Unraveling the Potential of β-D-Glucans in Poales: From Characterization to Biosynthesis and Factors Affecting the Content
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-18-0154
Slovak Research and Development Agency
PubMed
37374169
PubMed Central
PMC10304550
DOI
10.3390/life13061387
PII: life13061387
Knihovny.cz E-zdroje
- Klíčová slova
- biosynthesis, breeding, cereals, environment, functions, genes, β-D-glucans,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This review consolidates current knowledge on β-D-glucans in Poales and presents current findings and connections that expand our understanding of the characteristics, functions, and applications of this cell wall polysaccharide. By associating information from multiple disciplines, the review offers valuable insights for researchers, practitioners, and consumers interested in harnessing the benefits of β-D-glucans in various fields. The review can serve as a valuable resource for plant biology researchers, cereal breeders, and plant-based food producers, providing insights into the potential of β-D-glucans and opening new avenues for future research and innovation in the field of this bioactive and functional ingredient.
Zobrazit více v PubMed
Fincher G.B. Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant Physiol. 2009;149:27–37. doi: 10.1104/pp.108.130096. PubMed DOI PMC
Burton R.A., Gidley M.J., Fincher G.B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 2010;6:724–732. doi: 10.1038/nchembio.439. PubMed DOI
Fincher G.B., Stone B.A. Chemistry of nonstarch polysaccharides. In: Wrigley C., editor. Encyclopedia of Grain Science. Elsevier; Oxford, UK: 2004. pp. 206–223. DOI
Havrlentova M., Kraic J. Content of β-D-glucan in cereal grains. J. Food Nutr. Res. 2006;45:97–103.
Redaelli R., Sgrulletta D., Scalfati G., De Stefanis E., Cacciatori P. Naked oats for improving human nutrition: Genetic and agronomic variability of grain bioactive components. Crop Sci. 2009;49:1431–1437. doi: 10.2135/cropsci2008.04.0225. DOI
Saastamoinen M., Plaami S., Kumpulainen J. Pentosan and β-Glucan content of Finnish winter rye varieties as compared with rye of six other countries. J. Cereal Sci. 1989;10:199–207. doi: 10.1016/S0733-5210(89)80049-9. DOI
Buckeridge M.S., Rayon C., Urbanowicz B., Tiné M.A.S., Carpita N.C. Mixed linkage (1→3),(1→4)-β-d-glucans of grasses. Cereal Chem. 2004;81:115–127. doi: 10.1094/CCHEM.2004.81.1.115. DOI
Sykut-Domańska E., Rzedzicki Z., Zarzycki P., Sobota A., Błaszczak W. Distribution of (1,3)(1,4)-beta-D-glucans in grains of polish oat cultivars and lines (Avena sativa L.) Pol. J. Food Nutr. Sci. 2016;66:51–56. doi: 10.1515/pjfns-2015-0012. DOI
Sikora P., Tosh S.M., Brummer Y., Olsson O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chem. 2013;137:83–91. doi: 10.1016/j.foodchem.2012.10.007. PubMed DOI
Gajdošová A., Petruláková Z., Havrlentová M., Červená V., Hozová B., Šturdík E., Kogan G. The content of water-soluble and water-insoluble β-D-glucans in selected oats and barley varieties. Carbohydr. Polym. 2007;70:46–52. doi: 10.1016/j.carbpol.2007.03.001. DOI
Trethewey J.A.K., Campbell L.M., Harris P.J. (1→3),(1→4)-β-d-Glucans in the cell walls of the Poales (Sensu Lato): An immunogold labeling study using a monoclonal antibody. Am. J. Bot. 2005;92:1660–1674. doi: 10.3732/ajb.92.10.1660. PubMed DOI
Vega-Sanchez M., Verhertbruggen Y., Scheller H.V., Ronald P. Abundance of mixed linkage glucan in mature tissues and secondary cell walls of grasses. Plant Signal. Behav. 2013;8:e23143. doi: 10.4161/psb.23143. PubMed DOI PMC
Hozlár P., Gregusová V., Nemeček P., Šliková S., Havrlentová M., Havrlentová M. Study of dynamic accumulation in β-D-glucan in oat (Avena sativa L.) during plant development. Polymers. 2022;14:2668. doi: 10.3390/polym14132668. PubMed DOI PMC
Fan M., Zhang Z., Wang F., Li Z., Hu Y. Effect of nitrogen forms and levels on β-glucan accumulation in grains of oat (Avena Sativa L.) plants. Z. Pflanzenernähr. Bodenk. 2009;172:861–866. doi: 10.1002/jpln.200800094. DOI
Izydorczyk M.S., Macri L.J., MacGregor A.W. Structure and physicochemical properties of barley non-starch polysaccharides—II. Alkaliextractable β-glucans and arabinoxylans. Carbohydr. Polym. 1998;35:259–269. doi: 10.1016/S0144-8617(97)00136-7. DOI
Chang S.-C., Saldivar R.K., Liang P.-H., Hsieh Y.S.Y. Structures, biosynthesis, and physiological functions of (1,3;1,4)-β-D-glucans. Cells. 2021;10:510. doi: 10.3390/cells10030510. PubMed DOI PMC
Fincher G.B. Exploring the evolution of (1,3;1,4)-β-D-glucans in plant cell walls: Comparative genomics can help! Curr. Opin. Plant Biol. 2009;12:140–147. doi: 10.1016/j.pbi.2009.01.002. PubMed DOI
Staudte R.G., Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. III. Distribution of cellotriosyl and cellotetraosyl residues. Carbohydr. Polym. 1983;3:299–312. doi: 10.1016/0144-8617(83)90027-9. DOI
Burton R.A., Fincher G.B. (1,3;1,4)-β-D-Glucans in cell walls of the Poaceae, lower plants, and fungi: A tale of two linkages. Mol. Plant. 2009;2:873–882. doi: 10.1093/mp/ssp063. PubMed DOI
Skendi A., Biliaderis C.G., Lazaridou A., Izydorczyk M.S. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003;38:15–31. doi: 10.1016/S0733-5210(02)00137-6. DOI
Izydorczyk M.S., Biliaderis C.G., Macri L.J., MacGregor A.W. Fractionation of oat (1→3), (1→4)-β-D-glucans and characterisation of the fractions. J. Cereal Sci. 1998;27:321–325. doi: 10.1006/jcrs.1997.0166. DOI
Tosh S., Brummer Y., Wolever T., Wood P. Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan. Cereal Chem. 2008;85:211–217. doi: 10.1094/CCHEM-85-2-0211. DOI
Lazaridou A., Biliaderis C.G. Molecular aspects of cereal β-glucan functionality: Physical properties, technological applications and physiological effects. J. Cereal Sci. 2007;46:101–118. doi: 10.1016/j.jcs.2007.05.003. DOI
Henrion M., Francey C., Lê K.-A., Lamothe L. Cereal β-glucans: The impact of processing and how it affects physiological responses. Nutrients. 2019;11:1729. doi: 10.3390/nu11081729. PubMed DOI PMC
Woodward J.R., Fincher G.B., Stone B.A. Water-soluble (1→3), (1→4)-β-D-glucans from barley (Hordeum vulgare) endosperm. II. Fine structure. Carbohydr. Polym. 1983;3:207–225. doi: 10.1016/0144-8617(83)90019-X. DOI
Burton R., Fincher G. Current challenges in cell wall biology in the cereals and grasses. Front. Plant Sci. 2012;3:130. doi: 10.3389/fpls.2012.00130. PubMed DOI PMC
Doehlert D.C., Simsek S. Variation in β-glucan fine structure, extractability, and flour slurry viscosity in oats due to genotype and environment. Cereal Chem. 2012;89:242–246. doi: 10.1094/CCHEM-12-11-0145. DOI
Izydorczyk M.S., Dexter J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products—A review. Food Res. Int. 2008;41:850–868. doi: 10.1016/j.foodres.2008.04.001. DOI
Ramesh H.P., Tharanathan R.N. Carbohydrates—The renewable raw materials of high biotechnological value. Crit. Rev. Biotechnol. 2003;23:149–173. doi: 10.1080/713609312. PubMed DOI
Miller S.S., Wood P.J., Pietrzak L.N., Fulcher R.G. Mixed Linkage beta-glucan, protein content, and kernel weight in Avena species. [(accessed on 10 April 2023)];Cereal Chem. 1993 70:231–233. Available online: https://www.cerealsgrains.org/publications/cc/backissues/1993/Documents/cc1993a47.html.
Cui W., Wood P.J. Relationships between structural features, molecular weight and rheological properties of cereal β-D-glucans. In: Nishinari K., editor. Hydrocolloids. Elsevier Science; Amsterdam, The Netherlands: 2000. pp. 159–168. DOI
Bulone V., Schwerdt J.G., Fincher G.B. Co-evolution of enzymes involved in plant cell wall metabolism in the grasses. Front. Plant Sci. 2019;10:1009. doi: 10.3389/fpls.2019.01009. PubMed DOI PMC
Du B., Meenu M., Liu H., Xu B. A Concise review on the molecular structure and function relationship of β-glucan. Int. J. Mol. Sci. 2019;20:4032. doi: 10.3390/ijms20164032. PubMed DOI PMC
Fulcher R.G., Miller S.S. Structure of oat bran and distribution of dietary fiber components. In: Wood P., editor. Oat Bran. American Association of Cereal Chemists; St. Paul, MN, USA: 1993. pp. 1–24.
Welch R.W., Brown J.C.W., Leggett J.M. Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1→3),(1→4)-β-glucan in an Avena atlantica genotype. J. Cereal Sci. 2000;31:273–279. doi: 10.1006/jcrs.2000.0301. DOI
Tiwari U., Cummins E. Simulation of the factors affecting β-glucan levels during the cultivation of oats. J. Cereal Sci. 2009;50:175–183. doi: 10.1016/j.jcs.2009.04.014. DOI
Redaelli R., Del Frate V., Bellato S., Terracciano G., Ciccoritti R., Germeier C.U., De Stefanis E., Sgrulletta D. Genetic and environmental variability in total and soluble β-glucan in european oat genotypes. J. Cereal Sci. 2013;57:193–199. doi: 10.1016/j.jcs.2012.09.003. DOI
Markovic S., Djukic N., Knezevic D., Lekovic S. Divergence of barley and oat varieties according to their content of β-glucan. J. Serb. Chem. Soc. 2017;82:379–388. doi: 10.2298/JSC1610310010M. DOI
MacGregor A.W. Barley. In: Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Oxford, UK: 2003. pp. 379–382. DOI
Eticha F., Grausgruber H., Berghoffer E. Multivariate analysis of agronomic and quality traits of hull-less spring barley (Hordeum vulgare L.) J. Plant Breed. 2010;2:81–95.
Nishantha M.D.L.C., Zhao X., Jeewani D.C., Bian J., Nie X., Weining S. Direct comparison of β-glucan content in wild and cultivated barley. Int. J. Food Prop. 2018;21:2218–2228. doi: 10.1080/10942912.2018.1500486. DOI
Marcotuli I., Houston K., Schwerdt J.G., Waugh R., Fincher G.B., Burton R.A., Blanco A., Gadaleta A. Genetic diversity and genome wide association study of β-glucan content in tetraploid wheat grains. PLoS ONE. 2016;11:e0152590. doi: 10.1371/journal.pone.0152590. PubMed DOI PMC
Walling J.G., Sallam A.H., Steffenson B.J., Henson C., Vinje M.A., Mahalingam R. Quantitative trait loci impacting grain β-glucan content in wild barley (Hordeum vulgare ssp. spontaneum) reveals genes associated with cell wall modification and carbohydrate metabolism. Crop Sci. 2022;62:1213–1227. doi: 10.1002/csc2.20734. DOI
Lauer J.C., Cu S., Burton R.A., Eglinton J.K. Variation in barley (1→3, 1→4)-β-glucan endohydrolases reveals novel allozymes with increased thermostability. Theor. Appl. Genet. 2017;130:1053–1063. doi: 10.1007/s00122-017-2870-z. PubMed DOI
Meints B., Hayes P.M. Breeding naked barley for food, feed, and malt. In: Goldman I., editor. Plant Breeding Reviews. 1st ed. Wiley; Mdison, WI, USA: 2019. pp. 95–119. DOI
Tonooka T., Yanagisawa T., Aoki E., Taira M., Yoshioka T. Breeding of a new six-rowed waxy barley cultivar “Kihadamochi” exhibiting high levels of yield and β-glucan content. Breed. Res. 2022;24:146–152. doi: 10.1270/jsbbr.21J15. DOI
Tiwari U., Cummins E. Factors influencing β-glucan levels and molecular weight in cereal-based products. Cereal Chem. 2009;86:290–301. doi: 10.1094/CCHEM-86-3-0290. DOI
Elouadi F., Amri A., El-Baouchi A., Kehel Z., Salih G., Jilal A., Kilian B., Ibriz M. Evaluation of a set of Hordeum vulgare subsp. spontaneum accessions for β-glucans and microelement contents. Agriculture. 2021;11:950. doi: 10.3390/agriculture11100950. DOI
Meints B., Vallejos C., Hayes P. Multi-use naked barley: A New Frontier. J. Cereal Sci. 2021;102:103370. doi: 10.1016/j.jcs.2021.103370. DOI
Peterson D.M. Oat antioxidants. J. Cereal Sci. 2001;33:115–129. doi: 10.1006/jcrs.2000.0349. DOI
Mälkki Y. Trends in dietary fibre research and development. Acta Aliment. 2004;33:39–62. doi: 10.1556/AAlim.33.2004.1.5. DOI
Popov V.S., Khoreva V.I., Konarev A.V., Shelenga T.V., Blinova E.V., Malyshev L.L., Loskutov I.G. Evaluating germplasm of cultivated oat species from the VIR collection under the russian northwest conditions. Plants. 2022;11:3280. doi: 10.3390/plants11233280. PubMed DOI PMC
Loskutov I.G., Polonskiy V.I. Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder. Agric. Biol. 2017;52:646–657. doi: 10.15389/agrobiology.2017.4.646eng. DOI
Amer S.A., Attia G.A., Aljahmany A.A., Mohamed A.K., Ali A.A., Gouda A., Alagmy G.N., Megahed H.M., Saber T., Farahat M. Effect of 1,3-beta glucans dietary addition on the growth, intestinal histology, blood biochemical parameters, immune response, and immune expression of CD3 and CD20 in broiler chickens. Animals. 2022;12:3197. doi: 10.3390/ani12223197. PubMed DOI PMC
Jacob J.P., Pescatore A.J. Barley β-glucan in poultry diets. Ann. Transl. Med. 2014;2:20. doi: 10.3978/j.issn.2305-5839.2014.01.02. PubMed DOI PMC
Richmond T.A., Somerville C.R. The cellulose synthase superfamily. Plant Physiol. 2000;124:495–498. doi: 10.1104/pp.124.2.495. PubMed DOI PMC
Hazen S.P., Scott-Craig J.S., Walton J.D. Cellulose synthase-like genes of rice. Plant Physiol. 2002;128:336–340. doi: 10.1104/pp.010875. PubMed DOI PMC
Farrokhi N., Burton R.A., Brownfield L., Hrmova M., Wilson S.M., Bacic A., Fincher G.B. Plant cell wall biosynthesis: Genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol. J. 2006;4:145–167. doi: 10.1111/j.1467-7652.2005.00169.x. PubMed DOI
Cocuron J.-C., Lerouxel O., Drakakaki G., Alonso A.P., Liepman A.H., Keegstra K., Raikhel N., Wilkerson C.G. A gene from the cellulose synthase-like C family encodes a β-1,4 glucan synthase. Proc. Natl. Acad. Sci. USA. 2007;104:8550–8555. doi: 10.1073/pnas.0703133104. PubMed DOI PMC
Burton R.A., Wilson S.M., Hrmova M., Harvey A.J., Shirley N.J., Medhurst A., Stone B.A., Newbigin E.J., Bacic A., Fincher G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1, 3; 1, 4)-β-D-glucans. Science. 2006;311:1940–1942. doi: 10.1126/science.1122975. PubMed DOI
Doblin M.S., Pettolino F.A., Wilson S.M., Campbell R., Burton R.A., Fincher G.B., Newbigin E., Bacic A. A barley cellulose synthase-like CslH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:5996–6001. doi: 10.1073/pnas.0902019106. PubMed DOI PMC
Yin Y., Huang J., Xu Y. The cellulose synthase superfamily in fully sequenced plants and algae. BMC Plant Biol. 2009;9:99. doi: 10.1186/1471-2229-9-99. PubMed DOI PMC
Little A., Lahnstein J., Jeffery D.W., Khor S.F., Schwerdt J.G., Shirley N.J., Hooi M., Xing X., Burton R.A., Bulone V. A novel (1,4)-β-linked glucoxylan is synthesized by members of the Cellulose Synthase-like F Gene family in land plants. ACS Cent. Sci. 2019;5:73–84. doi: 10.1021/acscentsci.8b00568. PubMed DOI PMC
Zhang J., Yan L., Liu M., Guo G., Wu B. Analysis of β-d-glucan biosynthetic genes in oat reveals glucan synthesis regulation by light. Ann. Bot. 2021;127:371–380. doi: 10.1093/aob/mcaa185. PubMed DOI PMC
Dimitroff G., Little A., Lahnstein J., Schwerdt J.G., Srivastava V., Bulone V., Burton R.A., Fincher G.B. (1,3;1,4)-β-Glucan biosynthesis by the CSLF6 enzyme: Position and flexibility of catalytic residues influence product fine structure. Biochemistry. 2016;55:2054–2061. doi: 10.1021/acs.biochem.5b01384. PubMed DOI
Nemeth C., Freeman J., Jones H.D., Sparks C., Pellny T.K., Wilkinson M.D., Dunwell J., Andersson A.A.M., Åman P., Guillon F., et al. Down-regulation of the CSLF6 gene results in decreased (1,3;1,4)-β-d-glucan in endosperm of wheat. Plant Physiol. 2010;152:1209–1218. doi: 10.1104/pp.109.151712. PubMed DOI PMC
Little A., Schwerdt J.G., Shirley N.J., Khor S.F., Neumann K., O’Donovan L.A., Lahnstein J., Collins H.M., Henderson M., Fincher G.B., et al. Revised phylogeny of the cellulose synthase gene superfamily: Insights into cell wall evolution. Plant Physiol. 2018;177:1124–1141. doi: 10.1104/pp.17.01718. PubMed DOI PMC
Burton R.A., Collins H.M., Kibble N.A.J., Smith J.A., Shirley N.J., Jobling S.A., Henderson M., Singh R.R., Pettolino F., Wilson S.M., et al. Over-expression of specific HvCslF cellulose synthase-like genes in transgenic barley increases the levels of cell wall (1,3;1,4)-β-d-glucans and alters their fine structure: Over-expression of CslF genes in barley. Plant Biotechnol. J. 2011;9:117–135. doi: 10.1111/j.1467-7652.2010.00532.x. PubMed DOI
Taketa S., Yuo T., Tonooka T., Tsumuraya Y., Inagaki Y., Haruyama N., Larroque O., Jobling S.A. Functional Functional characterization of barley beta-glucanless mutants demonstrates a unique role for CslF6 in (1,3;1,4)-β-D-glucan biosynthesis. J. Exp. Bot. 2012;63:381–392. doi: 10.1093/jxb/err285. PubMed DOI PMC
Schwerdt J.G., MacKenzie K., Wright F., Oehme D., Wagner J.M., Harvey A.J., Shirley N.J., Burton R.A., Schreiber M., Halpin C., et al. Evolutionary dynamics of the cellulose synthase gene superfamily in grasses. Plant Physiol. 2015;168:968–983. doi: 10.1104/pp.15.00140. PubMed DOI PMC
Vega-Sánchez M.E., Verhertbruggen Y., Christensen U., Chen X., Sharma V., Varanasi P., Jobling S.A., Talbot M., White R.G., Joo M., et al. Loss of cellulose synthase—Like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. Plant Physiol. 2012;159:56–69. doi: 10.1104/pp.112.195495. PubMed DOI PMC
Shu X., Rasmussen S.K. Quantification of amylose, amylopectin, and β-glucan in search for genes controlling the three major quality traits in barley by genome-wide association studies. Front. Plant Sci. 2014;15:197. doi: 10.3389/fpls.2014.00197. PubMed DOI PMC
Burton R.A., Jobling S.A., Harvey A.J., Shirley N.J., Mather D.E., Bacic A., Fincher G.B. The genetics and transcriptional profiles of the cellulose synthase-like HvCslF gene family in barley. Plant Physiol. 2008;146:1821–1833. doi: 10.1104/pp.107.114694. PubMed DOI PMC
Garcia-Gimenez G., Barakate A., Smith P., Stephens J., Khor S.F., Doblin M.S., Hao P., Bacic A., Fincher G.B., Burton R.A., et al. Targeted mutation of barley (1,3;1,4)-β-glucan synthases reveals complex relationships between the storage and cell wall polysaccharide content. Plant J. 2020;104:1009–1022. doi: 10.1111/tpj.14977. PubMed DOI
Coon M.A. Master’s Thesis. Brigham Young University; Provo, UT, USA: 2012. [(accessed on 2 May 2022)]. Characterization and Variable Expression of the CslF6 Homologs in Oat (Avena sp.) Available online: https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=4749&context=etd.
Wilson S.M., Ho Y.Y., Lampugnani E.R., Van de Meene A.M.L., Bain M.P., Bacic A., Doblin M.S. Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. Plant Cell. 2015;27:754–771. doi: 10.1105/tpc.114.135970. PubMed DOI PMC
Pérez-Vendrell A.M., Guasch J., Francesch M., Molina-Cano J.L., Brufau J. Determination of β-(1–3), (1–4)-D-glucans in barley by reversed-phase high-performance liquid chromatography. J. Chromatogr. 1995;718:291–297. doi: 10.1016/0021-9673(95)00694-X. PubMed DOI
Redaelli R., Scalfati G., Ciccoritti R., Cacciatori P., De Stefanis E., Sgrulletta D. Effects of genetic and agronomic factors on grain composition in oats. Cereal Res. Commun. 2015;43:144–154. doi: 10.1556/CRC.2014.0019. DOI
Peterson D.M. Genotype and environment effects on oat beta-glucan concentration. Crop Sci. 1991;31:1517–1520. doi: 10.2135/cropsci1991.0011183X003100060025x. DOI
Doehlert D.C., McMullen M.S., Hammond J.J. Genotypic and environmental effects on grain yield and quality of oat grown in North Dakota. Crop Sci. 2001;41:1066–1072. doi: 10.2135/cropsci2001.4141066x. DOI
Güler M. Barley grain β-glucan content as affected by nitrogen and irrigation. Field Crops Res. 2003;84:335–340. doi: 10.1016/S0378-4290(03)00100-X. DOI
Hübner F., O’Neil T., Cashman K.D., Arendt E.K. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur. Food Res. Technol. 2010;231:27–35. doi: 10.1007/s00217-010-1247-1. DOI
Dvončová D., Havrlentová M., Hlinková A., Hozlár P. Effect of fertilization and variety on the β-glucan content in the grain of oats. ZNTJ. 2010;17:108–116. doi: 10.15193/zntj/2010/70/108-116. DOI
Gorash A., Armonienė R., Mitchell Fetch J., Liatukas Ž., Danytė V. Aspects in oat breeding: Nutrition quality, nakedness and disease resistance, challenges and perspectives: Aspects in oat breeding. Ann. Appl. Biol. 2017;171:281–302. doi: 10.1111/aab.12375. DOI
Dvořáček V., Jágr M., Kotrbová Kozak A., Capouchová I., Konvalina P., Faměra O., Hlásná Čepková P. Avenanthramides: Unique bioactive substances of oat grain in the context of cultivar, cropping system, weather conditions and other grain parameters. Plants. 2021;10:2485. doi: 10.3390/plants10112485. PubMed DOI PMC
De Arcangelis E., Messia M.C., Marconi E. Variation of polysaccharides profiles in developing kernels of different barley cultivars. J. Cereal Sci. 2019;85:273–278. doi: 10.1016/j.jcs.2018.12.008. DOI
Mathews R., Kamil A., Chu Y. Global review of heart health claims for oat beta-glucan products. Nutr. Rev. 2020;78:78–97. doi: 10.1093/nutrit/nuz069. PubMed DOI
Ahmad A., Anjum F.M., Zahoor T., Nawaz H., Dilshad S.M.R. A valuable functional ingredient in foods. Crit. Rev. Food Sci. Nutr. 2012;52:201–212. doi: 10.1080/10408398.2010.499806. PubMed DOI
Havrlentová M., Gregusová V., Šliková S., Nemeček P., Hudcovicová M., Kuzmová D. Relationship between the content of β-D-glucans and infection with Fusarium pathogens in oat (Avena sativa L.) plants. Plants. 2020;9:1776. doi: 10.3390/plants9121776. PubMed DOI PMC
Hrmova M., Fincher G.B. Structure-function relationships of β-D-glucan endo- and exohydrolases from higher plants. Plant Mol. Biol. 2001;47:73–91. doi: 10.1023/A:1010619128894. PubMed DOI
Roulin S., Buchala A.J., Fincher G.B. Induction of (1→3,1→4)-β-D-glucan hydrolases in leaves of dark-incubated barley seedlings. Planta. 2002;215:51–59. doi: 10.1007/s00425-001-0721-1. PubMed DOI
Guillon F., Tranquet O., Quillien L., Utille J.-P., Ordaz Ortiz J.J., Saulnier L. Generation of polyclonal and monoclonal antibodies against arabinoxylans and their use for immunocytochemical location of arabinoxylans in cell walls of endosperm of wheat. J. Cereal Sci. 2004;40:167–182. doi: 10.1016/j.jcs.2004.06.004. DOI
Trafford K., Haleux P., Henderson M., Parker M., Shirley N.J., Tucker M.R., Fincher G.B., Burton R.A. Grain development in Brachypodium and other grasses: Possible interactions between cell expansion, starch deposition, and cell-wall synthesis. J. Exp. Bot. 2013;64:5033–5047. doi: 10.1093/jxb/ert292. PubMed DOI
Carpita N.C. Structure and biogenesis of the cell walls of grasses. Annu. Rev. Plant Biol. 1996;47:445–476. doi: 10.1146/annurev.arplant.47.1.445. PubMed DOI
Kim J.-B., Olek A.T., Carpita N.C. Cell wall and membrane-associated exo-β-D-glucanases from developing maize seedlings. Plant Physiol. 2000;123:471–486. doi: 10.1104/pp.123.2.471. PubMed DOI PMC
Hoson T. Apoplast as the site of response to environmental signals. J. Plant Res. 1998;111:167–177. doi: 10.1007/BF02507163. PubMed DOI
Havrlentová M., Šliková S., Gregusová V., Kovácsová B., Lančaričová A., Nemeček P., Hendrichová J., Hozlár P. The influence of artificial Fusarium infection on oat grain quality. Microorganisms. 2021;9:2108. doi: 10.3390/microorganisms9102108. PubMed DOI PMC
Martin C., Schöneberg T., Vogelgsang S., Morisoli R., Bertossa M., Mauch-Mani B., Mascher F. Resistance against Fusarium graminearum and the relationship to β-glucan content in barley grains. Eur. J. Plant Pathol. 2018;152:621–634. doi: 10.1007/s10658-018-1506-8. DOI
Gregusová V., Kaňuková Š., Hudcovicová M., Bojnanská K., Ondreičková K., Piršelová B., Mészáros P., Lengyelová L., Galuščáková Ľ., Kubová V., et al. The cell-wall β-d-glucan in leaves of oat (Avena sativa L.) affected by fungal pathogen Blumeria graminis f. sp. avenae. Polymers. 2022;14:3416. doi: 10.3390/polym14163416. PubMed DOI PMC
Kofuji K., Aoki A., Tsubaki K., Konishi M., Isobe T., Murata Y. Antioxidant activity of β-glucan. ISRN Pharm. 2012;2012:125864. doi: 10.5402/2012/125864. PubMed DOI PMC
Lattanzio V., Lattanzio V.M.T., Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006;661:23–67.
Bai Y.-P., Zhou H.-M., Zhu K.-R., Li Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021;271:118416. doi: 10.1016/j.carbpol.2021.118416. PubMed DOI
Sørensen I., Willats W.G. New insights from ancient species. Plant Signal. Behav. 2008;3:743–745. doi: 10.4161/psb.3.9.6633. DOI
Kerstens S., Decraemer W.F., Verbelen J.-P. Cell walls at theplant surface behave mechanically like fiber-reinforced composite materials. [(accessed on 2 May 2023)];Plant Physiol. 2001 127:381–385. doi: 10.1104/pp.010423. Available online: www.plantphysiol.org/cgi/doi/10.1104/pp.010423. PubMed DOI PMC
Holthaus J., Holland J., White P., Frey K. Inheritance of Β-glucan content of oat grain. Crop Sci. 1996;36:567–572. doi: 10.2135/cropsci1996.0011183X003600030006x. DOI
Eshghi R., Akhundova E. Inheritance pattern of β-glucan and protein countents in hulless barley. Int. J. Agric. Biol. 2010;12:68–72.
Swanston J. Barley: Physical Properties, Genetic Factors and Environmental Impacts on Growth. Nova Science Publishers Inc.; New York, NY, USA: 2014. The barley husk: A potential barrier to future success; pp. 81–106.
Geng L., Li M., Xie S., Wu D., Ye L., Zhang G. Identification of genetic loci and candidate genes related to β-glucan content in barley grain by genome-wide association study in international barley core selected collection. Mol. Breed. 2021;41:1–12. doi: 10.1007/s11032-020-01199-5. PubMed DOI PMC
Geng L., He X., Ye L., Zhang G. Identification of the genes associated with β-glucan synthesis and accumulation during grain development in barley. Food Chem. Mol. Sci. 2022;5:100136. doi: 10.1016/j.fochms.2022.100136. PubMed DOI PMC
Newell M.A., Asoro F.G., Scott M.P., White P.J., Beavis W.D., Jannink J.-L. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor. Appl. Genet. 2012;125:1687–1696. doi: 10.1007/s00122-012-1945-0. PubMed DOI
Zimmer C.M., Oliveira G., Pacheco M.T., Federizzi L.C.C. Characterization and absolute quantification of the Cellulose synthase-like F6 homoeologs in oats. Euphytica. 2020;216:173. doi: 10.1007/s10681-020-02714-7. DOI
Motilva M.-J., Serra A., Borrás X., Romero M.-P., Domínguez A., Labrador A., Peiró L. Adaptation of the standard enzymatic protocol (Megazyme Method) to microplaque format for β-(1,3)(1,4)-D-glucan determination in cereal based samples with a wide range of β-glucan content. J. Cereal Sci. 2014;59:224–227. doi: 10.1016/j.jcs.2014.01.007. DOI
Paudel D., Caffe-Treml M., Krishnan P. A single analytical platform for the rapid and simultaneous measurement of protein, oil, and beta-glucan contents of oats using near-infrared reflectance spectroscopy. Cereal Foods World. 2018;63:17–25.
Habschied K., Lalić A., Horvat D., Mastanjević K., Lukinac J., Jukić M., Krstanović V. β-Glucan degradation during malting of different purpose barley varieties. Fermentation. 2020;6:21. doi: 10.3390/fermentation6010021. DOI
Fang Y., Zhang X., Xue D. Genetic analysis and molecular breeding applications of malting quality QTLs in Barley. Front. Genet. 2019;10:352. doi: 10.3389/fgene.2019.00352. PubMed DOI PMC
Ullrich S.E., Han F., Jones B.L. Genetic complexity of the malt extract trait in barley suggested by QTL analysis. J. Am. Soc. Brew. Chem. 1997;55:1–4. doi: 10.1094/ASBCJ-55-0001. DOI
Han F., Romagosa I., Ullrich S.E., Jones B.L., Hayes P.M., Wesenberg D.M. Molecular marker-assisted selection for malting quality traits in barley. Mol. Breed. 1997;3:427–437. doi: 10.1023/A:1009608312385. DOI
Iqbal I., Desta Z.A., Tripathi R.K., Beattie A., Badea A., Singh J. Interaction and association analysis of malting related traits in barley. PLoS ONE. 2023;18:e0283763. doi: 10.1371/journal.pone.0283763. PubMed DOI PMC
Muñoz-Amatriaín M., Xiong Y., Schmitt M.R., Bilgic H., Budde A.D., Chao S., Smith K.P., Muehlbauer G.J. Transcriptome analysis of a barley breeding program examines gene expression diversity and reveals target genes for malting quality improvement. BMC Genom. 2010;11:653. doi: 10.1186/1471-2164-11-653. PubMed DOI PMC
Singh S., Tripathi R., Lemaux P., Buchanan B., Singh J. Redox-dependent interaction between thaumatin-like protein and β-glucan influences malting quality of barley. Proc. Natl. Acad. Sci. USA. 2017;114:7725–7730. doi: 10.1073/pnas.1701824114. PubMed DOI PMC
Farzaneh V., Ghodsvali A., Bakhshabadi H., Zare Z., Carvalho I.S. The impact of germination time on the some selected parameters through malting process. Int. J. Biol. Macromol. 2017;94:663–668. doi: 10.1016/j.ijbiomac.2016.10.052. PubMed DOI