Kosteletzkya pentacarpos: A Potential Halophyte Candidate for Phytoremediation in the Meta(loid)s Polluted Saline Soils

. 2021 Nov 18 ; 10 (11) : . [epub] 20211118

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34834857

Grantová podpora
41773081 National Natural Science Foundation of China

Kosteletzkya pentacarpos (L.) Ledebour is a perennial facultative halophyte species from the Malvacea family that grows in coastal areas with high amounts of salt. The tolerance of K. pentacarpos to the high concentration of salt (0.5-1.5% salinity range of coastal saline land) has been widely studied for decades. Nowadays, with the dramatic development of the economy and urbanization, in addition to the salt, the accumulation of mate(loid)s in coastal soil is increasing, which is threatening the survival of halophyte species as well as the balance of wetland ecosystems. Recently, the capacity of K. pentacarpos to cope with either single heavy metal stress or a combination of multiple meta(loid) toxicities was studied. Hence, this review focused on summarizing the physiological and biochemical behaviors of K. pentacarpos that has been simultaneously exposed to the combination of several meta(loid) toxicities. How the salt accumulated by K. pentacarpos impacts the response to meta(loid) stress was discussed. We conclude that as a potential candidate for phytoremediation, K. pentacarpos was able to cope with various environmental constrains such as multiple meta(loid) stresses due to its relative tolerance to meta(loid) toxicity.

Zobrazit více v PubMed

Butcher K., Wick A.F., DeSutter T., Chatterjee A., Harmon J. Soil Salinity: A Threat to Global Food Security. Agron. J. 2016;108:2189–2200. doi: 10.2134/agronj2016.06.0368. DOI

Arfaeinia H., Nabipour I., Ostovar A., Asadgol Z., Abuee E., Keshtkar M., Dobaradaran S. Assessment of Sediment Quality Based on Acid-Volatile Sulfide and Simultaneously Extracted Metals in Heavily Industrialized Area of Asaluyeh, Persian Gulf: Concentrations, Spatial Distributions, and Sediment Bioavailability/Toxicity. Environ. Sci. Pollut. Res. 2016;23:9871–9890. doi: 10.1007/s11356-016-6189-0. PubMed DOI

Mani D., Kumar C., Kumar Patel N. Integrated Micro-Biochemical Approach for Phytoremediation of Cadmium and Zinc Contaminated Soils. Ecotoxicol. Environ. Saf. 2015;111:86–95. doi: 10.1016/j.ecoenv.2014.09.019. PubMed DOI

Guala S.D., Vega F.A., Covelo E.F. The Dynamics of Heavy Metals in Plant–Soil Interactions. Ecol. Model. 2010;221:1148–1152. doi: 10.1016/j.ecolmodel.2010.01.003. DOI

Chen H., Yuan X., Li T., Hu S., Ji J., Wang C. Characteristics of Heavy Metal Transfer and Their Influencing Factors in Different Soil–Crop Systems of the Industrialization Region, China. Ecotoxicol. Environ. Saf. 2016;126:193–201. doi: 10.1016/j.ecoenv.2015.12.042. PubMed DOI

Ma J., Chen Y., Antoniadis V., Wang K., Huang Y., Tian H. Assessment of Heavy Metal(Loid)s Contamination Risk and Grain Nutritional Quality in Organic Waste-Amended Soil. J. Hazard. Mater. 2020;399:123095. doi: 10.1016/j.jhazmat.2020.123095. PubMed DOI

Chen X.-X., Liu Y.-M., Zhao Q.-Y., Cao W.-Q., Chen X.-P., Zou C.-Q. Health Risk Assessment Associated with Heavy Metal Accumulation in Wheat after Long-Term Phosphorus Fertilizer Application. Environ. Pollut. 2020;262:114348. doi: 10.1016/j.envpol.2020.114348. PubMed DOI

Adimalla N., Chen J., Qian H. Spatial Characteristics of Heavy Metal Contamination and Potential Human Health Risk Assessment of Urban Soils: A Case Study from an Urban Region of South India. Ecotoxicol. Environ. Saf. 2020;194:110406. doi: 10.1016/j.ecoenv.2020.110406. PubMed DOI

Proshad R., Islam S., Tusher T.R., Zhang D., Khadka S., Gao J., Kundu S. Appraisal of Heavy Metal Toxicity in Surface Water with Human Health Risk by a Novel Approach: A Study on an Urban River in Vicinity to Industrial Areas of Bangladesh. Toxin Rev. 2020:1–17. doi: 10.1080/15569543.2020.1780615. DOI

Abideen Z., Qasim M., Rizvi R.F., Gul B., Ansari R., Khan M.A. Oilseed Halophytes: A Potential Source of Biodiesel Using Saline Degraded Lands. Biofuels. 2015;6:241–248. doi: 10.1080/17597269.2015.1090812. DOI

Moser B.R., Seliskar D.M., Gallagher J.L. Fatty Acid Composition of Fourteen Seashore Mallow (Kosteletzkya Pentacarpos) Seed Oil Accessions Collected from the Atlantic and Gulf Coasts of the United States. Ind. Crop. Prod. 2016;87:20–26. doi: 10.1016/j.indcrop.2016.04.018. DOI

Qin P., Han R., Zhou M., Zhang H., Fan L., Seliskar D.M., Gallagher J.L. Ecological Engineering through the Biosecure Introduction of Kosteletzkya Virginica (Seashore Mallow) to Saline Lands in China: A Review of 20 Years of Activity. Ecol. Eng. 2015;74:174–186. doi: 10.1016/j.ecoleng.2014.10.021. DOI

Han R.-M., Lefèvre I., Ruan C.-J., Beukelaers N., Qin P., Lutts S. Effects of Salinity on the Response of the Wetland Halophyte Kosteletzkya Virginica (L.) Presl. to Copper Toxicity. Water Air Soil Pollut. 2012;223:1137–1150. doi: 10.1007/s11270-011-0931-5. DOI

Zhou M.-X., Dailly H., Renard M.-E., Han R.-M., Lutts S. NaCl Impact on Kosteletzkya Pentacarpos Seedlings Simultaneously Exposed to Cadmium and Zinc Toxicities. Environ. Sci. Pollut. Res. 2018;25:17444–17456. doi: 10.1007/s11356-018-1865-x. PubMed DOI

Zhou M.-X., Renard M.-E., Quinet M., Lutts S. Effect of NaCl on Proline and Glycinebetaine Metabolism in Kosteletzkya Pentacarpos Exposed to Cd and Zn Toxicities. Plant Soil. 2019;441:525–542. doi: 10.1007/s11104-019-04143-5. DOI

Dobrikova A.G., Apostolova E.L., Hanć A., Yotsova E., Borisova P., Sperdouli I., Adamakis I.-D.S., Moustakas M. Cadmium Toxicity in Salvia sclarea L.: An Integrative Response of Element Uptake, Oxidative Stress Markers, Leaf Structure and Photosynthesis. Ecotoxicol. Environ. Saf. 2021;209:111851. doi: 10.1016/j.ecoenv.2020.111851. PubMed DOI

Zhao L., Liu W., Lian J., Shen M., Huo X. Effects of Electric Fields on Cd Accumulation and Photosynthesis in Zea Mays Seedlings. J. Environ. Manag. 2020;276:111328. doi: 10.1016/j.jenvman.2020.111328. PubMed DOI

Yang Y., Xiong J., Tao L., Cao Z., Tang W., Zhang J., Yu X., Fu G., Zhang X., Lu Y. Regulatory Mechanisms of Nitrogen (N) on Cadmium (Cd) Uptake and Accumulation in Plants: A Review. Sci. Total Environ. 2020;708:135186. doi: 10.1016/j.scitotenv.2019.135186. PubMed DOI

Park B.-Y., Lee J.-K., Ro H.-M., Kim Y.H. Effects of Heavy Metal Contamination from an Abandoned Mine on Nematode Community Structure as an Indicator of Soil Ecosystem Health. Appl. Soil Ecol. 2011;51:17–24. doi: 10.1016/j.apsoil.2011.08.006. DOI

Chen Y., Liu D., Ma J., Jin B., Peng J., He X. Assessing the Influence of Immobilization Remediation of Heavy Metal Contaminated Farmland on the Physical Properties of Soil. Sci. Total Environ. 2021;781:146773. doi: 10.1016/j.scitotenv.2021.146773. PubMed DOI

Cheng M., Kopittke P.M., Wang A., Sale P.W.G., Tang C. Cadmium Reduces Zinc Uptake but Enhances Its Translocation in the Cadmium-Accumulator, Carpobrotus Rossii, without Affecting Speciation. Plant Soil. 2018;430:219–231. doi: 10.1007/s11104-018-3707-5. DOI

Adil M.F., Sehar S., Han Z., Wa Lwalaba J.L., Jilani G., Zeng F., Chen Z.-H., Shamsi I.H. Zinc Alleviates Cadmium Toxicity by Modulating Photosynthesis, ROS Homeostasis, and Cation Flux Kinetics in Rice. Environ. Pollut. 2020;265:114979. doi: 10.1016/j.envpol.2020.114979. PubMed DOI

Wang S., Zhao Y., Guo J., Zhou L. Effects of Cd, Cu and Zn on Ricinus communis L. Growth in Single Element or Co-Contaminated Soils: Pot Experiments. Ecol. Eng. 2016;90:347–351. doi: 10.1016/j.ecoleng.2015.11.044. DOI

Cailliatte R., Lapeyre B., Briat J.-F., Mari S., Curie C. The NRAMP6 Metal Transporter Contributes to Cadmium Toxicity. Biochem. J. 2009;422:217–228. doi: 10.1042/BJ20090655. PubMed DOI

Sasaki A., Yamaji N., Yokosho K., Ma J.F. Nramp5 Is a Major Transporter Responsible for Manganese and Cadmium Uptake in Rice. Plant Cell. 2012;24:2155–2167. doi: 10.1105/tpc.112.096925. PubMed DOI PMC

Astier C., Gloaguen V., Faugeron C. Phytoremediation of Cadmium-Contaminated Soils by Young Douglas Fir Trees: Effects of Cadmium Exposure on Cell Wall Composition. Int. J. Phytoremediation. 2014;16:790–803. doi: 10.1080/15226514.2013.856849. PubMed DOI

Mariem W., Kilani B.R., Benet G., Abdelbasset L., Stanley L., Charlotte P., Chedly A., Tahar G. How Does NaCl Improve Tolerance to Cadmium in the Halophyte Sesuvium Portulacastrum? Chemosphere. 2014;117:243–250. doi: 10.1016/j.chemosphere.2014.07.041. PubMed DOI

Zhou M.-X., Classen B., Agneessens R., Godin B., Lutts S. Salinity Improves Zinc Resistance in Kosteletzkya Pentacarpos in Relation to a Modification in Mucilage and Polysaccharides Composition. Int. J. Environ. Res. 2020;14:323–333. doi: 10.1007/s41742-020-00258-1. DOI

Lutts S., Lefèvre I., Delpérée C., Kivits S., Dechamps C., Robledo A., Correal E. Heavy Metal Accumulation by the Halophyte Species Mediterranean Saltbush. J. Environ. Qual. 2004;33:1271–1279. doi: 10.2134/jeq2004.1271. PubMed DOI

Edmond Ghanem M., Han R.-M., Classen B., Quetin-Leclerq J., Mahy G., Ruan C.-J., Qin P., Pérez-Alfocea F., Lutts S. Mucilage and Polysaccharides in the Halophyte Plant Species Kosteletzkya Virginica: Localization and Composition in Relation to Salt Stress. J. Plant Physiol. 2010;167:382–392. doi: 10.1016/j.jplph.2009.10.012. PubMed DOI

Han R.-M., Lefèvre I., Ruan C.-J., Qin P., Lutts S. NaCl Differently Interferes with Cd and Zn Toxicities in the Wetland Halophyte Species Kosteletzkya virginica (L.) Presl. Plant Growth Regul. 2012;68:97–109. doi: 10.1007/s10725-012-9697-z. DOI

Guerinot M.L. The ZIP Family of Metal Transporters. Biochim. Biophys. Acta (BBA)-Biomembr. 2000;1465:190–198. doi: 10.1016/S0005-2736(00)00138-3. PubMed DOI

Williams L.E., Mills R.F. P1B-ATPases—an Ancient Family of Transition Metal Pumps with Diverse Functions in Plants. Trends Plant Sci. 2005;10:491–502. doi: 10.1016/j.tplants.2005.08.008. PubMed DOI

Axelsen K.B., Palmgren M.G. Inventory of the Superfamily of P-Type Ion Pumps in Arabidopsis. Plant Physiol. 2001;126:696–706. doi: 10.1104/pp.126.2.696. PubMed DOI PMC

Takahashi R., Ishimaru Y., Shimo H., Ogo Y., Senoura T., Nishizawa N.K., Nakanishi H. The OsHMA2 Transporter Is Involved in Root-to-Shoot Translocation of Zn and Cd in Rice. Plant Cell Environ. 2012;35:1948–1957. doi: 10.1111/j.1365-3040.2012.02527.x. PubMed DOI

Nakanishi-Masuno T., Shitan N., Sugiyama A., Takanashi K., Inaba S., Kaneko S., Yazaki K. The Crotalaria Juncea Metal Transporter CjNRAMP1 Has a High Fe Uptake Activity, Even in an Environment with High Cd Contamination. Int. J. Phytoremediation. 2018;20:1427–1437. doi: 10.1080/15226514.2018.1501333. PubMed DOI

Zhang X.D., Meng J.G., Zhao K.X., Chen X., Yang Z.M. Annotation and Characterization of Cd-Responsive Metal Transporter Genes in Rapeseed (Brassica napus) Biometals. 2018;31:107–121. doi: 10.1007/s10534-017-0072-4. PubMed DOI

Hicks D., Yang J. NaAtm1: Studying a Heavy-Metal ABC Transporter System. FASEB J. 2019;33:656.5. doi: 10.1096/fasebj.2019.33.1_supplement.656.5. DOI

Houri T., Khairallah Y., Zahab A.A., Osta B., Romanos D., Haddad G. Heavy Metals Accumulation Effects on The Photosynthetic Performance of Geophytes in Mediterranean Reserve. J. King Saud Univ.-Sci. 2020;32:874–880. doi: 10.1016/j.jksus.2019.04.005. DOI

Cherif J., Derbel N., Nakkach M., von Bergmann H., Jemal F., Lakhdar Z.B. Spectroscopic Studies of Photosynthetic Responses of Tomato Plants to the Interaction of Zinc and Cadmium Toxicity. J. Photochem. Photobiol. B Biol. 2012;111:9–16. doi: 10.1016/j.jphotobiol.2012.03.002. PubMed DOI

Zhou M., Han R., Ghnaya T., Lutts S. Salinity Influences the Interactive Effects of Cadmium and Zinc on Ethylene and Polyamine Synthesis in the Halophyte Plant Species Kosteletzkya Pentacarpos. Chemosphere. 2018;209:892–900. doi: 10.1016/j.chemosphere.2018.06.143. PubMed DOI

Jozefczak M., Keunen E., Schat H., Bliek M., Hernández L.E., Carleer R., Remans T., Bohler S., Vangronsveld J., Cuypers A. Differential Response of Arabidopsis Leaves and Roots to Cadmium: Glutathione-Related Chelating Capacity vs Antioxidant Capacity. Plant Physiol. Biochem. 2014;83:1–9. doi: 10.1016/j.plaphy.2014.07.001. PubMed DOI

Han R.-M., Lefèvre I., Albacete A., Pérez-Alfocea F., Barba-Espín G., Díaz-Vivancos P., Quinet M., Ruan C.-J., Hernández J.A., Cantero-Navarro E., et al. Antioxidant Enzyme Activities and Hormonal Status in Response to Cd Stress in the Wetland Halophyte Kosteletzkya Virginica under Saline Conditions. Physiol Plant. 2013;147:352–368. doi: 10.1111/j.1399-3054.2012.01667.x. PubMed DOI

Taie H.A.A., Seif El-Yazal M.A., Ahmed S.M.A., Rady M.M. Polyamines Modulate Growth, Antioxidant Activity, and Genomic DNA in Heavy Metal–Stressed Wheat Plant. Environ. Sci. Pollut. Res. 2019;26:22338–22350. doi: 10.1007/s11356-019-05555-7. PubMed DOI

Peleg Z., Blumwald E. Hormone Balance and Abiotic Stress Tolerance in Crop Plants. Curr. Opin. Plant Biol. 2011;14:290–295. doi: 10.1016/j.pbi.2011.02.001. PubMed DOI

Mauch-Mani B., Mauch F. The Role of Abscisic Acid in Plant–Pathogen Interactions. Curr. Opin. Plant Biol. 2005;8:409–414. doi: 10.1016/j.pbi.2005.05.015. PubMed DOI

Bakshi P., Handa N., Gautam V., Kaur P., Sareen S., Mir B., Bhardwaj R. Chapter 19—Role and Regulation of Plant Hormones as a Signal Molecule in Response to Abiotic Stresses. In: Khan M.I.R., Reddy P.S., Ferrante A., Khan N.A., editors. Plant Signaling Molecules. Woodhead Publishing; Sawston, UK: 2019. pp. 303–317.

Minocha R., Majumdar R., Minocha S.C. Polyamines and Abiotic Stress in Plants: A Complex Relationship1. Front. Plant Sci. 2014;5:175. doi: 10.3389/fpls.2014.00175. PubMed DOI PMC

Tiburcio A.F., Altabella T., Bitrián M., Alcázar R. The Roles of Polyamines during the Lifespan of Plants: From Development to Stress. Planta. 2014;240:1–18. doi: 10.1007/s00425-014-2055-9. PubMed DOI

Benavides M.P., Groppa M.D., Recalde L., Verstraeten S.V. Effects of Polyamines on Cadmium- and Copper-Mediated Alterations in Wheat (Triticum aestivum L.) and Sunflower (Helianthus annuus L.) Seedling Membrane Fluidity. Arch. Biochem. Biophys. 2018;654:27–39. doi: 10.1016/j.abb.2018.07.008. PubMed DOI

Sekhar P.N., Amrutha R.N., Sangam S., Verma D.P.S., Kishor P.B.K. Biochemical Characterization, Homology Modeling and Docking Studies of Ornithine δ-Aminotransferase—an Important Enzyme in Proline Biosynthesis of Plants. J. Mol. Graph. Model. 2007;26:709–719. doi: 10.1016/j.jmgm.2007.04.006. PubMed DOI

Sauter M., Moffatt B., Saechao M.C., Hell R., Wirtz M. Methionine Salvage and S-Adenosylmethionine: Essential Links between Sulfur, Ethylene and Polyamine Biosynthesis. Biochem. J. 2013;451:145–154. doi: 10.1042/BJ20121744. PubMed DOI

Sruthi P., Shackira A.M., Puthur J.T. Heavy Metal Detoxification Mechanisms in Halophytes: An Overview. Wetl. Ecol Manag. 2017;25:129–148. doi: 10.1007/s11273-016-9513-z. DOI

Tang C., Zhang R., Hu X., Song J., Li B., Ou D., Hu X., Zhao Y. Exogenous Spermidine Elevating Cadmium Tolerance in Salix Matsudana Involves Cadmium Detoxification and Antioxidant Defense. Int. J. Phytoremediation. 2019;21:305–315. doi: 10.1080/15226514.2018.1524829. PubMed DOI

Gao S., Xiao Y., Xu F., Gao X., Cao S., Zhang F., Wang G., Sanders D., Chu C. Cytokinin-Dependent Regulatory Module Underlies the Maintenance of Zinc Nutrition in Rice. New Phytol. 2019;224:202–215. doi: 10.1111/nph.15962. PubMed DOI

Atici Ö., Ağar G., Battal P. Changes in Phytohormone Contents in Chickpea Seeds Germinating under Lead or Zinc Stress. Biol. Plant. 2005;49:215–222. doi: 10.1007/s10535-005-5222-9. DOI

Xu Q., Chu W., Qiu H., Fu Y., Cai S., Sha S. Responses of Hydrilla Verticillata (L.f.) Royle to Zinc: In Situ Localization, Subcellular Distribution and Physiological and Ultrastructural Modifications. Plant Physiol. Biochem. 2013;69:43–48. doi: 10.1016/j.plaphy.2013.04.018. PubMed DOI

Wu X., He J., Ding H., Zhu Z., Chen J., Xu S., Zha D. Modulation of Zinc-Induced Oxidative Damage in Solanum Melongena by 6-Benzylaminopurine Involves Ascorbate–Glutathione Cycle Metabolism. Environ. Exp. Bot. 2015;116:1–11. doi: 10.1016/j.envexpbot.2015.03.004. DOI

Ashraf M., Foolad M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007;59:206–216. doi: 10.1016/j.envexpbot.2005.12.006. DOI

Tripathi B.N., Singh V., Ezaki B., Sharma V., Gaur J.P. Mechanism of Cu- and Cd-Induced Proline Hyperaccumulation in Triticum Aestivum (Wheat) J. Plant Growth Regul. 2013;32:799–808. doi: 10.1007/s00344-013-9343-7. DOI

Chen T.H.H., Murata N. Glycinebetaine: An Effective Protectant against Abiotic Stress in Plants. Trends Plant Sci. 2008;13:499–505. doi: 10.1016/j.tplants.2008.06.007. PubMed DOI

Han R., Quinet M., André E., van Elteren J.T., Destrebecq F., Vogel-Mikuš K., Cui G., Debeljak M., Lefèvre I., Lutts S. Accumulation and Distribution of Zn in the Shoots and Reproductive Structures of the Halophyte Plant Species Kosteletzkya Virginica as a Function of Salinity. Planta. 2013;238:441–457. doi: 10.1007/s00425-013-1903-3. PubMed DOI

Lutts S., Qin P., Han R.-M. Salinity Influences Biosorption of Heavy Metals by the Roots of the Halophyte Plant Species Kosteletzkya Pentacarpos. Ecol. Eng. 2016;95:682–689. doi: 10.1016/j.ecoleng.2016.06.009. DOI

Zhou M., Engelmann T., Lutts S. Salinity Modifies Heavy Metals and Arsenic Absorption by the Halophyte Plant Species Kosteletzkya Pentacarpos and Pollutant Leaching from a Polycontaminated Substrate. Ecotoxicol. Environ. Saf. 2019;182:109460. doi: 10.1016/j.ecoenv.2019.109460. PubMed DOI

Zhou M., Ghnaya T., Dailly H., Cui G., Vanpee B., Han R., Lutts S. The Cytokinin Trans-Zeatine Riboside Increased Resistance to Heavy Metals in the Halophyte Plant Species Kosteletzkya Pentacarpos in the Absence but Not in the Presence of NaCl. Chemosphere. 2019;233:954–965. doi: 10.1016/j.chemosphere.2019.06.023. PubMed DOI

Van Oosten M.J., Maggio A. Functional Biology of Halophytes in the Phytoremediation of Heavy Metal Contaminated Soils. Environ. Exp. Bot. 2015;111:135–146. doi: 10.1016/j.envexpbot.2014.11.010. DOI

Helal H.M., Upenov A., Issa G.J. Growth and Uptake of Cd and Zn by Leucaena Leucocephala in Reclaimed Soils as Affected by NaCl Salinity. J. Plant Nutr. Soil Sci. 1999;162:589–592. doi: 10.1002/(SICI)1522-2624(199912)162:6<589::AID-JPLN589>3.0.CO;2-1. DOI

Guan M.Y., Zhang H.H., Pan W., Jin C.W., Lin X.Y. Sulfide Alleviates Cadmium Toxicity in Arabidopsis Plants by Altering the Chemical Form and the Subcellular Distribution of Cadmium. Sci. Total Environ. 2018;627:663–670. doi: 10.1016/j.scitotenv.2018.01.245. PubMed DOI

Le Gall H., Philippe F., Domon J.-M., Gillet F., Pelloux J., Rayon C. Cell Wall Metabolism in Response to Abiotic Stress. Plants. 2015;4:112–166. doi: 10.3390/plants4010112. PubMed DOI PMC

Hu G., Huang S., Chen H., Wang F. Binding of Four Heavy Metals to Hemicelluloses from Rice Bran. Food Res. Int. 2010;43:203–206. doi: 10.1016/j.foodres.2009.09.029. DOI

Tibbett M., Green I., Rate A., De Oliveira V.H., Whitaker J. The Transfer of Trace Metals in the Soil-Plant-Arthropod System. Sci. Total Environ. 2021;779:146260. doi: 10.1016/j.scitotenv.2021.146260. PubMed DOI

HAJIBAGHERI M.A., HALL J.L., FLOWERS T.J. Stereological Analysis of Leaf Cells of the Halophyte suaeda maritima (L.) Dum. J. Exp. Bot. 1984;35:1547–1557. doi: 10.1093/jxb/35.10.1547. DOI

Arena C., Figlioli F., Sorrentino M.C., Izzo L.G., Capozzi F., Giordano S., Spagnuolo V. Ultrastructural, Protein and Photosynthetic Alterations Induced by Pb and Cd in Cynara cardunculus L., and Its Potential for Phytoremediation. Ecotoxicol. Environ. Saf. 2017;145:83–89. doi: 10.1016/j.ecoenv.2017.07.015. PubMed DOI

Lokhande V.H., Srivastava S., Patade V.Y., Dwivedi S., Tripathi R.D., Nikam T.D., Suprasanna P. Investigation of Arsenic Accumulation and Tolerance Potential of Sesuvium portulacastrum (L.) L. Chemosphere. 2011;82:529–534. doi: 10.1016/j.chemosphere.2010.10.059. PubMed DOI

Park E.-J., Jeknić Z., Pino M.-T., Murata N., Chen T.H.-H. Glycinebetaine Accumulation Is More Effective in Chloroplasts than in the Cytosol for Protecting Transgenic Tomato Plants against Abiotic Stress. Plant Cell Environ. 2007;30:994–1005. doi: 10.1111/j.1365-3040.2007.01694.x. PubMed DOI

Radyukina N.L., Kartashov A.V., Ivanov Y.V., Shevyakova N.I., Kuznetsov V.V. Functioning of Defense Systems in Halophytes and Glycophytes under Progressing Salinity. Russ. J. Plant Physiol. 2007;54:806–815. doi: 10.1134/S1021443707060131. DOI

Iqbal M., Ashraf M., Jamil A. Seed Enhancement with Cytokinins: Changes in Growth and Grain Yield in Salt Stressed Wheat Plants. Plant Growth Regul. 2006;50:29–39. doi: 10.1007/s10725-006-9123-5. DOI

Wu X., Zhu Z., Li X., Zha D. Effects of Cytokinin on Photosynthetic Gas Exchange, Chlorophyll Fluorescence Parameters and Antioxidative System in Seedlings of Eggplant (Solanum melongena L.) under Salinity Stress. Acta Physiol. Plant. 2012;34:2105–2114. doi: 10.1007/s11738-012-1010-2. DOI

Yu Y., Li Y., Yan Z., Duan X. The Role of Cytokinins in Plant under Salt Stress. J. Plant Growth Regul. 2021:1–13. doi: 10.1007/s00344-021-10441-z. PubMed DOI

Ahanger M.A., Alyemeni M.N., Wijaya L., Alamri S.A., Alam P., Ashraf M., Ahmad P. Potential of Exogenously Sourced Kinetin in Protecting Solanum Lycopersicum from NaCl-Induced Oxidative Stress through up-Regulation of the Antioxidant System, Ascorbate-Glutathione Cycle and Glyoxalase System. PLoS ONE. 2018;13:e0202175. doi: 10.1371/journal.pone.0202175. PubMed DOI PMC

HuangYing L., HongBo G., ZhiKui G., QingPing X., Mei W., XiaoJing L. Reactive oxygen species metabolism and chlorophyll fluorescence parameters in tomato seedlings under NaCl stress with exogenous cytokinins treatment. Acta Bot. Boreali-Occident. Sin. 2010;30:1852–1858.

Ali H., Khan E., Sajad M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere. 2013;91:869–881. doi: 10.1016/j.chemosphere.2013.01.075. PubMed DOI

Zhang J., Li H., Zhou Y., Dou L., Cai L., Mo L., You J. Bioavailability and Soil-to-Crop Transfer of Heavy Metals in Farmland Soils: A Case Study in the Pearl River Delta, South China. Environ. Pollut. 2018;235:710–719. doi: 10.1016/j.envpol.2017.12.106. PubMed DOI

Kumar V., Sharma A., Kaur P., Singh Sidhu G.P., Bali A.S., Bhardwaj R., Thukral A.K., Cerda A. Pollution Assessment of Heavy Metals in Soils of India and Ecological Risk Assessment: A State-of-the-Art. Chemosphere. 2019;216:449–462. doi: 10.1016/j.chemosphere.2018.10.066. PubMed DOI

Li X., Zhang X., Wang X., Yang X., Cui Z. Bioaugmentation-Assisted Phytoremediation of Lead and Salinity Co-Contaminated Soil by Suaeda Salsa and Trichoderma Asperellum. Chemosphere. 2019;224:716–725. doi: 10.1016/j.chemosphere.2019.02.184. PubMed DOI

Vromman D., Lefèvre I., Šlejkovec Z., Martínez J.-P., Vanhecke N., Briceño M., Kumar M., Lutts S. Salinity Influences Arsenic Resistance in the Xerohalophyte Atriplex Atacamensis Phil. Environ. Exp. Bot. 2016;126:32–43. doi: 10.1016/j.envexpbot.2016.01.004. DOI

Lutts S., Lefèvre I. How Can We Take Advantage of Halophyte Properties to Cope with Heavy Metal Toxicity in Salt-Affected Areas? Ann. Bot. 2015;115:509–528. doi: 10.1093/aob/mcu264. PubMed DOI PMC

Cheng M., Wang A., Liu Z., Gendall A.R., Rochfort S., Tang C. Sodium Chloride Decreases Cadmium Accumulation and Changes the Response of Metabolites to Cadmium Stress in the Halophyte Carpobrotus Rossii. Ann. Bot. 2018;122:373–385. doi: 10.1093/aob/mcy077. PubMed DOI PMC

Tandon K., John M., Heuss-Aßbichler S., Schaller V. Influence of Salinity and Pb on the Precipitation of Zn in a Model System. Minerals. 2018;8:43. doi: 10.3390/min8020043. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...