 10.1002/jrs.4607. DOI
Beattie J.R., Bell S.E., Moss B.W. A critical evaluation of Raman spectroscopy for the analysis of lipids: Fatty acid methyl esters. Lipids. 2004;39:407–419. doi: 10.1007/s11745-004-1245-z. PubMed DOI
Krafft C., Ramoji A.A., Bielecki C., Vogler N., Meyer T., Akimov D., Rösch P., Schmitt M., Dietzek B., Petersen I., et al. A comparative Raman and CARS imaging study of colon tissue. J. Biophotonics. 2009;2:303–312. doi: 10.1002/jbio.200810063. PubMed DOI
Wood B.R., Caspers P., Puppels G.J., Pandiancherri S., McNaughton D. Resonance Raman spectroscopy of red blood cells using near-infrared laser excitation. Anal. Bioanal. Chem. 2007;387:1691–1703. doi: 10.1007/s00216-006-0881-8. PubMed DOI
Hu S., Smith K.M., Spiro T.G. Assignment of protoheme resonance Raman spectrum by heme labeling in myoglobin. J. Am. Chem. Soc. 1996;118:12638–12646. doi: 10.1021/ja962239e. DOI
Brazhe N.A., Treiman M., Brazhe A.R., Find N.L., Maksimov G.V., Sosnovtseva O.V. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy. PLoS ONE. 2012;7:e41990. doi: 10.1371/journal.pone.0041990. PubMed DOI PMC
De Maesschalck R., Jouan-Rimbaud D., Massart D.L. The Mahalanobis distance. Chemom. Intell. Lab. Syst. 2000;50:1–18. doi: 10.1016/S0169-7439(99)00047-7. DOI
Pakiet A., Kobiela J., Stepnowski P., Sledzinski T., Mika A. Changes in lipids composition and metabolism in colorectal cancer: A review. Lipids Health Dis. 2019;18:29. doi: 10.1186/s12944-019-0977-8. PubMed DOI PMC
Scalfi-Happ C., Udart M., Hauser C., Rück A. Investigation of lipid bodies in a colon carcinoma cell line by confocal Raman microscopy. Med. Laser Appl. 2011;26:152–157. doi: 10.1016/j.mla.2011.08.002. DOI
Accioly M.T., Pacheco P., Maya-Monteiro C.M., Carrossini N., Robbs B.K., Oliveira S.S., Kaufmann K., Morgado-Diaz J.A., Bozza P.T., Viola J.P. Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 2008;68:1732–1740. doi: 10.1158/0008-5472.CAN-07-1999. PubMed DOI
Kurabe N., Hayasaka T., Ogawa M., Masaki N., Ide Y., Waki M., Nakamura T., Kurachi K., Kahyo T., Shinmura K., et al. Accumulated phosphatidylcholine (16:0/16:1) in human colorectal cancer; possible involvement of LPCAT 4. Cancer Sci. 2013;104:1295–1302. doi: 10.1111/cas.12221. PubMed DOI PMC
Lavezzi A.M., Ottaviani G., De Ruberto F., Fichera G., Matturri L. Prognostic significance of different biomarkers (DNA content, PCNA, karyotype) in colorectal adenomas. Anticancer Res. 2002;22:2077–2081. PubMed
Jin W., Gao M.Q., Lin Z.W., Yang D.X. Quantitative study of multiple biomarkers of colorectal tumor with diagnostic discrimination model. World J. Gastroenterol. 2004;10:439. doi: 10.3748/wjg.v10.i3.439. PubMed DOI PMC
Birk J.W., Tadros M., Moezardalan K., Nadyarnykh O., Forouhar F., Anderson J., Campagnola P. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig. Dis. Sci. 2014;59:1529–1534. doi: 10.1007/s10620-014-3121-7. PubMed DOI
Kirkland S.C. Type I collagen inhibits differentiation and promotes a stem cell-like phenotype in human colorectal carcinoma cells. Br. J. Cancer. 2009;101:320–326. doi: 10.1038/sj.bjc.6605143. PubMed DOI PMC
Zou X., Feng B., Dong T., Yan G., Tan B., Shen H., Huang A., Zhang X., Zhang M., Yang P., et al. Up-regulation of type I collagen during tumorigenesis of colorectal cancer revealed by quantitative proteomic analysis. J. Proteom. 2013;94:473–485. doi: 10.1016/j.jprot.2013.10.020. PubMed DOI
Moilanen J.M., Kokkonen N., Löffek S., Väyrynen J.P., Syväniemi E., Hurskainen T., Mäkinen M., Klintrup K., Mäkelä J., Sormunen R., et al. Collagen XVII expression correlates with the invasion and metastasis of colorectal cancer. Hum. Pathol. 2015;46:434–442. doi: 10.1016/j.humpath.2014.11.020. PubMed DOI
Fenyvesi A. The prognostic significance of type IV collagen expression in colorectal carcinomas. Arch. Oncol. 2003;11:65–70. doi: 10.2298/AOO0302065F. DOI
Mohamed H.T., Untereiner V., Sockalingum G.D., Brézillon S. Implementation of infrared and Raman modalities for glycosaminoglycan characterization in complex systems. Glycoconj. J. 2017;34:309–323. doi: 10.1007/s10719-016-9743-6. PubMed DOI PMC
Brézillon S., Untereiner V., Lovergne L., Tadeo I., Noguera R., Maquart F.X., Wegrowski Y., Sockalingum G.D. Glycosaminoglycan profiling in different cell types using infrared spectroscopy and imaging. Anal. Bioanal. Chem. 2014;406:5795–5803. doi: 10.1007/s00216-014-7994-2. PubMed DOI
Mainreck N., Brézillon S., Sockalingum G.D., Maquart F.-X., Manfait M., Wegrowski Y. Characterization of glycosaminoglycans by tandem vibrational microspectroscopy and multivariate data analysis. Methods Mol. Biol. 2012;836:117–130. PubMed
Mainreck N., Brézillon S., Sockalingum G.D., Maquart F.X., Manfait M., Wegrowski Y. Rapid characterization of glycosaminoglycans using a combined approach by infrared and Raman microspectroscopies. J. Pharm. Sci. 2011;100:441–450. doi: 10.1002/jps.22288. PubMed DOI
Kalathas D., Theocharis D.A., Bounias D., Kyriakopoulou D., Papageorgakopoulou N., Stavropoulos M.S., Vynios D.H. Chondroitin synthases I, II, III and chondroitin sulfate glucuronyltransferase expression in colorectal cancer. Mol. Med. Rep. 2011;4:363–368. PubMed
Brauchle E., Kasper J., Daum R., Schierbaum N., Falch C., Kirschniak A., Schäffer T.E., Schenke-Layland K. Biomechanical and biomolecular characterization of extracellular matrix structures in human colon carcinomas. Matrix Biol. 2018;68:180–193. doi: 10.1016/j.matbio.2018.03.016. PubMed DOI
Kalathas D., Theocharis D.A., Bounias D., Kyriakopoulou D., Papageorgakopoulou N., Stavropoulos M.S., Vynios D.H. Alterations of glycosaminoglycan disaccharide content and composition in colorectal cancer: Structural and expressional studies. Oncol. Rep. 2009;22:369–375. PubMed
Laneza A., Vizoso F., Rodriguez J.C., Raigoso P., Garcia-Muniz J.L., Allende M.T., Garcia-Moran M. Hyaluronic acid as prognostic marker in resectable colorectal cancer. Br. J. Surg. 2000;87:1690–1696. doi: 10.1046/j.1365-2168.2000.01586.x. PubMed DOI
Wu R.L., Huang L., Zhao H.C., Geng X.P. Hyaluronic acid in digestive cancers. J. Cancer Res. Clin. Oncol. 2017;143:1–16. doi: 10.1007/s00432-016-2213-5. PubMed DOI PMC
Annibaldi A., Widmann C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:466–470. doi: 10.1097/MCO.0b013e32833a5577. PubMed DOI
Sakr S.A., Abdel-Wahed M.M., Abdou A.G., El-Adely E.K. Histochemical alterations in colorectal carcinoma and adenoma in Egyptian patients. J. Coast. Life Med. 2016;4:14–20. doi: 10.12980/jclm.4.2016j5-216. DOI