Low-Carbohydrate Diet among Children with Type 1 Diabetes: A Multi-Center Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, multicentrická studie
Grantová podpora
AZV grant NU21-01-00085
Ministry of Health of the Czech Republic
PubMed
34836158
PubMed Central
PMC8622801
DOI
10.3390/nu13113903
PII: nu13113903
Knihovny.cz E-zdroje
- Klíčová slova
- low-carbohydrate diet, time in range, type 1 diabetes,
- MeSH
- diabetes mellitus 1. typu dietoterapie metabolismus MeSH
- dieta s omezením sacharidů * škodlivé účinky statistika a číselné údaje MeSH
- dítě MeSH
- glykovaný hemoglobin analýza MeSH
- index tělesné hmotnosti MeSH
- krevní glukóza analýza MeSH
- lidé MeSH
- lipidy krev MeSH
- průzkumy a dotazníky MeSH
- tělesná hmotnost MeSH
- tělesná výška MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Názvy látek
- glykovaný hemoglobin MeSH
- krevní glukóza MeSH
- lipidy MeSH
AIMS/HYPOTHESIS: The proportion of children with type 1 diabetes (T1D) who have experience with low-carbohydrate diet (LCD) is unknown. Our goal was to map the frequency of LCD among children with T1D and to describe their clinical and laboratory data. METHODS: Caregivers of 1040 children with T1D from three centers were addressed with a structured questionnaire regarding the children's carbohydrate intake and experience with LCD (daily energy intake from carbohydrates below 26% of age-recommended values). The subjects currently on LCD were compared to a group of non-LCD respondents matched to age, T1D duration, sex, type and center of treatment. RESULTS: A total of 624/1040 (60%) of the subjects completed the survey. A total of 242/624 (39%) subjects reported experience with voluntary carbohydrate restriction with 36/624 (5.8%) subjects currently following the LCD. The LCD group had similar HbA1c (45 vs. 49.5, p = 0.11), lower average glycemia (7.0 vs. 7.9, p = 0.02), higher time in range (74 vs. 67%, p = 0.02), lower time in hyperglycemia >10 mmol/L (17 vs. 20%, p = 0.04), tendency to more time in hypoglycemia <3.9 mmol/L(8 vs. 5%, p = 0.05) and lower systolic blood pressure percentile (43 vs. 74, p = 0.03). The groups did not differ in their lipid profile nor in current body height, weight or BMI. The LCD was mostly initiated by the parents or the subjects themselves and only 39% of the families consulted their decision with the diabetologist. CONCLUSIONS/INTERPRETATION: Low carbohydrate diet is not scarce in children with T1D and is associated with modestly better disease control. At the same time, caution should be applied as it showed a tendency toward more frequent hypoglycemia.
Zobrazit více v PubMed
Foster N.C., Beck R.W., Miller K.M., Clements M.A., Rickels M.R., DiMeglio L.A., Maahs D.M., Tamborlane W.V., Bergenstal R., Smith E., et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 2019;21:66–72. doi: 10.1089/dia.2018.0384. PubMed DOI PMC
Bekiari E., Kitsios K., Thabit H., Tauschmann M., Athanasiadou E., Karagiannis T., Haidich A.B., Hovorka R., Tsapas A. Artificial pancreas treatment for outpatients with type 1 diabetes: Systematic review and meta-analysis. BMJ. 2018;361:k1310. doi: 10.1136/bmj.k1310. PubMed DOI PMC
Sumnik Z., Pavlikova M., Pomahacova R., Venhacova P., Petruzelkova L., Skvor J., Neumann D., Vosahlo J., Konecna P., Cizek J., et al. Use of continuous glucose monitoring and its association with type 1 diabetes control in children over the first 3 years of reimbursement approval: Population data from the CENDA registry. Pediatr. Diabetes. 2021;22:439–447. doi: 10.1111/pedi.13184. PubMed DOI
Boeder S., Edelman S.V. Sodium-glucose co-transporter inhibitors as adjunctive treatment to insulin in type 1 diabetes: A review of randomized controlled trials. Diabetes Obes. Metab. 2019;21((Suppl. S2)):62–77. doi: 10.1111/dom.13749. PubMed DOI PMC
Turton J.L., Raab R., Rooney K.B. Low-carbohydrate diets for type 1 diabetes mellitus: A systematic review. PLoS ONE. 2018;13:e0194987. doi: 10.1371/journal.pone.0194987. PubMed DOI PMC
Neuman V., Pruhova S., Kulich M., Kolouskova S., Vosahlo J., Romanova M., Petruzelkova L., Obermannova B., Funda D.P., Cinek O., et al. Gluten-free diet in children with recent-onset type 1 diabetes: A 12-month intervention trial. Diabetes Obes. Metab. 2020;22:866–872. doi: 10.1111/dom.13974. PubMed DOI
Smart C.E., Annan F., Higgins L.A., Jelleryd E., Lopez M., Acerini C.L. ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional management in children and adolescents with diabetes. Pediatr. Diabetes. 2018;19((Suppl. S27)):136–154. doi: 10.1111/pedi.12738. PubMed DOI
Seckold R., Fisher E., de Bock M., King B.R., Smart C.E. The ups and downs of low-carbohydrate diets in the management of Type 1 diabetes: A review of clinical outcomes. Diabet. Med. 2019;36:326–334. doi: 10.1111/dme.13845. PubMed DOI
Sheard N.F., Clark N.G., Brand-Miller J.C., Franz M.J., Pi-Sunyer F.X., Mayer-Davis E., Kulkarni K., Geil P. Dietary carbohydrate (amount and type) in the prevention and management of diabetes: A statement by the american diabetes association. Diabetes Care. 2004;27:2266–2271. doi: 10.2337/diacare.27.9.2266. PubMed DOI
Feinman R.D., Pogozelski W.K., Astrup A., Bernstein R.K., Fine E.J., Westman E.C., Accurso A., Frassetto L., Gower B.A., McFarlane S.I., et al. Dietary carbohydrate restriction as the first approach in diabetes management: Critical review and evidence base. Nutrition. 2015;31:1–13. doi: 10.1016/j.nut.2014.06.011. PubMed DOI
Bernstein R.K. Dr. Bernstein’s Diabetes Solution: The Complete Guide to Achieving Normal Blood Sugars. 4th ed. Little, Brown & Company; Boston, MA, USA: 2011.
Krebs J.D., Parry Strong A., Cresswell P., Reynolds A.N., Hanna A., Haeusler S. A randomised trial of the feasibility of a low carbohydrate diet vs standard carbohydrate counting in adults with type 1 diabetes taking body weight into account. Asia Pac. J. Clin. Nutr. 2016;25:78–84. doi: 10.6133/apjcn.2016.25.1.11. PubMed DOI
Ranjan A., Schmidt S., Damm-Frydenberg C., Holst J.J., Madsbad S., Norgaard K. Short-term effects of a low carbohydrate diet on glycaemic variables and cardiovascular risk markers in patients with type 1 diabetes: A randomized open-label crossover trial. Diabetes Obes. Metab. 2017;19:1479–1484. doi: 10.1111/dom.12953. PubMed DOI
Schmidt S., Christensen M.B., Serifovski N., Damm-Frydenberg C., Jensen J.B., Floyel T., Storling J., Ranjan A., Norgaard K. Low versus high carbohydrate diet in type 1 diabetes: A 12-week randomized open-label crossover study. Diabetes Obes. Metab. 2019;21:1680–1688. doi: 10.1111/dom.13725. PubMed DOI
Lennerz B.S., Barton A., Bernstein R.K., Dikeman R.D., Diulus C., Hallberg S., Rhodes E.T., Ebbeling C.B., Westman E.C., Yancy W.S., Jr., et al. Management of Type 1 Diabetes with a Very Low-Carbohydrate Diet. Pediatrics. 2018;141:e20173349. doi: 10.1542/peds.2017-3349. PubMed DOI PMC
Mayer-Davis E.J., Laffel L.M., Buse J.B. Management of Type 1 Diabetes with a Very Low-Carbohydrate Diet: A Word of Caution. Pediatrics. 2018;142:e20181536B. doi: 10.1542/peds.2018-1536B. PubMed DOI
de Bock M., Lobley K., Anderson D., Davis E., Donaghue K., Pappas M., Siafarikas A., Cho Y.H., Jones T., Smart C. Endocrine and metabolic consequences due to restrictive carbohydrate diets in children with type 1 diabetes: An illustrative case series. Pediatr. Diabetes. 2018;19:129–137. doi: 10.1111/pedi.12527. PubMed DOI
Groleau V., Schall J.I., Stallings V.A., Bergqvist C.A. Long-term impact of the ketogenic diet on growth and resting energy expenditure in children with intractable epilepsy. Dev. Med. Child Neurol. 2014;56:898–904. doi: 10.1111/dmcn.12462. PubMed DOI PMC
Vining E.P., Pyzik P., McGrogan J., Hladky H., Anand A., Kriegler S., Freeman J.M. Growth of children on the ketogenic diet. Dev. Med. Child Neurol. 2002;44:796–802. doi: 10.1111/j.1469-8749.2002.tb00769.x. PubMed DOI
Ranjan A., Schmidt S., Damm-Frydenberg C., Steineck I., Clausen T.R., Holst J.J., Madsbad S., Norgaard K. Low-Carbohydrate Diet Impairs the Effect of Glucagon in the Treatment of Insulin-Induced Mild Hypoglycemia: A Randomized Crossover Study. Diabetes Care. 2017;40:132–135. doi: 10.2337/dc16-1472. PubMed DOI
Faith M.S., Scanlon K.S., Birch L.L., Francis L.A., Sherry B. Parent-child feeding strategies and their relationships to child eating and weight status. Obes. Res. 2004;12:1711–1722. doi: 10.1038/oby.2004.212. PubMed DOI
Laffel L.M., Connell A., Vangsness L., Goebel-Fabbri A., Mansfield A., Anderson B.J. General quality of life in youth with type 1 diabetes: Relationship to patient management and diabetes-specific family conflict. Diabetes Care. 2003;26:3067–3073. doi: 10.2337/diacare.26.11.3067. PubMed DOI
Nielsen S., Emborg C., Molbak A.G. Mortality in concurrent type 1 diabetes and anorexia nervosa. Diabetes Care. 2002;25:309–312. doi: 10.2337/diacare.25.2.309. PubMed DOI
Goebel-Fabbri A.E. Diabetes and eating disorders. J. Diabetes Sci. Technol. 2008;2:530–532. doi: 10.1177/193229680800200326. PubMed DOI PMC
American Diabetes Association 2. Classification and diagnosis of diabetes. Diabetes Care. 2015;38:S8–S16. doi: 10.2337/dc15-S005. PubMed DOI
American Diabetes Association Nutrition Recommendations and Interventions for Diabetes: A position statement of the American Diabetes Association. Diabetes Care. 2007;31:S61–S78. doi: 10.2337/dc08-s061. PubMed DOI
Sumnik Z., Venhacova J., Skvor J., Pomahacova R., Konecna P., Neumann D., Vosahlo J., Strnadel J., Cizek J., Obermannova B., et al. Five years of improving diabetes control in Czech children after the establishment of the population-based childhood diabetes register CENDA. Pediatr. Diabetes. 2020;21:77–87. doi: 10.1111/pedi.12929. PubMed DOI
Kobzova J., Vignerova J., Blaha P., Krejcovsky L., Riedlova J. The 6th nationwide anthropological survey of children and adolescents in the Czech Republic in 2001. Cent. Eur. J. Public Health. 2004;12:126–130. PubMed
Flynn J.T., Kaelber D.C., Baker-Smith C.M., Blowey D., Carroll A.E., Daniels S.R., de Ferranti S.D., Dionne J.M., Falkner B., Flinn S.K., et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics. 2017;140:e20171904. doi: 10.1542/peds.2017-1904. PubMed DOI
Battelino T., Danne T., Bergenstal R.M., Amiel S.A., Beck R., Biester T., Bosi E., Buckingham B.A., Cefalu W.T., Close K.L., et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care. 2019;42:1593–1603. doi: 10.2337/dci19-0028. PubMed DOI PMC
Ahola A.J., Forsblom C., Harjutsalo V., Groop P.H., FinnDiane Study G. Dietary carbohydrate intake and cardio-metabolic risk factors in type 1 diabetes. Diabetes Res. Clin. Pract. 2019;155:107818. doi: 10.1016/j.diabres.2019.107818. PubMed DOI
Raitakari O.T., Porkka K.V., Ronnemaa T., Knip M., Uhari M., Akerblom H.K., Viikari J.S. The role of insulin in clustering of serum lipids and blood pressure in children and adolescents. The Cardiovascular Risk in Young Finns Study. Diabetologia. 1995;38:1042–1050. doi: 10.1007/BF00402173. PubMed DOI
Park S.K., Jung J.Y., Choi W.J., Kim Y.H., Kim H.S., Ham W.T., Shin H., Ryoo J.H. Elevated fasting serum insulin level predicts future development of hypertension. Int. J. Cardiol. 2014;172:450–455. doi: 10.1016/j.ijcard.2014.01.087. PubMed DOI
Leow Z.Z.X., Guelfi K.J., Davis E.A., Jones T.W., Fournier P.A. The glycaemic benefits of a very-low-carbohydrate ketogenic diet in adults with Type 1 diabetes mellitus may be opposed by increased hypoglycaemia risk and dyslipidaemia. Diabet. Med. 2018;35:1258–1263. doi: 10.1111/dme.13663. PubMed DOI
Czech Statistical Office Regional GDP Per Capita for the Regions of the Czech Republic. [(accessed on 25 May 2021)]. Available online: https://www.czso.cz/csu/xb/regionalni_hdp.
Milosavljevic D., Mandic M.L., Banjari I. Nutritional knowledge and dietary habits survey in high school population. Coll. Antropol. 2015;39:101–107. PubMed
Ahola A.J., Forsblom C., Groop P.H. Adherence to special diets and its association with meeting the nutrient recommendations in individuals with type 1 diabetes. Acta Diabetol. 2018;55:843–851. doi: 10.1007/s00592-018-1159-2. PubMed DOI
Caccavale L.J., Nansel T.R., Quick V., Lipsky L.M., Laffel L.M., Mehta S.N. Associations of disordered eating behavior with the family diabetes environment in adolescents with Type 1 diabetes. J. Dev. Behav. Pediatr. 2015;36:8–13. doi: 10.1097/DBP.0000000000000116. PubMed DOI PMC