The remarkable dynamics in the establishment, rearrangement, and loss of dentition during the ontogeny of the sterlet sturgeon

. 2022 May ; 251 (5) : 826-845. [epub] 20211215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34846759

Grantová podpora
Wellcome Trust - United Kingdom

BACKGROUND: Sturgeons belong to an early-branching lineage often used as a proxy of ancestor-like traits of ray-finned fishes. However, many features of this lineage, such as the transitory presence and the eventual loss of dentition, exemplify specializations that, in fact, provide important information on lineage-specific evolutionary dynamics. RESULTS: Here, we introduce a detailed overview of the dentition during the development of the sterlet sturgeon. The dentition is composed of tooth fields at oral, palatal, and anterior pharyngeal regions. Oral fields are single-rowed, non-renewed and are shed early. Palatal and pharyngeal fields are multi-rowed and renewed from the adjacent superficial epithelium without the presence of the successional dental lamina. The early loss of oral fields and subsequent establishment of palatal and pharyngeal fields leads to a translocation of the functional dentition from the front to the rear of the oropharyngeal cavity until the eventual loss of all teeth. CONCLUSIONS: Our survey shows the sterlet dentition as a dynamic organ system displaying differential composition at different time points in the lifetime of this fish. These dynamics represent a conspicuous feature of sturgeons, unparalleled among extant vertebrates, and appropriate to scrutinize developmental and evolutionary underpinnings of vertebrate odontogenesis.

Zobrazit více v PubMed

Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 2009;7(2):e31. doi:10.1371/journal.pbio.1000031

Rücklin M, Donoghue PCJ, Johanson Z, Trinajstic K, Marone F, Stampanoni M. Development of teeth and jaws in the earliest jawed vertebrates. Nature. 2012;491:748-751. doi:10.1038/nature11555

Qu Q, Haitina T, Zhu M, Ahlberg P. New genomic and fossil data illuminate the origin of enamel. Nature. 2015;526:108-111. doi:10.1038/nature15259

Chen D, Blom H, Sanchez S, Tafforeau P, Ahlberg P. The stem osteichthyan Andreolepis and the origin of tooth replacement. Nature. 2016;539:237-241. doi:10.1038/nature19812

Vaškaninová V, Chen D, Tafforeau P, et al. Marginal dentition and multiple dermal jawbones as the ancestral condition of jawed vertebrates. Science. 2020;369(6500):211-216. doi:10.1126/science.aaz9431

Van der Heyden C, Huysseune A. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev Dyn. 2000;219(4):486-496. doi:10.1002/1097-0177(2000)9999:9999<::AID-DVDY1069>3.0.CO;2-Z

Debiais-Thibaud M, Borday-Birraux V, Germon I, et al. Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression of eve1 gene. J Exp Zool B Mol Dev Evol. 2007;308(6):693-708. doi:10.1002/jez.b.21183

Atukorala ADS, Franz-Odendaal TA. Spatial and temporal events in tooth development of Astyanax mexicanus. Mech Dev. 2014;134:42-54. doi:10.1016/j.mod.2014.09.002

Ellis NA, Donde NN, Miller CT. Early development and replacement of the stickleback dentition. J Morphol. 2016;277(8):1072-1083. doi:10.1002/jmor.20557

Vandenplas S, De Clercq A, Huysseune A. Tooth replacement without a dental lamina: the search for epithelial stem cells in Polypterus senegalus. J Exp Zool B Mol Dev Evol. 2014;322(5):281-293. doi:10.1002/jez.b.22577

Vandenplas S, Willems M, Witten PE, Hansen T, Fjelldal PG, Huysseune A. Epithelial label-retaining cells are absent during tooth cycling in Salmo salar and Polypterus senegalus. PLoS One. 2016;11(4):e0152870. doi:10.1371/journal.pone.0152870

Smith MM, Johanson Z, Butts T, et al. Making teeth to order: conserved genes reveal an ancient molecular pattern in paddlefish (Actinopterygii). Proc R Soc B. 1805;2015(282):20142700. doi:10.1098/rspb.2014.2700

Clemen G, Bartsch P, Wacker K. Dentition and dentigerous bones in juveniles and adults of Polypterus senegalus (Cladistia, actinopterygii). Ann Anat. 1998;180(3):211-221. doi:10.1016/S0940-9602(98)80076-9

Wacker K, Bartsch P, Clemen G. The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii). Ann Anat. 2001;183(1):37-52. doi:10.1016/S0940-9602(01)80011-X

Jarvik E. On the visceral skeleton in Eusthenopteron, with a discussion of the parasphenoid and palatoquadrate in fishes. Kungl Svenska Vetenskakad Handl. 1954;5:1-104.

Nelson GJ. Gill arches and the phylogeny of fishes: with notes on the classification of vertebrates. Bull Am Mus Nat Hist. 1969;141:479-552.

Smith MM, Coates MI. Evolutionary origins of the vertebrate dentition: phylogenetic patterns and developmental evolution. Eur J Oral Sci. 1998;106 (Suppl 1):482-500. doi:10.1111/j.1600-0722.1998.tb02212.x

Donoghue PCJ. Evolution of development of the vertebrate dermal and oral skeletons: unraveling concepts, regulatory theories, and homologies. Paleobiology. 2002;28:474-507. doi:10.1666/0094-8373(2002)028<0474:EODOTV>2.0.CO;2

Warth P, Hilton EJ, Naumann B, Olsson L, Konstantinidis P. Development of the skull and pectoral girdle in Siberian sturgeon, Acipenser baerii, and Russian sturgeon, Acipenser gueldenstaedtii (Acipenseriformes: Acipenseridae). J Morphol. 2017;278(3):418-442. doi:10.1002/jmor.20653

Jollie M. Development of head and pectoral girdle skeleton and scales in Acipenser. Copeia. 1980;1980(2):226-249. doi:10.2307/1444000

Bemis WE, Findeis EK, Grande L. An overview of Acipenseriformes. Envir Biol Fishes. 1997;48(1):25-71. doi:10.1023/A:1007370213924

Hilton E, Grande L, Bemis W. Skeletal anatomy of the shortnose sturgeon, Acipenser brevirostrum Lesueur, 1818, and the systematics of sturgeons (Acipenseriformes, Acipenseridae). Fieldiana Life Earth Sci. 2011;3:1-168. doi:10.3158/2158-5520-3.1.1

Grande L, Bemis WE. Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. J Vert Paleo. 1991;11(Supp 1):1-121. doi:10.1080/02724634.1991.10011424

Imms AD. Notes on the gill-rakers of the spoonbill sturgeon, Polyodon spathula. Proc Zool Soc London. 1904;74:22-35.

Carroll AM, Wainwright PC. Functional morphology of prey capture in the sturgeon, Scaphirhynchus albus. J Morphol. 2003;256(3):270-284. doi:10.1002/jmor.10095

Miller M. The ecology and functional morphology of feeding of North American sturgeon and paddlefish. Fish Fish Ser. 2004;27:87-102. doi:10.1007/1-4020-2833-4_5

Warth P, Hilton EJ, Naumann B, Olsson L, Konstantinidis P. Development of the muscles associated with the mandibular and hyoid arches in the Siberian sturgeon, Acipenser baerii (Acipenseriformes: Acipenseridae). J Morphol. 2018;279(2):163-175. doi:10.1002/jmor.20761

Keränen SV, Kettunen P, Aberg T, Thesleff I, Jernvall J. Gene expression patterns associated with suppression of odontogenesis in mouse and vole diastema regions. Dev Genes Evol. 1999;209(8):495-506. doi:10.1007/s004270050282

Fraser GJ, Graham A, Smith MM. Conserved deployment of genes during odontogenesis across osteichthyans. Proc R Soc B. 2004;271(1555):2311-2317. doi:10.1098/rspb.2004.2878

Fraser GJ, Bloomquist RF, Streelman JT. A periodic pattern generator for dental diversity. BMC Biol. 2008;6(1):32. doi:10.1186/1741-7007-6-32

Stock DW, Jackman WR, Trapani J. Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development. 2006;133(16):3127-3137. doi:10.1242/dev.02459

Debiais-Thibaud M, Chiori R, Enault S, et al. Tooth and scale morphogenesis in shark: an alternative process to the mammalian enamel knot system. BMC Evol Biol. 2015;15:292. doi:10.1186/s12862-015-0557-0

Rasch LJ, Martin KJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. An ancient dental gene set governs development and continuous regeneration of teeth in sharks. Dev Biol. 2016;415(2):347-370. doi:10.1016/j.ydbio.2016.01.038

Soukup V, Tazaki A, Yamazaki Y, et al. Oral and palatal dentition of axolotl arises from a common tooth-competent zone along the ecto-endodermal boundary. Front Cell Dev Biol. 2021;8:1655. doi:10.3389/fcell.2020.622308

Witten PE, Villwock W. Growth requires bone resorption at particular skeletal elements in a teleost fish with acellular bone (Oreochromis niloticus, Teleostei: Cichlidae). J Appl Ichthyol. 1997;13(4):149-158. doi:10.1111/j.1439-0426.1997.tb00115.x

Findeis EK. Osteology and phylogenetic interrelationships of sturgeons (Acipenseridae). Env Biol Fishes. 1997;48(1):73-126. doi:10.1023/A:1007372832213

Fieszl J, Bogacka-Kapusta E, Kapusta A, Szymańska U, Martyniak A. Feeding ecology of sterlet Acipenser ruthenus L. in the Hungarian section of the Danube River. Arch Pol Fish. 2011;19(3):105-111. doi:10.2478/v10086-011-0012-9

Muir WD GT Jr, Parsley MJ, Hinton SA. Diet of first-feeding larval and young-of-the-year white sturgeon in the lower Columbia River. Northwest Sci. 2000;74:25-33.

China V, Holzman R. Hydrodynamic starvation in first-feeding larval fishes. Proc Nat Acad Sci of USA. 2014;111:8083-8088. doi:10.1073/pnas.1323205111

Dial TR, Lauder GV. Longer development provides first-feeding fish time to escape hydrodynamic constraints. J Morphol. 2020;281(8):956-969. doi:10.1002/jmor.21224

Boglione C, Bronzi P, Cataldi E, Serra S, Gagliardi F, Cataudella S. Aspects of early development in the Adriatic sturgeon Acipenser naccarii. J Appl Ichthyol. 1999;15:207-213. doi:10.1111/j.1439-0426.1999.tb00236.x

Piotrowska I, Szczepkowska B, Kozłowski M, Wunderlich K, Szczepkowski M. Results of the larviculture of Atlantic sturgeon (Acipenser oxyrinchus) fed different types of diets. Arch Pol Fish. 2013;21(1):53-61. doi:10.2478/aopf-2013-0006

Underwood CJ, Johanson Z, Welten M, et al. Development and evolution of dentition pattern and tooth order in the skates and rays (Batoidea; Chondrichthyes). PLoS One. 2015;10(4):e0122553. doi:10.1371/journal.pone.0122553

Underwood C, Johanson Z, Smith MM. Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns. Roy Soc Open Sci. 2016;3(11):160385. doi:10.1098/rsos.160385

Fraser G, Standing A, Underwood C, Thiery A. The dental lamina: an essential structure for perpetual tooth regeneration in sharks. Integr Comp Biol. 2020;60(3):644-655. doi:10.1093/icb/icaa102

Martin K, Rasch L, Cooper R, Metscher B, Johanson Z, Fraser G. Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles. Proc Natl Acad Sci U S A. 2016;113:201612354. doi:10.1073/pnas.1612354113

Rasch LJ, Cooper RL, Underwood C, Dillard WA, Thiery AP, Fraser GJ. Development and regeneration of the crushing dentition in skates (Rajidae). Dev Biol. 2020;466(1):59-72. doi:10.1016/j.ydbio.2020.07.014

Fraser GJ, Cerny R, Soukup V, Bronner-Fraser M, Streelman JT. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays. 2010;32(9):808-817. doi:10.1002/bies.200900151

Reif WE. Evolution of dermal skeleton and dentition in vertebrates. In: Hecht MK, Wallace B, Prance GT, eds. Evolutionary Biology. Vol 15. Boston, MA: Springer; 1982:287-368. doi:10.1007/978-1-4615-6968-8_7

Smith MM, Fraser GJ, Mitsiadis TA. Dental lamina as source of odontogenic stem cells: evolutionary origins and developmental control of tooth generation in gnathostomes. J Exp Zool B Mol Dev Evol. 2009;312B(4):260-280. doi:10.1002/jez.b.21272

Whitlock JA, Richman JM. Biology of tooth replacement in amniotes. Int J Oral Sci. 2013;5(2):66-70. doi:10.1038/ijos.2013.36

Berkovitz BKB. Chronology of tooth development in the rainbow trout (Salmo gairdneri). J Exp Zool. 1977;200(1):65-69. doi:10.1002/jez.1402000109

Huysseune A, Witten PE. An evolutionary view on tooth development and replacement in wild Atlantic salmon (Salmo salar L.). Evol Dev. 2008;10(1):6-14. doi:10.1111/j.1525-142X.2007.00209.x

Square TA, Sundaram S, Mackey EJ, Miller CT. Distinct tooth regeneration systems deploy a conserved battery of genes. EvoDevo. 2021;12(1):4. doi:10.1186/s13227-021-00172-3

Minarik M, Stundl J, Fabian P, et al. Pre-oral gut contributes to facial structures in non-teleost fishes. Nature. 2017;547:209-212. doi:10.1038/nature23008

Rizzato PP, Pospisilova A, Hilton EJ, Bockmann FA. Ontogeny and homology of cranial bones associated with lateral-line canals of the Senegal bichir, Polypterus senegalus (Actinopterygii: Cladistii: Polypteriformes), with a discussion on the formation of lateral-line canal bones in fishes. J Anat. 2020;237(3):439-467. doi:10.1111/joa.13202

Connolly MH, Yelick P. High-throughput methods for visualizing the teleost skeleton: capturing autofluorescence of alizarin red. J Appl Ichthyol. 2010;26(2):274-277. doi:10.1111/J.1439-0426.2010.01419.X

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Periderm fate and independence of tooth formation are conserved across osteichthyans

. 2024 Oct 03 ; 15 (1) : 13. [epub] 20241003

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...