Reevaluating Biota Alteration: Reframing Environmental Influences on Chronic Immune Disorders and Exploring Novel Therapeutic Opportunities

. 2024 Jun ; 97 (2) : 253-263. [epub] 20240628

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38947109

Environmental mismatches are defined as changes in the environment that induce public health crises. Well known mismatches leading to chronic disease include the availability of technologies that facilitate unhealthy diets and sedentary lifestyles, both factors that adversely affect cardiovascular health. This commentary puts these mismatches in context with biota alteration, an environmental mismatch involving hygiene-related technologies necessary for avoidance of infectious disease. Implementation of hygiene-related technologies causes a loss of symbiotic helminths and protists, profoundly affecting immune function and facilitating a variety of chronic conditions, including allergic disorders, autoimmune diseases, and several inflammation-associated neuropsychiatric conditions. Unfortunately, despite an established understanding of the biology underpinning this and other environmental mismatches, public health agencies have failed to stem the resulting tide of increased chronic disease burden. Both biomedical research and clinical practice continue to focus on an ineffective and reactive pharmaceutical-based paradigm. It is argued that the healthcare of the future could take into account the biology of today, effectively and proactively dealing with environmental mismatch and the resulting chronic disease burden.

Zobrazit více v PubMed

Alwin A. Global status report on noncommunicable diseases 2010. World Health Organization; 2011.

Holick MF. Vitamin D deficiency. N Engl J Med. 2007. Jul;357(3):266–81. 10.1056/NEJMra070553 PubMed DOI

Brenner SL, Jones JP, Rutanen-Whaley RH, Parker W, Flinn MV, Muehlenbein MP. Evolutionary mismatch and chronic psychological stress. Journal of Evolutionary Medicine. 2015;3:art235885. 10.4303/jem/235885 DOI

Parker W, Sarafian JT, Broverman SA, Laman JD. Between a hygiene rock and a hygienic hard place: avoiding SARS-CoV-2 while needing environmental exposures for immunity. Evol Med Public Health. 2021. Feb;9(1):120–30. 10.1093/emph/eoab006 PubMed DOI PMC

Parker W, Patel E, Jirků-Pomajbíková K, Laman JD. COVID-19 morbidity in lower versus higher income populations underscores the need to restore lost biodiversity of eukaryotic symbionts. iScience. 2023. Mar;26(3):106167. 10.1016/j.isci.2023.106167 PubMed DOI PMC

Parker W, Ollerton J. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders. Evol Med Public Health. 2013. Jan;2013(1):89–103. 10.1093/emph/eot008 PubMed DOI PMC

Preston PJ. The biology of the atopic response. J R Nav Med Serv. 1970;56(3):229–35. 10.1136/jrnms-56-229 PubMed DOI

Wolday D, Gebrecherkos T, Arefaine ZG, Kiros YK, Gebreegzabher A, Tasew G, et al. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine. 2021. Sep;39:101054. 10.1016/j.eclinm.2021.101054 PubMed DOI PMC

Chelkeba L, Mekonnen Z, Emana D, Jimma W, Melaku T. Prevalence of soil-transmitted helminths infections among preschool and school-age children in Ethiopia: a systematic review and meta-analysis. Glob Health Res Policy. 2022. Mar;7(1):9. 10.1186/s41256-022-00239-1 PubMed DOI PMC

Alemu G, Aschalew Z, Zerihun E. Burden of intestinal helminths and associated factors three years after initiation of mass drug administration in Arbaminch Zuria district, Southern Ethiopia. BMC Infect Dis. 2018. Aug;18(1):435. 10.1186/s12879-018-3330-3 PubMed DOI PMC

Lhotská Z, Jirků M, Hložková O, Brožová K, Jirsová D, Stensvold CR, et al. A study on the prevalence and subtype diversity of the intestinal protist blastocystis sp. in a gut-healthy human population in the Czech Republic. Front Cell Infect Microbiol. 2020. Oct;10:544335. 10.3389/fcimb.2020.544335 PubMed DOI PMC

Levy RM, Leyden JJ, Margolis DJ. Colonisation rates of Streptococcus pyogenes and Staphylococcus aureus in the oropharynx of a young adult population. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2005;11(2):153-5. Epub 2005/02/01. https://doi.org/10.1111/j.1469-0691.2004.01042.x. PubMed DOI

Rook GA, Raison CL, Lowry CA. Microbial ‘old friends’, immunoregulation and socioeconomic status. Clin Exp Immunol. 2014. Jul;177(1):1–12. 10.1111/cei.12269 PubMed DOI PMC

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014. Jan;505(7484):559–63. 10.1038/nature12820 PubMed DOI PMC

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012. May;486(7402):222–7. Available from: http://www.nature.com/nature/journal/v486/n7402/abs/nature11053.html#supplementary-information 10.1038/nature11053 PubMed DOI PMC

Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018. Mar;555(7695):210–5. 10.1038/nature25973 PubMed DOI

Venkatakrishnan A, Holzknecht ZE, Holzknecht R, Bowles DE, Kotzé SH, Modliszewski JL, et al. Evolution of bacteria in the human gut in response to changing environments: an invisible player in the game of health. Comput Struct Biotechnol J. 2021. Jan;19:752–8. 10.1016/j.csbj.2021.01.007 PubMed DOI PMC

You C, Jirků M, Corcoran DL, Parker W, Jirků-Pomajbíková K. Altered gut ecosystems plus the microbiota’s potential for rapid evolution: A recipe for inevitable change with unknown consequences. Comput Struct Biotechnol J. 2021. Oct;19:5969–77. 10.1016/j.csbj.2021.10.033 PubMed DOI PMC

Singh S, Sharma P, Pal N, Kumawat M, Shubham S, Sarma DK, et al. Impact of environmental pollutants on gut microbiome and mental health via the gut-brain axis. Microorganisms. 2022. Jul;10(7):1457. 10.3390/microorganisms10071457 PubMed DOI PMC

Engelenburg HJ, Lucassen PJ, Sarafian JT, Parker W, Laman JD. Multiple sclerosis and the microbiota: progress in understanding the contribution of the gut microbiome to disease. Evol Med Public Health. 2022. Jun;10(1):277–94. 10.1093/emph/eoac009 PubMed DOI PMC

Peloquin JM, Nguyen DD. The microbiota and inflammatory bowel disease: insights from animal models. Anaerobe. 2013. Dec;24:102–6. 10.1016/j.anaerobe.2013.04.006 PubMed DOI PMC

Khan I, Ullah N, Zha L, Bai Y, Khan A, Zhao T, et al. Alteration of Gut Microbiota in Inflammatory Bowel Disease (IBD): Cause or Consequence? IBD Treatment Targeting the Gut Microbiome. Pathogens. 2019. Aug;8(3):126. 10.3390/pathogens8030126 PubMed DOI PMC

Helmby H. Human helminth therapy to treat inflammatory disorders - where do we stand? BMC Immunol. 2015. Mar;16(1):12. 10.1186/s12865-015-0074-3 PubMed DOI PMC

Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res. 2022. Jan;15:475–91. 10.2147/JIR.S348079 PubMed DOI PMC

Ryan SM, Eichenberger RM, Ruscher R, Giacomin PR, Loukas A. Harnessing helminth-driven immunoregulation in the search for novel therapeutic modalities. PLoS Pathog. 2020. May;16(5):e1008508. 10.1371/journal.ppat.1008508 PubMed DOI PMC

Sobotková K, Parker W, Levá J, Růžková J, Lukeš J, Jirků Pomajbíková K. Helminth Therapy - From the Parasite Perspective. Trends Parasitol. 2019. Jul;35(7):501–15. 10.1016/j.pt.2019.04.009 PubMed DOI

Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc Bayl Univ Med Cent. 2005. Jan;18(1):21–5. 10.1080/08998280.2005.11928028 PubMed DOI PMC

Tyagi U, Barwal KC. Ignac Semmelweis-Father of Hand Hygiene. Indian J Surg. 2020. Jun;82(3):276–7. 10.1007/s12262-020-02386-6 PubMed DOI PMC

Gaynes R. The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerg Infect Dis. 2017;23(5):849–53. 10.3201/eid2305.161556 DOI

Beger HG. Ben Eiseman, M.D., Emeritus Professor of Surgery and Medicine, University of Colorado Medical School, Denver, USA. hans.beger@medizin.uni-ulm.de. Langenbecks Arch Surg. 2004. Aug;389(4):311–2. 10.1007/s00423-004-0457-z PubMed DOI

Rao K, Young VB. Fecal microbiota transplantation for the management of Clostridium difficile infection. Infect Dis Clin North Am. 2015. Mar;29(1):109–22. 10.1016/j.idc.2014.11.009 PubMed DOI PMC

Greenwood BM. Autoimmune disease and parasitic infections in Nigerians. Lancet. 1968. Aug;2(7564):380–2. 10.1016/S0140-6736(68)90595-3 PubMed DOI

Greenwood BM, Herrick EM, Voller A. Suppression of autoimmune disease in NZB and (NZB x NZW) F1 hybrid mice by infection with malaria. Nature. 1970. Apr;226(5242):266–7. 10.1038/226266a0 PubMed DOI

Greenwood BM, Voller A, Herrick EM. Suppression of adjuvant arthritis by infection with a strain of the rodent malaria parasite Plasmodium berghei. Ann Rheum Dis. 1970. May;29(3):321–3. 10.1136/ard.29.3.321 PubMed DOI PMC

Turton JA. Letter: IgE, parasites, and allergy. Lancet. 1976. Sep;2(7987):686. 10.1016/S0140-6736(76)92492-2 PubMed DOI

Strachan DP. Hay fever, hygiene, and household size. BMJ. 1989. Nov;299(6710):1259–60. 10.1136/bmj.299.6710.1259 PubMed DOI PMC

Venkatakrishnan A, Sarafian JT, Jirků-Pomajbíková K, Parker W. Socio-medical studies of individuals self-treating with helminths provide insight into clinical trial design for assessing helminth therapy. Parasitol Int. 2022. Apr;87:102488. 10.1016/j.parint.2021.102488 PubMed DOI

Cheng AM, Jaint D, Thomas S, Wilson J, Parker W. Overcoming evolutionary mismatch by self-treatment with helminths: current practices and experience. Journal of Evolutionary Medicine. 2015;3:235910. 10.4303/jem/235910 DOI

Noel SC, Fortin-Hamel L, Haque M, Scott ME. Maternal gastrointestinal nematode infection enhances spatial memory of uninfected juvenile mouse pups. Sci Rep. 2022. Jun;12(1):9796. 10.1038/s41598-022-13971-y PubMed DOI PMC

Blecharz-Klin K, Świerczyńska M, Piechal A, Wawer A, Joniec-Maciejak I, Pyrzanowska J, et al. Infection with intestinal helminth (Hymenolepis diminuta) impacts exploratory behavior and cognitive processes in rats by changing the central level of neurotransmitters. PLoS Pathog. 2022. Mar;18(3):e1010330. 10.1371/journal.ppat.1010330 PubMed DOI PMC

Williamson LL, McKenney EA, Holzknecht ZE, Belliveau C, Rawls JF, Poulton S, et al. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun. 2016. Jan;51:14–28. 10.1016/j.bbi.2015.07.006 PubMed DOI

Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016. Jan;16(1):22–34. 10.1038/nri.2015.5 PubMed DOI PMC

Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013. Sep;11(1):200. 10.1186/1741-7015-11-200 PubMed DOI PMC

Correale J, Farez M, Razzitte G. Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol. 2008. Aug;64(2):187–99. 10.1002/ana.21438 PubMed DOI

Correale J, Farez M. Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol. 2007. Feb;61(2):97–108. 10.1002/ana.21067 PubMed DOI

Correale J, Farez MF. The impact of parasite infections on the course of multiple sclerosis. J Neuroimmunol. 2011. Apr;233(1-2):6–11. 10.1016/j.jneuroim.2011.01.002 PubMed DOI

Liu J, Morey RA, Wilson JK, Parker W. Practices and outcomes of self-treatment with helminths based on physicians’ observations. Journal of Helminthology. 2016;FirstView:1-11. PubMed

Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications. J Clin Invest. 2021. Sep;131(18):e143768. 10.1172/JCI143768 PubMed DOI PMC

de Ruiter K, Tahapary DL, Sartono E, Soewondo P, Supali T, Smit JW, et al. Helminths, hygiene hypothesis and type 2 diabetes. Parasite Immunol. 2017. May;39(5):e12404. 10.1111/pim.12404 PubMed DOI

Zhang B, Gems D. Gross ways to live long: parasitic worms as an anti-inflammaging therapy? eLife. 2021. Feb;10:e65180. 10.7554/eLife.65180 PubMed DOI PMC

Izmirly PM, Parton H, Wang L, McCune WJ, Lim SS, Drenkard C, et al. Prevalence of Systemic Lupus Erythematosus in the United States: Estimates From a Meta-Analysis of the Centers for Disease Control and Prevention National Lupus Registries. Arthritis Rheumatol. 2021. Jun;73(6):991–6. 10.1002/art.41632 PubMed DOI PMC

McKeon KP, Jiang SH. Treatment of systemic lupus erythematosus. Aust Prescr. 2020;43(3):85-90. Epub 06/02. https://doi.org/10.18773/austprescr.2020.022. PubMed DOI PMC

Dilokthornsakul P, Valuck RJ, Nair KV, Corboy JR, Allen RR, Campbell JD. Multiple sclerosis prevalence in the United States commercially insured population. Neurology. 2016;86(11):1014-21. Epub 02/17. https://doi.org/10.1212/WNL.0000000000002469. PubMed DOI PMC

Weiner HL. Immunosuppressive treatment in multiple sclerosis. J Neurol Sci. 2004. Aug;223(1):1–11. 10.1016/j.jns.2004.04.013 PubMed DOI

Bierhansl L, Hartung HP, Aktas O, Ruck T, Roden M, Meuth SG. Thinking outside the box: non-canonical targets in multiple sclerosis. Nat Rev Drug Discov. 2022. Aug;21(8):578–600. 10.1038/s41573-022-00477-5 PubMed DOI PMC

Benigno M, Anastassopoulos KP, Mostaghimi A, Udall M, Daniel SR, Cappelleri JC, et al. A large cross-sectional survey study of the prevalence of Alopecia Areata in the United States. Clin Cosmet Investig Dermatol. 2020. Apr;13:259–66. 10.2147/CCID.S245649 PubMed DOI PMC

Harries MJ, Sun J, Paus R, King LE Jr. Management of alopecia areata. BMJ. 2010. Jul;341;jul23 1:c3671–c. 10.1136/bmj.c3671 PubMed DOI PMC

Kappelman MD, Moore KR, Allen JK, Cook SF. Recent trends in the prevalence of Crohn’s disease and ulcerative colitis in a commercially insured US population. Dig Dis Sci. 2013;58(2):519-25. Epub 08/29. https://doi.org/10.1007/s10620-012-2371-5. PubMed DOI PMC

Zenlea T, Peppercorn MA. Immunosuppressive therapies for inflammatory bowel disease. World J Gastroenterol. 2014. Mar;20(12):3146–52. 10.3748/wjg.v20.i12.3146 PubMed DOI PMC

Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, et al. National Arthritis Data Workgroup . Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008. Jan;58(1):15–25. 10.1002/art.23177 PubMed DOI

Rainer F. Immunosuppressive therapy in rheumatoid arthritis. Acta Med Austriaca. 1988;15(5):137–40. PubMed

Armstrong AW, Mehta MD, Schupp CW, Gondo GC, Bell SJ, Griffiths CE. Psoriasis prevalence in adults in the United States. JAMA Dermatol. 2021. Aug;157(8):940–6. 10.1001/jamadermatol.2021.2007 PubMed DOI PMC

Wong JW, Koo JYM. The safety of systemic treatments that can be used for geriatric psoriasis patients: a review. Dermatol Res Pract. 2012;2012:367475-. Epub 05/28. https://doi.org/10.1155/2012/367475. PubMed DOI PMC

Hanifin JM, Reed ML. A population-based survey of eczema prevalence in the United States. Dermatitis. 2007;18(2):82-91. Epub 2007/05/15. https://doi.org/10.2310/6620.2007.06034. PubMed DOI

Lee JH, Son SW, Cho SH. A comprehensive review of the treatment of atopic eczema. Allergy Asthma Immunol Res. 2016. May;8(3):181–90. 10.4168/aair.2016.8.3.181 PubMed DOI PMC

Brody DJ, Gu Q. Antidepressant use among adults: United States, 2015–2018. In: Statistics NCHS, editor. Hyattsville, MD: Center for Disease Control and Prevention; 2020.

Burch R, Rizzoli P, Loder E. The prevalence and impact of migraine and severe headache in the United States: figures and trends from government health studies. Headache. 2018. Apr;58(4):496–505. 10.1111/head.13281 PubMed DOI

National Institute of Mental Health . Mental Health Information: Statistics: Any Anxiety Disorder. NIMH Information Resource Center. https://www.nimh.nih.gov/health/statistics/any-anxiety-disorder. accessed 2023.

Wheatley LM, Togias A. Clinical practice. Allergic rhinitis. N Engl J Med. 2015. Jan;372(5):456–63. 10.1056/NEJMcp1412282 PubMed DOI PMC

Spekker E, Tanaka M, Szabó Á, Vécsei L. Neurogenic inflammation: the participant in migraine and recent Advancements in translational research. Biomedicines. 2021. Dec;10(1):76. 10.3390/biomedicines10010076 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace