Avenanthramides: Unique Bioactive Substances of Oat Grain in the Context of Cultivar, Cropping System, Weather Conditions and Other Grain Parameters

. 2021 Nov 17 ; 10 (11) : . [epub] 20211117

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834847

Grantová podpora
NAZV QK1810102 Ministry of Agriculture
RO0418 Ministry of Agriculture

Our study was focused on the evaluation of the content of a wider spectrum of eight avenanthramides (AVNs) as unique components of oat grain under the effects of four selected factors (cultivar, locality, cropping system, and year). The weather effects on changes in the AVN content and their relationship to other important parameters of oat grain were further evaluated in more detail. A sensitive UHPLC system coupled with a QExactive Orbitrap mass spectrometer was used for AVN quantification. AVNs confirmed a high variability (RDS = 72.7-113.5%), which was dominantly influenced by the locality and year factors. While most AVN types confirmed mutually high correlations (r = 0.7-0.9), their correlations with the other 10 grain parameters were lower (r ≤ 0.48). Their significant correlations (0.27-0.46) with β-D-glucan could be used in perspective in breeding programs for the synergetic increase of both parameters. PCA analysis and Spearman correlations based on individual cultivars confirmed a significant effect of June and July precipitation on the increase of Σ AVNs. However, the results also indicated that higher precipitation can generate favorable conditions for related factors, such as preharvest sprouting evoking a direct increase of AVNs synthesis in oat grain.

Zobrazit více v PubMed

Eurostat Agricultural Production-Crops. [(accessed on 3 August 2021)]. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Agricultural_production_-_crops#Cereals://

Gorash A., Armoniene R., Fetch J.M., Liatukas Z., Danyte V. Aspects in oat breeding: Nutrition quality, nakedness and disease resistance, challenges and perspectives. Ann. Appl. Biol. 2017;171:281–302. doi: 10.1111/aab.12375. DOI

Perrelli A., Goitre L., Salzano A.M., Moglia A., Scaloni A., Retta S.F. Biological Activities, Health Benefits, and Therapeutic Properties of Avenanthramides: From Skin Protection to Prevention and Treatment of Cerebrovascular Diseases. Oxid. Med. Cell. Longev. 2018;2018:6015351. doi: 10.1155/2018/6015351. PubMed DOI PMC

Multari S., Pihlava J.M., Ollennu-Chuasam P., Hietaniemi V., Yang B.R., Suomela J.P. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat (Avena sativa L.) from Finland. J. Agric. Food Chem. 2018;66:2900–2908. doi: 10.1021/acs.jafc.7b05726. PubMed DOI PMC

Gilissen L.J., Van der Meer I.M., Smulders M.J. Why oats are safe and healthy for celiac disease patients. Med. Sci. 2016;4:21. doi: 10.3390/medsci4040021. PubMed DOI PMC

Rasane P., Jha A., Sabikhi L., Kumar A., Unnikrishnan V.S. Nutritional advantages of oats and opportunities for its processing as value added foods—a review. J. Food Sci. Technol. 2015;52:662–675. doi: 10.1007/s13197-013-1072-1. PubMed DOI PMC

Liu K.S., Wise M.L. Distributions of nutrients and avenanthramides within oat grain and effects on pearled kernel composition. Food Chem. 2021;336:127668. doi: 10.1016/j.foodchem.2020.127668. PubMed DOI

Jagr M., Dvoracek V., Hlasna Cepkova P., Dolezalova J. Comprehensive analysis of oat avenanthramides using hybrid quadrupole-Orbitrap mass spectrometry: Possible detection of new compounds. Rapid Commun. Mass Spectrom. 2020;34:20. doi: 10.1002/rcm.8718. PubMed DOI

Chen C.Y., Milbury P.E., Kwak H.K., Collins F.W., Samuel P., Blumberg J.B. Avenanthramides and phenolic acids from oats are bioavailable and act synergistically with vitamin C to enhance hamster and human LDL resistance to oxidation. J. Nutr. 2004;134:1459–1466. doi: 10.1093/jn/134.6.1459. PubMed DOI

Peterson D.M., Hahn M.J., Emmons C.L. Oat avenanthramides exhibit antioxidant activities in vitro. Food Chem. 2002;79:473–478. doi: 10.1016/S0308-8146(02)00219-4. DOI

Turrini E., Maffei F., Milelli A., Calcabrini C., Fimognari C. Overview of the Anticancer Profile of Avenanthramides from Oat. Int. J. Mol. Med. 2019;20:4536. doi: 10.3390/ijms20184536. PubMed DOI PMC

Jastrebova J., Skoglund M., Nilsson J., Dimberg L.H. Selective and sensitive LC-MS determination of avenanthramides in oats. Chromatographia. 2006;63:419–423. doi: 10.1365/s10337-006-0769-y. DOI

Antonini E., Lombardi F., Alfieri M., Diamantini G., Redaelli R., Ninfali P. Nutritional characterization of naked and dehulled oat cultivar samples at harvest and after storage. J. Cereal Sci. 2016;72:46–53. doi: 10.1016/j.jcs.2016.09.016. DOI

Li X.P., Li M.Y., Ling A.J., Hu X.Z., Ma Z., Liu L., Li Y.X. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. J. Cereal Sci. 2017;73:130–137. doi: 10.1016/j.jcs.2016.12.005. DOI

Peterson D.M., Wesenberg D.M., Burrup D.E., Erickson C.A. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci. 2005;45:1249–1255. doi: 10.2135/cropsci2004.0063. DOI

Rao S.W., Santhakumar A.B., Chinkwo K.A., Blanchard C.L. Investigation of phenolic compounds with antioxidant activity in barley and oats affected by variation in growing location. Cereal Chem. 2020;97:772–782. doi: 10.1002/cche.10291. DOI

Michels D.K., Chatham L.A., Butts-Wilmsmeyer C.J., Juvik J.A., Kolb F.L. Variation in avenanthramide content in spring oat over multiple environments. J. Cereal Sci. 2020;91:102886. doi: 10.1016/j.jcs.2019.102886. DOI

Dimberg L.H., Gissen C., Nilsson J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio. 2005;34:331–337. doi: 10.1579/0044-7447-34.4.331. PubMed DOI

de Bruijn W.J.C., van Dinteren S., Gruppen H., Vincken J.P. Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa) Food Chem. 2019;277:682–690. doi: 10.1016/j.foodchem.2018.11.013. PubMed DOI

Comino I., Bernardo D., Bancel E., Moreno M.D., Sanchez B., Barro F., Suligoj T., Ciclitira P.J., Cebolla A., Knight S.C., et al. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr. Res. 2016;60:13. doi: 10.3402/fnr.v60.30324. PubMed DOI PMC

Londono D.M., van’t Westende W.P.C., Goryunova S., Salentijn E.M.J., van den Broeck H.C., van der Meer I.M., Visser R.G.F., Gilissen L., Smulders M.J.M. Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. J. Cereal Sci. 2013;58:170–177. doi: 10.1016/j.jcs.2013.03.017. DOI

Sterna V., Zute S., Brunava L. Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia. 2016;8:252–256. doi: 10.1016/j.aaspro.2016.02.100. DOI

Redaelli R., Del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., De Stefanis E., Sgrulletta D. Genetic and environmental variability in total and soluble beta-glucan in European oat genotypes. J. Cereal Sci. 2013;57:193–199. doi: 10.1016/j.jcs.2012.09.003. DOI

van den Broeck H.C., Londono D.M., Timmer R., Smulders M.J., Gilissen L., van der Meer I.M. Profiling of Nutritional and Health-Related Compounds in Oat Varieties. Foods. 2016;5:2. doi: 10.3390/foods5010002. PubMed DOI PMC

Mäkinen O.E., Sozer N., Ercili-Cura D., Poutanen K. Protein From Oat: Structure, Processes,Functionality, and Nutrition. In: Nadathur S., Wanasundara J.P.D., Scanlin L., editors. Sustainable Protein Sources. Elsevier; Amsterdam, The Netherlands: 2016. pp. 105–119.

Capouchova I., Petr J., Tlaskalova-Hogenova H., Michalik I., Famera O., Urminska D., Tuckova L., Knoblochova H., Borovska D. Protein fractions of oats and possibilities of oat utilization for patients with coeliac disease. Czech J. Food Sci. 2004;22:151–162. doi: 10.17221/3419-CJFS. DOI

Oraby H., Ahmad R. Physiological and biochemical changes of CBF3 transgenic oat in response to salinity stress. Plant Sci. 2012;185:331–339. doi: 10.1016/j.plantsci.2012.01.003. PubMed DOI

Tyburski J., Kurowski T., Adamiak E. Root and foot rot diseases of winter wheat grown in conventional and organic systems. J. Agric. Chem. Environ. 2014;3:1–8. doi: 10.4236/jacen.2014.33B001. DOI

Jelic M., Dugalic G., Milivojevic J., Djekic V. Effecr of liming and fertilization on yield and quality of aot (Avena sativa L.) on an acid luvisol soil. Rom. Agric. Res. 2013;30:249–258.

Guinto D. Nitrogen fertilisation effects on the quality of selected crops: A review. Agron. Sociaty N. Z. 2016;46:121–132.

Havrlentová M., Hlinková A., Žofajová A., Kováčik P., Dvončová D., Deáková Ľ. Effect of Fertilization on ß-D-Glucan Content in Oat Grain (Avena sativa L.) Agriculture/Pol’nohospodárstvo. 2013;59:111–119. doi: 10.2478/agri-2013-0010. DOI

Wise M.L., Doehlert D.C., McMullen M.S. Association of avenanthramide concentration in oat (Avena sativa L.) grain with crown rust incidence and genetic resistance. Cereal Chem. 2008;85:639–641. doi: 10.1094/CCHEM-85-5-0639. DOI

Xu J.G., Tian C.R., Hu Q.P., Luo J.Y., Wang X.D., Tian X.D. Dynamic Changes in Phenolic Compounds and Antioxidant Activity in Oats (Avena nuda L.) during Steeping and Germination. J. Agric. Food Chem. 2009;57:10392–10398. doi: 10.1021/jf902778j. PubMed DOI

Ding J.Z., Johnson J., Chu Y.F., Feng H. Enhancement of gamma-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019;283:239–247. doi: 10.1016/j.foodchem.2018.12.136. PubMed DOI

Donelson J.R., Gaines C.S., Donelson T.S., Finney P.L. Detection of wheat preharvest sprouting using a pregelatinized starch substrate and centrifugation. Cereal Chem. 2001;78:282–285. doi: 10.1094/CCHEM.2001.78.3.282. DOI

Czech State Norm (CSN) EN ISO 20483 (461401). Obiloviny a luštěniny-Stanovení obsahu dusíku a výpočet obsahu dusíkatých látek-Kjeldahlova metoda. 2014. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/461401-csn-en-iso-20483_4_77835.html. (In Czech)

Czech State Norm (CSN) EN ISO 10520 (566120). Přírodní škrob-Stanovení obsahu škrobu-Ewersova polarimetrická metoda. 1999. [(accessed on 21 July 2018)]. Available online: http://www.technicke-normy-csn.cz/566120-csn-en-iso-10520_4_56211.html. (In Czech)

Czech State Norm (CSN) EN ISO 11085 (461087). Obiloviny, výrobky z obilovin a krmiva-Stanovení obsahu hrubého a celkového tuku extrakční metodou podle Randalla. 2016. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/461087-csn-en-iso-11085_4_87418.html. (In Czech)

Czech State Norm (CSN) EN ISO 2171 (461019). Obiloviny, luštěniny a výrobky z nich-Stanovení obsahu popela spalováním. 2009. [(accessed on 21 July 2018)]. Available online: http://www.technicke-normy-csn.cz/461019-csn-iso-2171_4_32087.html. (In Czech)

Czech State Norm (CSN) EN ISO 662 (588801). Živočišné a rostlinné tuky a oleje-Stanovení vlhkosti a těkavých látek. 1996. [(accessed on 21 May 2018)]. Available online: http://www.technicke-normy-csn.cz/588801-csn-en-iso-662_4_61956.html. (In Czech)

McCleary B.V. Megazyme: Mixed-Linkage Beta-Glucan Assay Procedure (McCleary Method) Bray Business Park; Bray, UK: 2006.

Halbmayr-Jech E., Hammer E., Fielder R., Coutts J., Rogers A., Cornish M. Characterization of G12 Sandwich ELISA, a Next-Generation Immunoassay for Gluten Toxicity. J. AOAC Int. 2012;95:372–376. doi: 10.5740/jaoacint.SGE_Halbmayr-Jech. PubMed DOI

Dvořáček V., Moudý J., Čurn V. Studies of Protein Fraction in Grain of Spelt Wheat (Triticum spelta L.) and Common Wheat (Triticum aestivum L.) SAB. 2001;32:287–305.

Naeem H.A., Sapirstein H.D. Ultra-fast separation of wheat glutenin subunits, by reversed-phase HPLC using a superficially porous silica-based column. J. Cereal Sci. 2007;46:157–168. doi: 10.1016/j.jcs.2007.01.002. DOI

Mejías J.H., Lu X., Osorio C., Ullman J.L., Von Wettstein D., Rustgi S. Analysis of wheat prolamins, the causative agents of celiac sprue, using reversed phase high performance liquid chromatography (RP-HPLC) and matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) Nutrients. 2014;6:1578–1597. doi: 10.3390/nu6041578. PubMed DOI PMC

Taghouti M., Nsarellah N., Gaboun F., Rochdi R. Multi-environment assessment of the impact of genetic improvement on agronomic performance and on grain quality traits in Moroccan durum wheat varieties of 1949 to 2017. GJPBG. 2017;4:394–404.

Abdi H., Lynne J.W. Principal component analysis. WIREs Comp. Stat. 2010;2:433–459. doi: 10.1002/wics.101. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...