Altered gut ecosystems plus the microbiota's potential for rapid evolution: A recipe for inevitable change with unknown consequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34849201
PubMed Central
PMC8598968
DOI
10.1016/j.csbj.2021.10.033
PII: S2001-0370(21)00455-4
Knihovny.cz E-zdroje
- Klíčová slova
- Environment, Evolution, Fiber, Inflammation, Microbiota,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In a single human gut, which is estimated to produce 1000-times more bacteria in a single day than the entire human population on Earth as of 2020, the potential for evolution is vast. In addition to the sheer volume of reproductive events, prokaryotes can transfer most genes horizontally, greatly accelerating their potential to evolve. In the face of this evolutionary potential, Westernization has led to profound changes in the ecosystem of the gut, including increased chronic inflammation in many individuals and dramatically reduced fiber consumption and decreased seasonal variation in the diet of most individuals. Experimental work using a variety of model systems has shown that bacteria will evolve within days to weeks when faced with substantial environmental changes. However, studies evaluating the effects of inflammation of the gut on the microbiota are still in their infancy and generally confounded by the effects of the microbiota on the immune system. At the same time, experimental data indicate that complete loss of fiber from the diet constitutes an extinction-level event for the gut microbiota. However, these studies evaluating diet may not apply to Westernized humans who typically have reduced but not absent levels of fiber in their diet. Thus, while it is expected that the microbiota will evolve rapidly in the face of Westernization, experimental studies that address the magnitude of that evolution are generally lacking, and it remains unknown to what extent this evolutionary process affects disease and the ability to treat the disease state.
Department of Surgery Duke University School of Medicine Durham NC USA
Duke Global Health Institute Duke University and Duke University School of Medicine Durham NC USA
Faculty of Science University of South Bohemia 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Sender R., Fuchs S., Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi: 10.1371/journal.pbio.1002533. PubMed DOI PMC
Everett M.L., Palestrant D., Miller S.E., Bollinger R.R., Parker W. Immune exclusion and immune inclusion: a new model of host-bacterial interactions in the gut. Clin Appl Immunol Rev. 2004;4(5):321–332.
Sonnenburg J.L., Angenent L.T., Gordon J.I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nat Immunol. 2004;5(6):569–573. PubMed
Bry L., Falk P.G., Midtvedt T., Gordon J.I. A model of host-microbial interactions in an open mammalian ecosystem [see comments] Science. 1996;273(5280):1380–1383. PubMed
Bickler S.W., DeMaio A. Western diseases: current concepts and implications for pediatric surgery research and practice. Pediatr Surg Int. 2008;24(3):251–255. PubMed
Moeller A.H., Li Y., Mpoudi Ngole E., Ahuka-Mundeke S., Lonsdorf E.V., Pusey A.E., et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci. 2014;111(46):16431–16435. doi: 10.1073/pnas.1419136111. PubMed DOI PMC
Quercia S., Candela M., Giuliani C., Turroni S., Luiselli D., Rampelli S., et al. From lifetime to evolution: timescales of human gut microbiota adaptation. Front Microbiol. 2014;5 doi: 10.3389/fmicb.2014.00587. PubMed DOI PMC
Yatsunenko T., Rey F.E., Manary M.J., Trehan I., Dominguez-Bello M.G., Contreras M., et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–227. doi: 10.1038/nature11053. PubMed DOI PMC
David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. doi: 10.1038/nature12820. PubMed DOI PMC
Venkatakrishnan A., Holzknecht Z.E., Holzknecht R., Bowles D.E., Kotzé S.H., Modliszewski J.L., et al. Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Comput Struct Biotechnol J. 2021;19:752–758. doi: 10.1016/j.csbj.2021.01.007. PubMed DOI PMC
Lorenz M.G., Wackernagel W. Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev. 1994;58(3):563–602. doi: 10.1128/mr.58.3.563-602.1994. PubMed DOI PMC
Thomas C.M., Nielsen K.M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol. 2005;3(9):711–721. doi: 10.1038/nrmicro1234. PubMed DOI
Dagan T., Artzy-Randrup Y., Martin W. Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci. 2008;105(29):10039–10044. doi: 10.1073/pnas.0800679105. PubMed DOI PMC
Jeong H., Arif B., Caetano-Anollés G., Kim K.M., Nasir A. Horizontal gene transfer in human-associated microorganisms inferred by phylogenetic reconstruction and reconciliation. Sci Rep. 2019;9(1) doi: 10.1038/s41598-019-42227-5. PubMed DOI PMC
Gordo I. Evolutionary change in the human gut microbiome: From a static to a dynamic view. PLoS biology 2019;17(2):e3000126-e3000126. doi: 10.1371/journal.pbio.3000126. PubMed PMC
Pudlo NA, Pereira GV, Parnami J, et al., Extensive transfer of genes for edible seaweed digestion from marine to human gut bacteria. bioRxiv 2020:2020.06.09.142968. doi: 10.1101/2020.06.09.142968. PubMed PMC
Lenski R.E. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME J. 2017;11(10):2181–2194. doi: 10.1038/ismej.2017.69. PubMed DOI PMC
Blount Z.D., Barrick J.E., Davidson C.J., Lenski R.E. Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012;489(7417):513–518. doi: 10.1038/nature11514. PubMed DOI PMC
Lee S.M., Wyse A., Lesher A., Everett M.L., Lou L., Holzknecht Z.E., et al. Adaptation in a mouse colony monoassociated with Escherichia coli K-12 for more than 1,000 days. Appl Environ Microbiol. 2010;76(14):4655–4663. doi: 10.1128/AEM.00358-10. PubMed DOI PMC
Rainey P.B., Travisano M. Adaptive radiation in a heterogeneous environment. Nature. 1998;394(6688):69–72. doi: 10.1038/27900. PubMed DOI
Jahn LJ, Munck C, Ellabaan MMH, et al.; Adaptive Laboratory Evolution of Antibiotic Resistance Using Different Selection Regimes Lead to Similar Phenotypes and Genotypes. Front Microbiol 2017;8:816-816. doi: 10.3389/fmicb.2017.00816. PubMed PMC
Perron G.G., Zasloff M., Bell G. Experimental evolution of resistance to an antimicrobial peptide. Proceedings. Biol Sci. 2006;273(1583):251–256. doi: 10.1098/rspb.2005.3301. PubMed DOI PMC
Cooper V.S., Honsa E., Rowe H., Deitrick C., Iverson A.R., Whittall J.J., et al. Experimental evolution in vivo to identify selective pressures during pneumococcal colonization. mSystems. 2020;5(3) doi: 10.1128/mSystems.00352-20. e00352-20. PubMed DOI PMC
McDonald MJ, Microbial Experimental Evolution – a proving ground for evolutionary theory and a tool for discovery. EMBO reports 2019;20(8):e46992-e46992. doi: 10.15252/embr.201846992. PubMed PMC
Villeneuve C., Kou H.H., Eckermann H., Palkar A., Anderson L.G., McKenney E.A., et al. Evolution of the hygiene hypothesis into biota alteration theory: what are the paradigms and where are the clinical applications? Microbes Infect. 2018;20(3):147–155. doi: 10.1016/j.micinf.2017.11.001. PubMed DOI
Friman V., Adlerberth I., Connell H., Svanborg C., Hanson L.A., Wold A.E. Decreased expression of mannose-specific adhesins by Escherichia coli in the colonic microflora of immunoglobulin A-deficient individuals. Infect Immun. 1996;64(7):2794–2798. PubMed PMC
Zheng S., Zhao T., Yuan S., Yang L., Ding J., Cui L.i., et al. Immunodeficiency promotes adaptive alterations of host gut microbiome: an observational metagenomic study in mice. Front Microbiol. 2019;10 doi: 10.3389/fmicb.2019.02415. PubMed DOI PMC
Costello S.P., Hughes P.A., Waters O., Bryant R.V., Vincent A.D., Blatchford P., et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA. 2019;321(2):156. doi: 10.1001/jama.2018.20046. PubMed DOI PMC
Colman R.J., Rubin D.T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2014;8(12):1569–1581. doi: 10.1016/j.crohns.2014.08.006. PubMed DOI PMC
Levy AN, Allegretti JR; Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therapeutic advances in gastroenterology 2019;12:1756284819836893-1756284819836893. doi: 10.1177/1756284819836893. PubMed PMC
Khan I., Ullah N., Zha L., Bai Y., Khan A., Zhao T., et al. Alteration of gut microbiota in Inflammatory Bowel Disease (IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens (Basel, Switzerland) 2019;8(3):126. doi: 10.3390/pathogens8030126. PubMed DOI PMC
Nishida A., Inoue R., Inatomi O., Bamba S., Naito Y., Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10. doi: 10.1007/s12328-017-0813-5. PubMed DOI
Swidsinski A., Dörffel Y., Loening-Baucke V., Gille C., Göktas Ö., Reißhauer A., et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017;8 doi: 10.3389/fmicb.2017.01141. PubMed DOI PMC
Muegge B.D., Kuczynski J., Knights D., Clemente J.C., González A., Fontana L., et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–974. doi: 10.1126/science:1198719. PubMed DOI PMC
Sonnenburg E.D., Sonnenburg J.L. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20(5):779–786. doi: 10.1016/j.cmet.2014.07.003. PubMed DOI PMC
Zhang C., Zhang M., Wang S., Han R., Cao Y., Hua W., et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4(2):232–241. doi: 10.1038/ismej.2009.112. PubMed DOI
Hyoju SK, Adriaansens C, Wienholts K, et al., Low-fat/high-fibre diet prehabilitation improves anastomotic healing via the microbiome: an experimental model. Br J Surg 2020;107(6):743-755. doi: 10.1002/bjs.11388. PubMed PMC
Faith DP; Conservation evaluation and phylogenetic diversity. Biol Conserv 1992;61(1):1-10. doi: 10.1016/0006-3207(92)91201-3.
Sonnenburg E.D., Smits S.A., Tikhonov M., Higginbottom S.K., Wingreen N.S., Sonnenburg J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–215. doi: 10.1038/nature16504. PubMed DOI PMC
Smits S.A., Leach J., Sonnenburg E.D., Gonzalez C.G., Lichtman J.S., Reid G., et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science (New York, N.Y.) 2017;357(6353):802–806. doi: 10.1126/science:aan4834. PubMed DOI PMC
Sharma AK, Petrzelkova K, Pafco B, et al., Traditional Human Populations and Nonhuman Primates Show Parallel Gut Microbiome Adaptations to Analogous Ecological Conditions. mSystems 2020;5(6). doi: 10.1128/mSystems.00815-20. PubMed PMC
Koliada A., Moseiko V., Romanenko M., Piven L., Lushchak O., Kryzhanovska N., et al. Seasonal variation in gut microbiota composition: cross-sectional evidence from Ukrainian population. BMC Microbiol. 2020;20(1) doi: 10.1186/s12866-020-01786-8. PubMed DOI PMC
Barroso-Batista J., Sousa A., Lourenço M., Bergman M.-L., Sobral D., Demengeot J., et al. The first steps of adaptation of Escherichia coli to the gut are dominated by soft sweeps. PLoS Genet. 2014;10(3):e1004182. doi: 10.1371/journal.pgen.1004182. PubMed DOI PMC
Davenport E.R., Sanders J.G., Song S.J., Amato K.R., Clark A.G., Knight R. The human microbiome in evolution. BMC Biol. 2017;15(1) doi: 10.1186/s12915-017-0454-7. PubMed DOI PMC
Ren L, Holzknecht RA, Holzknecht ZE, et al., A mole rat's gut microbiota suggests selective influence of diet on microbial niche space and evolution. Experimental biology and medicine (Maywood, N.J.) 2019;244(6):471-483. doi: 10.1177/1535370219828703. PubMed PMC
Davis C.D. The Gut Microbiome and Its Role in Obesity. Nutr Today. 2016;51(4):167–174. doi: 10.1097/NT.0000000000000167. PubMed DOI PMC
Kim K.N., Yao Y., Ju S.Y. Short chain fatty acids and fecal microbiota abundance in humans with obesity: a systematic review and meta-analysis. Nutrients. 2019;11(10):2512. doi: 10.3390/nu11102512. PubMed DOI PMC
Castaner O., Goday A., Park Y.-M., Lee S.-H., Magkos F., Shiow S.-A., et al. The gut microbiome profile in obesity: a systematic review. Int J Endocrinol. 2018;2018:1–9. doi: 10.1155/2018/4095789. PubMed DOI PMC
Carmody R.N., Sarkar A., Reese A.T. Gut microbiota through an evolutionary lens. Science. 2021;372(6541):462–463. doi: 10.1126/science.abf0590. PubMed DOI
Chen S, Zhou Y, Chen Y, et al.; fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018;34(17):i884-i890. doi: 10.1093/bioinformatics/bty560. PubMed PMC
Hannon GJ, FASTX-Toolkit. 2010. doi: http://hannonlab.cshl.edu/fastx_toolkit/index.html.
Bolyen E, Rideout JR, Dillon MR, et al.; Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature biotechnology 2019;37(8):852-857. doi: https://www.nature.com/articles/s41587-019-0209-9. PubMed PMC
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC
Bokulich N.A., Kaehler B.D., Rideout J.R., Dillon M., Bolyen E., Knight R., et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin. Microbiome. 2018;6(1) doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 2013;41(Database issue):D590-6. doi: 10.1093/nar/gks1219. PubMed PMC
Katoh K., Misawa K., Kuma K., et al. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Shannon CE, Weaver W; The mathematical theory of communication. The University of Illinois Press 1949:1-117.
Oksanen J, Blanchet F, Friendly M, et al.; vegan: Community Ecology Package. R package version 2.5-5. 2019. 2019.
Kembel S.W., Cowan P.D., Helmus M.R., Cornwell W.K., Morlon H., Ackerly D.D., et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–1464. doi: 10.1093/bioinformatics/btq166. PubMed DOI
Pielou E.C. The measurement of diversity in different types of biological collections. J Theor Biol. 1966;13:131–144.
Lahti L, Shetty S, Ernst FGM, et al.; Tools for microbiome analysis in R. Version. 2017.
Team RC; R: A language and environment for statistical computing. 2020.
McMurdie P.J., Holmes S., Watson M. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217. PubMed DOI PMC
Sorenson T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr. 1948;5:1–34.
Jaccard P, Nouvelles recherches sur la distribution florale. Bulletin de la Societe Vaudoise des Sciences Naturelles 1908;44:223-270. doi: 10.5169/seals-268384.