Unraveling the Potential of β-D-Glucans in Poales: From Characterization to Biosynthesis and Factors Affecting the Content

. 2023 Jun 14 ; 13 (6) : . [epub] 20230614

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37374169

Grantová podpora
APVV-18-0154 Slovak Research and Development Agency

This review consolidates current knowledge on β-D-glucans in Poales and presents current findings and connections that expand our understanding of the characteristics, functions, and applications of this cell wall polysaccharide. By associating information from multiple disciplines, the review offers valuable insights for researchers, practitioners, and consumers interested in harnessing the benefits of β-D-glucans in various fields. The review can serve as a valuable resource for plant biology researchers, cereal breeders, and plant-based food producers, providing insights into the potential of β-D-glucans and opening new avenues for future research and innovation in the field of this bioactive and functional ingredient.

Zobrazit více v PubMed

Fincher G.B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 2009;149:27–37. doi: 10.1104/pp.108.130096. PubMed DOI PMC

Burton R.A., Gidley M.J., Fincher G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010;6:724–732. doi: 10.1038/nchembio.439. PubMed DOI

Fincher G.B., Stone B.A. Chemistry of nonstarch polysaccharides. In: Wrigley C., editor. Encyclopedia of Grain Science. Elsevier; Oxford, UK: 2004. pp. 206–223. DOI

Havrlentova M., Kraic J. Content of β-D-glucan in cereal grains. J. Food Nutr. Res. 2006;45:97–103.

Redaelli R., Sgrulletta D., Scalfati G., De Stefanis E., Cacciatori P. Naked oats for improving human nutrition: Genetic and agronomic variability of grain bioactive components. Crop Sci. 2009;49:1431–1437. doi: 10.2135/cropsci2008.04.0225. DOI

Saastamoinen M., Plaami S., Kumpulainen J. Pentosan and β-Glucan content of Finnish winter rye varieties as compared with rye of six other countries. J. Cereal Sci. 1989;10:199–207. doi: 10.1016/S0733-5210(89)80049-9. DOI

Buckeridge M.S., Rayon C., Urbanowicz B., Tiné M.A.S., Carpita N.C. Mixed linkage (1→3),(1→4)-β-d-glucans of grasses. Cereal Chem. 2004;81:115–127. doi: 10.1094/CCHEM.2004.81.1.115. DOI

Sykut-Domańska E., Rzedzicki Z., Zarzycki P., Sobota A., Błaszczak W. Distribution of (1,3)(1,4)-beta-D-glucans in grains of polish oat cultivars and lines (Avena sativa L.) Pol. J. Food Nutr. Sci. 2016;66:51–56. doi: 10.1515/pjfns-2015-0012. DOI

Sikora P., Tosh S.M., Brummer Y., Olsson O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chem. 2013;137:83–91. doi: 10.1016/j.foodchem.2012.10.007. PubMed DOI

Gajdošová A., Petruláková Z., Havrlentová M., Červená V., Hozová B., Šturdík E., Kogan G. The content of water-soluble and water-insoluble β-D-glucans in selected oats and barley varieties. Carbohydr. Polym. 2007;70:46–52. doi: 10.1016/j.carbpol.2007.03.001. DOI

Trethewey J.A.K., Campbell L.M., Harris P.J. (1→3),(1→4)-β-d-Glucans in the cell walls of the Poales (Sensu Lato): An immunogold labeling study using a monoclonal antibody. Am. J. Bot. 2005;92:1660–1674. doi: 10.3732/ajb.92.10.1660. PubMed DOI

Vega-Sanchez M., Verhertbruggen Y., Scheller H.V., Ronald P. Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal. Behav. 2013;8:e23143. doi: 10.4161/psb.23143. PubMed DOI PMC

Hozlár P., Gregusová V., Nemeček P., Šliková S., Havrlentová M., Havrlentová M. Study of dynamic accumulation in β-D-glucan in oat (Avena sativa L.) during plant development. Polymers. 2022;14:2668. doi: 10.3390/polym14132668. PubMed DOI PMC

Fan M., Zhang Z., Wang F., Li Z., Hu Y. Effect of nitrogen forms and levels on β-glucan accumulation in grains of oat (Avena Sativa L.) plants. Z. Pflanzenernähr. Bodenk. 2009;172:861–866. doi: 10.1002/jpln.200800094. DOI

Izydorczyk M.S., Macri L.J., MacGregor A.W. Structure and physicochemical properties of barley non-starch polysaccharides—II. Alkaliextractable β-glucans and arabinoxylans. Carbohydr. Polym. 1998;35:259–269. doi: 10.1016/S0144-8617(97)00136-7. DOI

Chang S.-C., Saldivar R.K., Liang P.-H., Hsieh Y.S.Y. Structures, biosynthesis, and physiological functions of (1,3;1,4)-β-D-glucans. Cells. 2021;10:510. doi: 10.3390/cells10030510. PubMed DOI PMC

Fincher G.B. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: Comparative genomics can help! Curr. Opin. Plant Biol. 2009;12:140–147. doi: 10.1016/j.pbi.2009.01.002. PubMed DOI

Staudte R.G., Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. III. Distribution of cellotriosyl and cellotetraosyl residues. Carbohydr. Polym. 1983;3:299–312. doi: 10.1016/0144-8617(83)90027-9. DOI

Burton R.A., Fincher G.B. (1,3;1,4)-β-D-Glucans in cell walls of the Poaceae, lower plants, and fungi: A tale of two linkages. Mol. Plant. 2009;2:873–882. doi: 10.1093/mp/ssp063. PubMed DOI

Skendi A., Biliaderis C.G., Lazaridou A., Izydorczyk M.S. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003;38:15–31. doi: 10.1016/S0733-5210(02)00137-6. DOI

Izydorczyk M.S., Biliaderis C.G., Macri L.J., MacGregor A.W. Fractionation of oat (1→3), (1→4)-β-D-glucans and characterisation of the fractions. J. Cereal Sci. 1998;27:321–325. doi: 10.1006/jcrs.1997.0166. DOI

Tosh S., Brummer Y., Wolever T., Wood P. Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan. Cereal Chem. 2008;85:211–217. doi: 10.1094/CCHEM-85-2-0211. DOI

Lazaridou A., Biliaderis C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 2007;46:101–118. doi: 10.1016/j.jcs.2007.05.003. DOI

Henrion M., Francey C., Lê K.-A., Lamothe L. Cereal β-glucans: The impact of processing and how it affects physiological responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729. PubMed DOI PMC

Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr. Polym. 1983;3:207–225. doi: 10.1016/0144-8617(83)90019-X. DOI

Burton R., Fincher G. Current challenges in cell wall biology in the cereals and grasses. Front. Plant Sci. 2012;3:130. doi: 10.3389/fpls.2012.00130. PubMed DOI PMC

Doehlert D.C., Simsek S. Variation in β-glucan fine structure, extractability, and flour slurry viscosity in oats due to genotype and environment. Cereal Chem. 2012;89:242–246. doi: 10.1094/CCHEM-12-11-0145. DOI

Izydorczyk M.S., Dexter J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A review. Food Res. Int. 2008;41:850–868. doi: 10.1016/j.foodres.2008.04.001. DOI

Ramesh H.P., Tharanathan R.N. Carbohydrates—The renewable raw materials of high biotechnological value. Crit. Rev. Biotechnol. 2003;23:149–173. doi: 10.1080/713609312. PubMed DOI

Miller S.S., Wood P.J., Pietrzak L.N., Fulcher R.G. Mixed Linkage beta-glucan, protein content, and kernel weight in Avena species. [(accessed on 10 April 2023)];Cereal Chem. 1993 70:231–233. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1993/Documents/cc1993a47.html.

Cui W., Wood P.J. Relationships between structural features, molecular weight and rheological properties of cereal β-D-glucans. In: Nishinari K., editor. Hydrocolloids. Elsevier Science; Amsterdam, The Netherlands: 2000. pp. 159–168. DOI

Bulone V., Schwerdt J.G., Fincher G.B. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses. Front. Plant Sci. 2019;10:1009. doi: 10.3389/fpls.2019.01009. PubMed DOI PMC

Du B., Meenu M., Liu H., Xu B. A Concise review on the molecular structure and function relationship of β-glucan. Int. J. Mol. Sci. 2019;20:4032. doi: 10.3390/ijms20164032. PubMed DOI PMC

Fulcher R.G., Miller S.S. Structure of oat bran and distribution of dietary fiber components. In: Wood P., editor. Oat Bran. American Association of Cereal Chemists; St. Paul, MN, USA: 1993. pp. 1–24.

Welch R.W., Brown J.C.W., Leggett J.M. Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1→3),(1→4)-β-glucan in an Avena atlantica genotype. J. Cereal Sci. 2000;31:273–279. doi: 10.1006/jcrs.2000.0301. DOI

Tiwari U., Cummins E. Simulation of the factors affecting β-glucan levels during the cultivation of oats. J. Cereal Sci. 2009;50:175–183. doi: 10.1016/j.jcs.2009.04.014. DOI

Redaelli R., Del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., De Stefanis E., Sgrulletta D. Genetic and environmental variability in total and soluble β-glucan in european oat genotypes. J. Cereal Sci. 2013;57:193–199. doi: 10.1016/j.jcs.2012.09.003. DOI

Markovic S., Djukic N., Knezevic D., Lekovic S. Divergence of barley and oat varieties according to their content of β-glucan. J. Serb. Chem. Soc. 2017;82:379–388. doi: 10.2298/JSC1610310010M. DOI

MacGregor A.W. Barley. In: Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Oxford, UK: 2003. pp. 379–382. DOI

Eticha F., Grausgruber H., Berghoffer E. Multivariate analysis of agronomic and quality traits of hull-less spring barley (Hordeum vulgare L.) J. Plant Breed. 2010;2:81–95.

Nishantha M.D.L.C., Zhao X., Jeewani D.C., Bian J., Nie X., Weining S. Direct comparison of β-glucan content in wild and cultivated barley. Int. J. Food Prop. 2018;21:2218–2228. doi: 10.1080/10942912.2018.1500486. DOI

Marcotuli I., Houston K., Schwerdt J.G., Waugh R., Fincher G.B., Burton R.A., Blanco A., Gadaleta A. Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE. 2016;11:e0152590. doi: 10.1371/journal.pone.0152590. PubMed DOI PMC

Walling J.G., Sallam A.H., Steffenson B.J., Henson C., Vinje M.A., Mahalingam R. Quantitative trait loci impacting grain β-glucan content in wild barley (Hordeum vulgare ssp. spontaneum) reveals genes associated with cell wall modification and carbohydrate metabolism. Crop Sci. 2022;62:1213–1227. doi: 10.1002/csc2.20734. DOI

Lauer J.C., Cu S., Burton R.A., Eglinton J.K. Variation in barley (1→3, 1→4)-β-glucan endohydrolases reveals novel allozymes with increased thermostability. Theor. Appl. Genet. 2017;130:1053–1063. doi: 10.1007/s00122-017-2870-z. PubMed DOI

Meints B., Hayes P.M. Breeding naked barley for food, feed, and malt. In: Goldman I., editor. Plant Breeding Reviews. 1st ed. Wiley; Mdison, WI, USA: 2019. pp. 95–119. DOI

Tonooka T., Yanagisawa T., Aoki E., Taira M., Yoshioka T. Breeding of a new six-rowed waxy barley cultivar “Kihadamochi” exhibiting high levels of yield and β-glucan content. Breed. Res. 2022;24:146–152. doi: 10.1270/jsbbr.21J15. DOI

Tiwari U., Cummins E. Factors influencing β-glucan levels and molecular weight in cereal-based products. Cereal Chem. 2009;86:290–301. doi: 10.1094/CCHEM-86-3-0290. DOI

Elouadi F., Amri A., El-Baouchi A., Kehel Z., Salih G., Jilal A., Kilian B., Ibriz M. Evaluation of a set of Hordeum vulgare subsp. spontaneum accessions for β-glucans and microelement contents. Agriculture. 2021;11:950. doi: 10.3390/agriculture11100950. DOI

Meints B., Vallejos C., Hayes P. Multi-use naked barley: A New Frontier. J. Cereal Sci. 2021;102:103370. doi: 10.1016/j.jcs.2021.103370. DOI

Peterson D.M. Oat antioxidants. J. Cereal Sci. 2001;33:115–129. doi: 10.1006/jcrs.2000.0349. DOI

Mälkki Y. Trends in dietary fibre research and development. Acta Aliment. 2004;33:39–62. doi: 10.1556/AAlim.33.2004.1.5. DOI

Popov V.S., Khoreva V.I., Konarev A.V., Shelenga T.V., Blinova E.V., Malyshev L.L., Loskutov I.G. Evaluating germplasm of cultivated oat species from the VIR collection under the russian northwest conditions. Plants. 2022;11:3280. doi: 10.3390/plants11233280. PubMed DOI PMC

Loskutov I.G., Polonskiy V.I. Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder. Agric. Biol. 2017;52:646–657. doi: 10.15389/agrobiology.2017.4.646eng. DOI

Amer S.A., Attia G.A., Aljahmany A.A., Mohamed A.K., Ali A.A., Gouda A., Alagmy G.N., Megahed H.M., Saber T., Farahat M. Effect of 1,3-beta glucans dietary addition on the growth, intestinal histology, blood biochemical parameters, immune response, and immune expression of CD3 and CD20 in broiler chickens. Animals. 2022;12:3197. doi: 10.3390/ani12223197. PubMed DOI PMC

Jacob J.P., Pescatore A.J. Barley β-glucan in poultry diets. Ann. Transl. Med. 2014;2:20. doi: 10.3978/j.issn.2305-5839.2014.01.02. PubMed DOI PMC

Richmond T.A., Somerville C.R. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–498. doi: 10.1104/pp.124.2.495. PubMed DOI PMC

Hazen S.P., Scott-Craig J.S., Walton J.D. Cellulose synthase-like genes of rice. Plant Physiol. 2002;128:336–340. doi: 10.1104/pp.010875. PubMed DOI PMC

Farrokhi N., Burton R.A., Brownfield L., Hrmova M., Wilson S.M., Bacic A., Fincher G.B. Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 2006;4:145–167. doi: 10.1111/j.1467-7652.2005.00169.x. PubMed DOI

Cocuron J.-C., Lerouxel O., Drakakaki G., Alonso A.P., Liepman A.H., Keegstra K., Raikhel N., Wilkerson C.G. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA. 2007;104:8550–8555. doi: 10.1073/pnas.0703133104. PubMed DOI PMC

Burton R.A., Wilson S.M., Hrmova M., Harvey A.J., Shirley N.J., Medhurst A., Stone B.A., Newbigin E.J., Bacic A., Fincher G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3; 1, 4)-β-D-glucans. Science. 2006;311:1940–1942. doi: 10.1126/science.1122975. PubMed DOI

Doblin M.S., Pettolino F.A., Wilson S.M., Campbell R., Burton R.A., Fincher G.B., Newbigin E., Bacic A. A barley cellulose synthase-like CslH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5996–6001. doi: 10.1073/pnas.0902019106. PubMed DOI PMC

Yin Y., Huang J., Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9:99. doi: 10.1186/1471-2229-9-99. PubMed DOI PMC

Little A., Lahnstein J., Jeffery D.W., Khor S.F., Schwerdt J.G., Shirley N.J., Hooi M., Xing X., Burton R.A., Bulone V. A novel (1,4)-β-linked glucoxylan is synthesized by members of the Cellulose Synthase-like F Gene family in land plants. ACS Cent. Sci. 2019;5:73–84. doi: 10.1021/acscentsci.8b00568. PubMed DOI PMC

Zhang J., Yan L., Liu M., Guo G., Wu B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. Ann. Bot. 2021;127:371–380. doi: 10.1093/aob/mcaa185. PubMed DOI PMC

Dimitroff G., Little A., Lahnstein J., Schwerdt J.G., Srivastava V., Bulone V., Burton R.A., Fincher G.B. (1,3;1,4)-β-Glucan biosynthesis by the CSLF6 enzyme: Position and flexibility of catalytic residues influence product fine structure. Biochemistry. 2016;55:2054–2061. doi: 10.1021/acs.biochem.5b01384. PubMed DOI

Nemeth C., Freeman J., Jones H.D., Sparks C., Pellny T.K., Wilkinson M.D., Dunwell J., Andersson A.A.M., Åman P., Guillon F., et al. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat. Plant Physiol. 2010;152:1209–1218. doi: 10.1104/pp.109.151712. PubMed DOI PMC

Little A., Schwerdt J.G., Shirley N.J., Khor S.F., Neumann K., O’Donovan L.A., Lahnstein J., Collins H.M., Henderson M., Fincher G.B., et al. Revised phylogeny of the cellulose synthase gene superfamily: Insights into cell wall evolution. Plant Physiol. 2018;177:1124–1141. doi: 10.1104/pp.17.01718. PubMed DOI PMC

Burton R.A., Collins H.M., Kibble N.A.J., Smith J.A., Shirley N.J., Jobling S.A., Henderson M., Singh R.R., Pettolino F., Wilson S.M., et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure: Over-expression of CslF genes in barley. Plant Biotechnol. J. 2011;9:117–135. doi: 10.1111/j.1467-7652.2010.00532.x. PubMed DOI

Taketa S., Yuo T., Tonooka T., Tsumuraya Y., Inagaki Y., Haruyama N., Larroque O., Jobling S.A. Functional Functional characterization of barley beta-glucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J. Exp. Bot. 2012;63:381–392. doi: 10.1093/jxb/err285. PubMed DOI PMC

Schwerdt J.G., MacKenzie K., Wright F., Oehme D., Wagner J.M., Harvey A.J., Shirley N.J., Burton R.A., Schreiber M., Halpin C., et al. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiol. 2015;168:968–983. doi: 10.1104/pp.15.00140. PubMed DOI PMC

Vega-Sánchez M.E., Verhertbruggen Y., Christensen U., Chen X., Sharma V., Varanasi P., Jobling S.A., Talbot M., White R.G., Joo M., et al. Loss of cellulose synthase—Like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 2012;159:56–69. doi: 10.1104/pp.112.195495. PubMed DOI PMC

Shu X., Rasmussen S.K. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front. Plant Sci. 2014;15:197. doi: 10.3389/fpls.2014.00197. PubMed DOI PMC

Burton R.A., Jobling S.A., Harvey A.J., Shirley N.J., Mather D.E., Bacic A., Fincher G.B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 2008;146:1821–1833. doi: 10.1104/pp.107.114694. PubMed DOI PMC

Garcia-Gimenez G., Barakate A., Smith P., Stephens J., Khor S.F., Doblin M.S., Hao P., Bacic A., Fincher G.B., Burton R.A., et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J. 2020;104:1009–1022. doi: 10.1111/tpj.14977. PubMed DOI

Coon M.A. Master’s Thesis. Brigham Young University; Provo, UT, USA: 2012. [(accessed on 2 May 2022)]. Characterization and Variable Expression of the CslF6 Homologs in Oat (Avena sp.) Available online: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4749&context=etd.

Wilson S.M., Ho Y.Y., Lampugnani E.R., Van de Meene A.M.L., Bain M.P., Bacic A., Doblin M.S. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. Plant Cell. 2015;27:754–771. doi: 10.1105/tpc.114.135970. PubMed DOI PMC

Pérez-Vendrell A.M., Guasch J., Francesch M., Molina-Cano J.L., Brufau J. Determination of β-(1–3), (1–4)-D-glucans in barley by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1995;718:291–297. doi: 10.1016/0021-9673(95)00694-X. PubMed DOI

Redaelli R., Scalfati G., Ciccoritti R., Cacciatori P., De Stefanis E., Sgrulletta D. Effects of genetic and agronomic factors on grain composition in oats. Cereal Res. Commun. 2015;43:144–154. doi: 10.1556/CRC.2014.0019. DOI

Peterson D.M. Genotype and environment effects on oat beta-glucan concentration. Crop Sci. 1991;31:1517–1520. doi: 10.2135/cropsci1991.0011183X003100060025x. DOI

Doehlert D.C., McMullen M.S., Hammond J.J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci. 2001;41:1066–1072. doi: 10.2135/cropsci2001.4141066x. DOI

Güler M. Barley grain β-glucan content as affected by nitrogen and irrigation. Field Crops Res. 2003;84:335–340. doi: 10.1016/S0378-4290(03)00100-X. DOI

Hübner F., O’Neil T., Cashman K.D., Arendt E.K. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur. Food Res. Technol. 2010;231:27–35. doi: 10.1007/s00217-010-1247-1. DOI

Dvončová D., Havrlentová M., Hlinková A., Hozlár P. Effect of fertilization and variety on the β-glucan content in the grain of oats. ZNTJ. 2010;17:108–116. doi: 10.15193/zntj/2010/70/108-116. DOI

Gorash A., Armonienė R., Mitchell Fetch J., Liatukas Ž., Danytė V. Aspects in oat breeding: Nutrition quality, nakedness and disease resistance, challenges and perspectives: Aspects in oat breeding. Ann. Appl. Biol. 2017;171:281–302. doi: 10.1111/aab.12375. DOI

Dvořáček V., Jágr M., Kotrbová Kozak A., Capouchová I., Konvalina P., Faměra O., Hlásná Čepková P. Avenanthramides: Unique bioactive substances of oat grain in the context of cultivar, cropping system, weather conditions and other grain parameters. Plants. 2021;10:2485. doi: 10.3390/plants10112485. PubMed DOI PMC

De Arcangelis E., Messia M.C., Marconi E. Variation of polysaccharides profiles in developing kernels of different barley cultivars. J. Cereal Sci. 2019;85:273–278. doi: 10.1016/j.jcs.2018.12.008. DOI

Mathews R., Kamil A., Chu Y. Global review of heart health claims for oat beta-glucan products. Nutr. Rev. 2020;78:78–97. doi: 10.1093/nutrit/nuz069. PubMed DOI

Ahmad A., Anjum F.M., Zahoor T., Nawaz H., Dilshad S.M.R. A valuable functional ingredient in foods. Crit. Rev. Food Sci. Nutr. 2012;52:201–212. doi: 10.1080/10408398.2010.499806. PubMed DOI

Havrlentová M., Gregusová V., Šliková S., Nemeček P., Hudcovicová M., Kuzmová D. Relationship between the content of β-D-glucans and infection with Fusarium pathogens in oat (Avena sativa L.) plants. Plants. 2020;9:1776. doi: 10.3390/plants9121776. PubMed DOI PMC

Hrmova M., Fincher G.B. Structure-function relationships of β-D-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 2001;47:73–91. doi: 10.1023/A:1010619128894. PubMed DOI

Roulin S., Buchala A.J., Fincher G.B. Induction of (1→3,1→4)-β-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta. 2002;215:51–59. doi: 10.1007/s00425-001-0721-1. PubMed DOI

Guillon F., Tranquet O., Quillien L., Utille J.-P., Ordaz Ortiz J.J., Saulnier L. Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of endosperm of wheat. J. Cereal Sci. 2004;40:167–182. doi: 10.1016/j.jcs.2004.06.004. DOI

Trafford K., Haleux P., Henderson M., Parker M., Shirley N.J., Tucker M.R., Fincher G.B., Burton R.A. Grain development in Brachypodium and other grasses: Possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J. Exp. Bot. 2013;64:5033–5047. doi: 10.1093/jxb/ert292. PubMed DOI

Carpita N.C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Biol. 1996;47:445–476. doi: 10.1146/annurev.arplant.47.1.445. PubMed DOI

Kim J.-B., Olek A.T., Carpita N.C. Cell wall and membrane-associated exo-β-D-glucanases from developing maize seedlings. Plant Physiol. 2000;123:471–486. doi: 10.1104/pp.123.2.471. PubMed DOI PMC

Hoson T. Apoplast as the site of response to environmental signals. J. Plant Res. 1998;111:167–177. doi: 10.1007/BF02507163. PubMed DOI

Havrlentová M., Šliková S., Gregusová V., Kovácsová B., Lančaričová A., Nemeček P., Hendrichová J., Hozlár P. The influence of artificial Fusarium infection on oat grain quality. Microorganisms. 2021;9:2108. doi: 10.3390/microorganisms9102108. PubMed DOI PMC

Martin C., Schöneberg T., Vogelgsang S., Morisoli R., Bertossa M., Mauch-Mani B., Mascher F. Resistance against Fusarium graminearum and the relationship to β-glucan content in barley grains. Eur. J. Plant Pathol. 2018;152:621–634. doi: 10.1007/s10658-018-1506-8. DOI

Gregusová V., Kaňuková Š., Hudcovicová M., Bojnanská K., Ondreičková K., Piršelová B., Mészáros P., Lengyelová L., Galuščáková Ľ., Kubová V., et al. The cell-wall β-d-glucan in leaves of oat (Avena sativa L.) affected by fungal pathogen Blumeria graminis f. sp. avenae. Polymers. 2022;14:3416. doi: 10.3390/polym14163416. PubMed DOI PMC

Kofuji K., Aoki A., Tsubaki K., Konishi M., Isobe T., Murata Y. Antioxidant activity of β-glucan. ISRN Pharm. 2012;2012:125864. doi: 10.5402/2012/125864. PubMed DOI PMC

Lattanzio V., Lattanzio V.M.T., Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006;661:23–67.

Bai Y.-P., Zhou H.-M., Zhu K.-R., Li Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021;271:118416. doi: 10.1016/j.carbpol.2021.118416. PubMed DOI

Sørensen I., Willats W.G. New insights from ancient species. Plant Signal. Behav. 2008;3:743–745. doi: 10.4161/psb.3.9.6633. DOI

Kerstens S., Decraemer W.F., Verbelen J.-P. Cell walls at theplant surface behave mechanically like fiber-reinforced composite materials. [(accessed on 2 May 2023)];Plant Physiol. 2001 127:381–385. doi: 10.1104/pp.010423. Available online: www.plantphysiol.org/cgi/doi/10.1104/pp.010423. PubMed DOI PMC

Holthaus J., Holland J., White P., Frey K. Inheritance of Β-glucan content of oat grain. Crop Sci. 1996;36:567–572. doi: 10.2135/cropsci1996.0011183X003600030006x. DOI

Eshghi R., Akhundova E. Inheritance pattern of β-glucan and protein countents in hulless barley. Int. J. Agric. Biol. 2010;12:68–72.

Swanston J. Barley: Physical Properties, Genetic Factors and Environmental Impacts on Growth. Nova Science Publishers Inc.; New York, NY, USA: 2014. The barley husk: A potential barrier to future success; pp. 81–106.

Geng L., Li M., Xie S., Wu D., Ye L., Zhang G. Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Mol. Breed. 2021;41:1–12. doi: 10.1007/s11032-020-01199-5. PubMed DOI PMC

Geng L., He X., Ye L., Zhang G. Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chem. Mol. Sci. 2022;5:100136. doi: 10.1016/j.fochms.2022.100136. PubMed DOI PMC

Newell M.A., Asoro F.G., Scott M.P., White P.J., Beavis W.D., Jannink J.-L. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor. Appl. Genet. 2012;125:1687–1696. doi: 10.1007/s00122-012-1945-0. PubMed DOI

Zimmer C.M., Oliveira G., Pacheco M.T., Federizzi L.C.C. Characterization and absolute quantification of the Cellulose synthase-like F6 homoeologs in oats. Euphytica. 2020;216:173. doi: 10.1007/s10681-020-02714-7. DOI

Motilva M.-J., Serra A., Borrás X., Romero M.-P., Domínguez A., Labrador A., Peiró L. Adaptation of the standard enzymatic protocol (Megazyme Method) to microplaque format for β-(1,3)(1,4)-D-glucan determination in cereal based samples with a wide range of β-glucan content. J. Cereal Sci. 2014;59:224–227. doi: 10.1016/j.jcs.2014.01.007. DOI

Paudel D., Caffe-Treml M., Krishnan P. A single analytical platform for the rapid and simultaneous measurement of protein, oil, and beta-glucan contents of oats using near-infrared reflectance spectroscopy. Cereal Foods World. 2018;63:17–25.

Habschied K., Lalić A., Horvat D., Mastanjević K., Lukinac J., Jukić M., Krstanović V. β-Glucan degradation during malting of different purpose barley varieties. Fermentation. 2020;6:21. doi: 10.3390/fermentation6010021. DOI

Fang Y., Zhang X., Xue D. Genetic analysis and molecular breeding applications of malting quality QTLs in Barley. Front. Genet. 2019;10:352. doi: 10.3389/fgene.2019.00352. PubMed DOI PMC

Ullrich S.E., Han F., Jones B.L. Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J. Am. Soc. Brew. Chem. 1997;55:1–4. doi: 10.1094/ASBCJ-55-0001. DOI

Han F., Romagosa I., Ullrich S.E., Jones B.L., Hayes P.M., Wesenberg D.M. Molecular marker-assisted selection for malting quality traits in barley. Mol. Breed. 1997;3:427–437. doi: 10.1023/A:1009608312385. DOI

Iqbal I., Desta Z.A., Tripathi R.K., Beattie A., Badea A., Singh J. Interaction and association analysis of malting related traits in barley. PLoS ONE. 2023;18:e0283763. doi: 10.1371/journal.pone.0283763. PubMed DOI PMC

Muñoz-Amatriaín M., Xiong Y., Schmitt M.R., Bilgic H., Budde A.D., Chao S., Smith K.P., Muehlbauer G.J. Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genom. 2010;11:653. doi: 10.1186/1471-2164-11-653. PubMed DOI PMC

Singh S., Tripathi R., Lemaux P., Buchanan B., Singh J. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley. Proc. Natl. Acad. Sci. USA. 2017;114:7725–7730. doi: 10.1073/pnas.1701824114. PubMed DOI PMC

Farzaneh V., Ghodsvali A., Bakhshabadi H., Zare Z., Carvalho I.S. The impact of germination time on the some selected parameters through malting process. Int. J. Biol. Macromol. 2017;94:663–668. doi: 10.1016/j.ijbiomac.2016.10.052. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...