Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NAZV QK1810102
Ministry of Agriculture
RO0418
Ministry of Agriculture
PubMed
34834847
PubMed Central
PMC8624809
DOI
10.3390/plants10112485
PII: plants10112485
Knihovny.cz E-zdroje
- Klíčová slova
- avenanthramides, cropping system, cultivars, grain quality, oat, weather conditions,
- Publikační typ
- časopisecké články MeSH
Our study was focused on the evaluation of the content of a wider spectrum of eight avenanthramides (AVNs) as unique components of oat grain under the effects of four selected factors (cultivar, locality, cropping system, and year). The weather effects on changes in the AVN content and their relationship to other important parameters of oat grain were further evaluated in more detail. A sensitive UHPLC system coupled with a QExactive Orbitrap mass spectrometer was used for AVN quantification. AVNs confirmed a high variability (RDS = 72.7-113.5%), which was dominantly influenced by the locality and year factors. While most AVN types confirmed mutually high correlations (r = 0.7-0.9), their correlations with the other 10 grain parameters were lower (r ≤ 0.48). Their significant correlations (0.27-0.46) with β-D-glucan could be used in perspective in breeding programs for the synergetic increase of both parameters. PCA analysis and Spearman correlations based on individual cultivars confirmed a significant effect of June and July precipitation on the increase of Σ AVNs. However, the results also indicated that higher precipitation can generate favorable conditions for related factors, such as preharvest sprouting evoking a direct increase of AVNs synthesis in oat grain.
Zobrazit více v PubMed
Eurostat Agricultural Production-Crops. [(accessed on 3 August 2021)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Cereals://
Gorash A., Armoniene R., Fetch J.M., Liatukas Z., Danyte V. Aspects in oat breeding: Nutrition quality, nakedness and disease resistance, challenges and perspectives. Ann. Appl. Biol. 2017;171:281–302. doi: 10.1111/aab.12375. DOI
Perrelli A., Goitre L., Salzano A.M., Moglia A., Scaloni A., Retta S.F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid. Med. Cell. Longev. 2018;2018:6015351. doi: 10.1155/2018/6015351. PubMed DOI PMC
Multari S., Pihlava J.M., Ollennu-Chuasam P., Hietaniemi V., Yang B.R., Suomela J.P. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat (Avena sativa L.) from Finland. J. Agric. Food Chem. 2018;66:2900–2908. doi: 10.1021/acs.jafc.7b05726. PubMed DOI PMC
Gilissen L.J., Van der Meer I.M., Smulders M.J. Why oats are safe and healthy for celiac disease patients. Med. Sci. 2016;4:21. doi: 10.3390/medsci4040021. PubMed DOI PMC
Rasane P., Jha A., Sabikhi L., Kumar A., Unnikrishnan V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J. Food Sci. Technol. 2015;52:662–675. doi: 10.1007/s13197-013-1072-1. PubMed DOI PMC
Liu K.S., Wise M.L. Distributions of nutrients and avenanthramides within oat grain and effects on pearled kernel composition. Food Chem. 2021;336:127668. doi: 10.1016/j.foodchem.2020.127668. PubMed DOI
Jagr M., Dvoracek V., Hlasna Cepkova P., Dolezalova J. Comprehensive analysis of oat avenanthramides using hybrid quadrupole-Orbitrap mass spectrometry: Possible detection of new compounds. Rapid Commun. Mass Spectrom. 2020;34:20. doi: 10.1002/rcm.8718. PubMed DOI
Chen C.Y., Milbury P.E., Kwak H.K., Collins F.W., Samuel P., Blumberg J.B. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2004;134:1459–1466. doi: 10.1093/jn/134.6.1459. PubMed DOI
Peterson D.M., Hahn M.J., Emmons C.L. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002;79:473–478. doi: 10.1016/S0308-8146(02)00219-4. DOI
Turrini E., Maffei F., Milelli A., Calcabrini C., Fimognari C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Med. 2019;20:4536. doi: 10.3390/ijms20184536. PubMed DOI PMC
Jastrebova J., Skoglund M., Nilsson J., Dimberg L.H. Selective and sensitive LC-MS determination of avenanthramides in oats. Chromatographia. 2006;63:419–423. doi: 10.1365/s10337-006-0769-y. DOI
Antonini E., Lombardi F., Alfieri M., Diamantini G., Redaelli R., Ninfali P. Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J. Cereal Sci. 2016;72:46–53. doi: 10.1016/j.jcs.2016.09.016. DOI
Li X.P., Li M.Y., Ling A.J., Hu X.Z., Ma Z., Liu L., Li Y.X. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. J. Cereal Sci. 2017;73:130–137. doi: 10.1016/j.jcs.2016.12.005. DOI
Peterson D.M., Wesenberg D.M., Burrup D.E., Erickson C.A. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 2005;45:1249–1255. doi: 10.2135/cropsci2004.0063. DOI
Rao S.W., Santhakumar A.B., Chinkwo K.A., Blanchard C.L. Investigation of phenolic compounds with antioxidant activity in barley and oats affected by variation in growing location. Cereal Chem. 2020;97:772–782. doi: 10.1002/cche.10291. DOI
Michels D.K., Chatham L.A., Butts-Wilmsmeyer C.J., Juvik J.A., Kolb F.L. Variation in avenanthramide content in spring oat over multiple environments. J. Cereal Sci. 2020;91:102886. doi: 10.1016/j.jcs.2019.102886. DOI
Dimberg L.H., Gissen C., Nilsson J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio. 2005;34:331–337. doi: 10.1579/0044-7447-34.4.331. PubMed DOI
de Bruijn W.J.C., van Dinteren S., Gruppen H., Vincken J.P. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa) Food Chem. 2019;277:682–690. doi: 10.1016/j.foodchem.2018.11.013. PubMed DOI
Comino I., Bernardo D., Bancel E., Moreno M.D., Sanchez B., Barro F., Suligoj T., Ciclitira P.J., Cebolla A., Knight S.C., et al. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr. Res. 2016;60:13. doi: 10.3402/fnr.v60.30324. PubMed DOI PMC
Londono D.M., van’t Westende W.P.C., Goryunova S., Salentijn E.M.J., van den Broeck H.C., van der Meer I.M., Visser R.G.F., Gilissen L., Smulders M.J.M. Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. J. Cereal Sci. 2013;58:170–177. doi: 10.1016/j.jcs.2013.03.017. DOI
Sterna V., Zute S., Brunava L. Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia. 2016;8:252–256. doi: 10.1016/j.aaspro.2016.02.100. DOI
Redaelli R., Del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., De Stefanis E., Sgrulletta D. Genetic and environmental variability in total and soluble beta-glucan in European oat genotypes. J. Cereal Sci. 2013;57:193–199. doi: 10.1016/j.jcs.2012.09.003. DOI
van den Broeck H.C., Londono D.M., Timmer R., Smulders M.J., Gilissen L., van der Meer I.M. Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods. 2016;5:2. doi: 10.3390/foods5010002. PubMed DOI PMC
Mäkinen O.E., Sozer N., Ercili-Cura D., Poutanen K. Protein From Oat: Structure, Processes,Functionality, and Nutrition. In: Nadathur S., Wanasundara J.P.D., Scanlin L., editors. Sustainable Protein Sources. Elsevier; Amsterdam, The Netherlands: 2016. pp. 105–119.
Capouchova I., Petr J., Tlaskalova-Hogenova H., Michalik I., Famera O., Urminska D., Tuckova L., Knoblochova H., Borovska D. Protein fractions of oats and possibilities of oat utilization for patients with coeliac disease. Czech J. Food Sci. 2004;22:151–162. doi: 10.17221/3419-CJFS. DOI
Oraby H., Ahmad R. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci. 2012;185:331–339. doi: 10.1016/j.plantsci.2012.01.003. PubMed DOI
Tyburski J., Kurowski T., Adamiak E. Root and foot rot diseases of winter wheat grown in conventional and organic systems. J. Agric. Chem. Environ. 2014;3:1–8. doi: 10.4236/jacen.2014.33B001. DOI
Jelic M., Dugalic G., Milivojevic J., Djekic V. Effecr of liming and fertilization on yield and quality of aot (Avena sativa L.) on an acid luvisol soil. Rom. Agric. Res. 2013;30:249–258.
Guinto D. Nitrogen fertilisation effects on the quality of selected crops: A review. Agron. Sociaty N. Z. 2016;46:121–132.
Havrlentová M., Hlinková A., Žofajová A., Kováčik P., Dvončová D., Deáková Ľ. Effect of Fertilization on ß-D-Glucan Content in Oat Grain (Avena sativa L.) Agriculture/Pol’nohospodárstvo. 2013;59:111–119. doi: 10.2478/agri-2013-0010. DOI
Wise M.L., Doehlert D.C., McMullen M.S. Association of avenanthramide concentration in oat (Avena sativa L.) grain with crown rust incidence and genetic resistance. Cereal Chem. 2008;85:639–641. doi: 10.1094/CCHEM-85-5-0639. DOI
Xu J.G., Tian C.R., Hu Q.P., Luo J.Y., Wang X.D., Tian X.D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. J. Agric. Food Chem. 2009;57:10392–10398. doi: 10.1021/jf902778j. PubMed DOI
Ding J.Z., Johnson J., Chu Y.F., Feng H. Enhancement of gamma-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019;283:239–247. doi: 10.1016/j.foodchem.2018.12.136. PubMed DOI
Donelson J.R., Gaines C.S., Donelson T.S., Finney P.L. Detection of wheat preharvest sprouting using a pregelatinized starch substrate and centrifugation. Cereal Chem. 2001;78:282–285. doi: 10.1094/CCHEM.2001.78.3.282. DOI
Czech State Norm (CSN) EN ISO 20483 (461401). Obiloviny a luštěniny-Stanovení obsahu dusíku a výpočet obsahu dusíkatých látek-Kjeldahlova metoda. 2014. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/461401-csn-en-iso-20483_4_77835.html. (In Czech)
Czech State Norm (CSN) EN ISO 10520 (566120). Přírodní škrob-Stanovení obsahu škrobu-Ewersova polarimetrická metoda. 1999. [(accessed on 21 July 2018)]. Available online: http://www.technicke-normy-csn.cz/566120-csn-en-iso-10520_4_56211.html. (In Czech)
Czech State Norm (CSN) EN ISO 11085 (461087). Obiloviny, výrobky z obilovin a krmiva-Stanovení obsahu hrubého a celkového tuku extrakční metodou podle Randalla. 2016. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/461087-csn-en-iso-11085_4_87418.html. (In Czech)
Czech State Norm (CSN) EN ISO 2171 (461019). Obiloviny, luštěniny a výrobky z nich-Stanovení obsahu popela spalováním. 2009. [(accessed on 21 July 2018)]. Available online: http://www.technicke-normy-csn.cz/461019-csn-iso-2171_4_32087.html. (In Czech)
Czech State Norm (CSN) EN ISO 662 (588801). Živočišné a rostlinné tuky a oleje-Stanovení vlhkosti a těkavých látek. 1996. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/588801-csn-en-iso-662_4_61956.html. (In Czech)
McCleary B.V. Megazyme: Mixed-Linkage Beta-Glucan Assay Procedure (McCleary Method) Bray Business Park; Bray, UK: 2006.
Halbmayr-Jech E., Hammer E., Fielder R., Coutts J., Rogers A., Cornish M. Characterization of G12 Sandwich ELISA, a Next-Generation Immunoassay for Gluten Toxicity. J. AOAC Int. 2012;95:372–376. doi: 10.5740/jaoacint.SGE_Halbmayr-Jech. PubMed DOI
Dvořáček V., Moudý J., Čurn V. Studies of Protein Fraction in Grain of Spelt Wheat (Triticum spelta L.) and Common Wheat (Triticum aestivum L.) SAB. 2001;32:287–305.
Naeem H.A., Sapirstein H.D. Ultra-fast separation of wheat glutenin subunits, by reversed-phase HPLC using a superficially porous silica-based column. J. Cereal Sci. 2007;46:157–168. doi: 10.1016/j.jcs.2007.01.002. DOI
Mejías J.H., Lu X., Osorio C., Ullman J.L., Von Wettstein D., Rustgi S. Analysis of wheat prolamins, the causative agents of celiac sprue, using reversed phase high performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) Nutrients. 2014;6:1578–1597. doi: 10.3390/nu6041578. PubMed DOI PMC
Taghouti M., Nsarellah N., Gaboun F., Rochdi R. Multi-environment assessment of the impact of genetic improvement on agronomic performance and on grain quality traits in Moroccan durum wheat varieties of 1949 to 2017. GJPBG. 2017;4:394–404.
Abdi H., Lynne J.W. Principal component analysis. WIREs Comp. Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI