Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in Euglena gracilis Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34868111
PubMed Central
PMC8636990
DOI
10.3389/fpls.2021.725699
Knihovny.cz E-resources
- Keywords
- Euglena gracilis, microalgae, paramylon, photosynthesis, salt stress,
- Publication type
- Journal Article MeSH
The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.
Department of Plant Anatomy ELTE Eötvös Loránd University Budapest Hungary
Division for Biotechnology Bay Zoltán Nonprofit Ltd for Applied Research Szeged Hungary
Doctoral School of Biology University of Szeged Szeged Hungary
European Spallation Source ESS ERIC Lund Sweden
Faculty of Science University of Ostrava Ostrava Czechia
Institute of Plant Biology Biological Research Centre Eötvös Loránd Research Network Szeged Hungary
Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN United States
See more in PubMed
Ahmad I., Hellebust J. A. (1984). Osmoregulation in the extremely euryhaline marine micro-alga Chlorella autotrophica. Plant Physiol. 74, 1010–1015. 10.1104/pp.74.4.1010 PubMed DOI PMC
Azizullah A., Richter P., Häder D.-P. (2012). Responses of morphological, physiological, and biochemical parameters in Euglena gracilis to 7-days exposure to two commonly used fertilizers dap and urea. J. Appl. Phycol. 24, 21–33. 10.1007/s10811-010-9641-4 DOI
Barsanti L., Gualtieri P. (2019). Paramylon, a potent immunomodulator from WZSL mutant of Euglena gracilis. Molecules 24, 3114. 10.3390/molecules24173114 PubMed DOI PMC
Barsanti L., Vismara R., Passarelli V., Gualtieri P. (2001). Paramylon (β-1, 3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol. 13, 59–65. 10.1023/A:1008105416065 DOI
Barzda V., Garab G., Gulbinas V., Valkunas L. (1996). Evidence for long-range excitation energy migration in macroaggregates of the chlorophyll a/b light-harvesting antenna complexes. Biochim. Biophys. Acta 1273, 231–236. 10.1016/0005-2728(95)00147-6 DOI
Ben-Amotz A., Avron M. (1973). The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51, 875–878. 10.1104/pp.51.5.875 PubMed DOI PMC
Block M. A., Albrieux C. (2018). Purification of chloroplasts and chloroplast subfractions: envelope, thylakoids, and stroma—from spinach, Pea, and Arabidopsis thaliana, in Plastids (Berlin: Springer; ), 123–135. 10.1007/978-1-4939-8654-5_8 PubMed DOI
Brandt P., Wilhelm C. (1990). The light-harvesting system of Euglena gracilis during the cell cycle. Planta 180, 293–296. 10.1007/BF00194010 PubMed DOI
Devars S., Torres-Márquez M. E., González-Halphen D., Uribe A., Moreno-Sánchez R. (1992). Cyanide-sensitive and cyanide-resistant respiration of dark-grown Euglena gracilis. Plant Sci. 82, 37–46. 10.1016/0168-9452(92)90006-8 DOI
Doege M., Ohmann E., Tschiersch H. (2000). Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynthesis Res. 63, 159–170. 10.1023/A:1006356421477 PubMed DOI
Domonkos I., Kis M., Gombos Z., Ughy B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 52, 539–561. 10.1016/j.plipres.2013.07.001 PubMed DOI
El-Katony T. M., El-Adl M. F. (2020). Salt response of the freshwater microalga Scenedesmus obliquus (Turp.) kutz is modulated by the algal growth phase. J. Oceanol. Limnol. 38, 802–815. 10.1007/s00343-019-9067-z DOI
Elloumi W., Jebali A., Maalej A., Chamkha M., Sayadi S. (2020). Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus Sp. Biomolecules 10, 1515. 10.3390/biom10111515 PubMed DOI PMC
Forieri I., Hildebrandt U., Rostás M. (2016). Salinity stress effects on direct and indirect defence metabolites in maize. Environ. Exp. Bot. 122, 68–77. 10.1016/j.envexpbot.2015.09.007 DOI
Fu W., Paglia G., Magnúsdóttir M., Steinarsdóttir E. A., Gudmundsson S., Palsson B. Ø., et al. . (2014). Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Factories 13, 1–9. 10.1186/1475-2859-13-3 PubMed DOI PMC
Garab G., Leegood R. C., Walker D. A., Sutherland J. C., Hind G. (1988). Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular dichroism. Biochemistry 27, 2430–2434. 10.1021/bi00407a028 PubMed DOI
Genty B., Briantais J.-M., Baker N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92. 10.1016/S0304-4165(89)80016-9 DOI
Ghazaryan A., Akhtar P., Garab G., Lambrev P. H., Büchel C. (2016). Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Biochim. Biophys. Acta 1857, 1373–1379. 10.1016/j.bbabio.2016.04.288 PubMed DOI
Gibbs S. P. (1960). The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids. J. Ultrastruct. Res. 4, 127–148. 10.1016/S0022-5320(60)90049-6 DOI
Gilmour D., Hipkins M., Webber A., Baker N., Boney A. (1985). The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Planta 163, 250–256. 10.1007/BF00393515 PubMed DOI
Gissibl A., Sun A., Care A., Nevalainen H., Sunna A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Front. Bioeng. Biotechnol. 7, 108. 10.3389/fbioe.2019.00108 PubMed DOI PMC
González-Moreno S., Gómez-Barrera J., Perales H., Moreno-Sánchez R. (1997). Multiple effects of salinity on photosynthesis of the protist Euglena gracilis. Physiol. Plant. 101, 777–786. 10.1111/j.1399-3054.1997.tb01063.x DOI
Goss R., Jakob T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106, 103–122. 10.1007/s11120-010-9536-x PubMed DOI
He Y., Yu C., Zhou L., Chen Y., Liu A., Jin J., et al. . (2014). Rubisco decrease is involved in chloroplast protrusion and rubisco-containing body formation in soybean (Glycine Max.) under salt stress. Plant Physiol. Biochem. 74, 118–124. 10.1016/j.plaphy.2013.11.008 PubMed DOI
Hutner S., Zahalsky A., Aaronson S., Baker H., Frank O. (1966). Culture media for Euglena gracilis. Methods Cell Biol. 2, 217–228. 10.1016/S0091-679X(08)62140-8 DOI
Inui H., Miyatake K., Nakano Y., Kitaoka S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Lett. 150, 89–93. 10.1016/0014-5793(82)81310-0 PubMed DOI PMC
Jacoby R. P., Taylor N. L., Millar A. H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16, 614–623. 10.1016/j.tplants.2011.08.002 PubMed DOI
Järvi S., Suorsa M., Paakkarinen V., Aro E.-M. (2011). Optimized native gel systems for separation of thylakoid protein complexes: novel super-and mega-complexes. Biochem. J. 439, 207–214. 10.1042/BJ20102155 PubMed DOI
Ji X., Cheng J., Gong D., Zhao X., Qi Y., Su Y., et al. . (2018). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci. Total Environ. 633, 593–599. 10.1016/j.scitotenv.2018.03.240 PubMed DOI
Joset F., Jeanjean R., Hagemann M. (1996). Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol. Plant. 96, 738–744. 10.1111/j.1399-3054.1996.tb00251.x DOI
Keller D., Bustamante C. (1986). Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 84, 2972–2980. 10.1063/1.450277 PubMed DOI
Khatiwada B., Sunna A., Nevalainen H. (2020). Molecular tools and applications of Euglena gracilis: from biorefineries to bioremediation. Biotechnol. Bioeng. 117, 3952–3967. 10.1002/bit.27516 PubMed DOI
Kim M. H., Ulibarri L., Keller D., Maestre M. F., Bustamante C. (1986). The psi-type circular dichroism of large molecular aggregates. III. Calculations. J. Chem. Phys. 84, 2981–2989. 10.1063/1.450279 PubMed DOI
Klughammer C., Schreiber U. (1994). Saturation pulse method for assessment of energy conversion in PSI. Planta 192, 261–268. 10.1007/BF01089043 DOI
Kodru S., Malavath T., Devadasu E., Nellaepalli S., Stirbet A., Subramanyam R. (2015). The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynthesis Res. 125, 219–231. 10.1007/s11120-015-0084-2 PubMed DOI
Krajčovič J., Vesteg M., Schwartzbach S. D. (2015). Euglenoid flagellates: a multifaceted biotechnology platform. J. Biotechnol. 202, 135–145. 10.1016/j.jbiotec.2014.11.035 PubMed DOI
Kramer D. M., Johnson G., Kiirats O., Edwards G. E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Res. 79, 209–218. 10.1023/B:PRES.0000015391.99477.0d PubMed DOI
Kramer H., Westerhuis W., Amesz J. (1985). Low temperature spectroscopy of intact algae. Physiol. Veg. 23, 535–543.
Kuwabara T., Murata N. (1982). Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol. 23, 533–539. 10.1093/oxfordjournals.pcp.a076378 DOI
Lambrev P. H., Akhtar P. (2019). Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 476, 2981–3018. 10.1042/BCJ20190080 PubMed DOI
Lavaud J., Rousseau B., Etienne A.-L. (2003). Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42, 5802–5808. 10.1021/bi027112i PubMed DOI
Lefort-Tran M., Pouphile M., Freyssinet G., Pineau B. (1980). Structural and functional significance of the chloroplast envelope of Euglena: immunocytological and freeze fracture study. J. Ultrastruct. Res. 73, 44–63. 10.1016/0022-5320(80)90115-X PubMed DOI
León R., Galván F. (1994). Halotolerance studies on Chlamydomonas reinhardtii: glycerol excretion by free and immobilized cells. J. Appl. Phycol. 6, 13–20. 10.1007/BF02185898 DOI
Lichtenthaler H. K., Wellburn A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592. 10.1042/bst0110591 DOI
Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., et al. . (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292. 10.1038/nature02373 PubMed DOI
Murata K., Suzaki T. (1998). High-salt solutions prevent reactivation of euglenoid movement in detergent-treated cell models of Euglena gracilis. Protoplasma 203, 125–129. 10.1007/BF01279468 DOI
Murata N., Mohanty P., Hayashi H., Papageorgiou G. (1992). Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett. 296, 187–189. 10.1016/0014-5793(92)80376-R PubMed DOI
Nagy G., Kovács L., Ünnep R., Zsiros O., Almásy L., Rosta L., et al. . (2013). Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E 36, 1–12. 10.1140/epje/i2013-13069-0 PubMed DOI
Nagy G., Posselt D., Kovács L., Holm J. K., Szabó M., Ughy B., et al. . (2011). Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 436, 225–230. 10.1042/BJ20110180 PubMed DOI
Nagy G., Szabó M., Ünnep R., Káli G., Miloslavina Y., Lambrev P.H., et al. . (2012). Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynthesis Res. 111, 71–79. 10.1007/s11120-011-9693-6 PubMed DOI
Nakashima A., Suzuki K., Asayama Y., Konno M., Saito K., Yamazaki N., et al. . (2017). Oral Administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice. Biochem. Biophys. Res. Commun. 494, 379–383. 10.1016/j.bbrc.2017.09.167 PubMed DOI
Nakashima A., Yamada K., Iwata O., Sugimoto R., Atsuji K., Ogawa T., et al. . (2018). β-glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. 64, 8–17. 10.3177/jnsv.64.8 PubMed DOI
Neelam S., Subramanyam R. (2013). Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. J. Photochem. Photobiol. B: Biol. 124, 63–70. 10.1016/j.jphotobiol.2013.04.007 PubMed DOI
Okouchi R., Yamamoto K., Ota T., Seki K., Imai M., Ota R., et al. . (2019). Simultaneous intake of Euglena gracilis and vegetables exerts synergistic anti-obesity and anti-inflammatory effects by modulating the gut microbiota in diet-induced obese mice. Nutrients 11:204. 10.3390/nu11010204 PubMed DOI PMC
O'neill E. C., Trick M., Hill L., Rejzek M., Dusi R. G., Hamilton C. J., et al. . (2015). The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. Biosyst. 11, 2808–2820. 10.1039/C5MB00319A PubMed DOI
Parida A., Das A., Mittra B. (2003). Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191. 10.1023/B:PHOT.0000011951.37231.69 DOI
Peng C., Lee J.-W., Sichani H. T., Ng J. C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. J. Hazard. Mater. 284, 10–18. 10.1016/j.jhazmat.2014.10.024 PubMed DOI
Porchia A. C., Fiol D. F., Salerno G. L. (1999). Differential synthesis of sucrose and trehalose in Euglena gracilis cells during growth and salt stress. Plant Sci. 149, 43–49. 10.1016/S0168-9452(99)00142-9 DOI
Richter P., Börnig A., Streb C., Ntefidou M., Lebert M., Häder D.-P. (2003). Effects of increased salinity on gravitaxis in Euglena gracilis. J. Plant Physiol. 160, 651–656. 10.1078/0176-1617-00828 PubMed DOI
Schagger H., Cramer W., Vonjagow G. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230. 10.1006/abio.1994.1112 PubMed DOI
Srivastava A., Strasser R. J. (1995). Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinhardtii. Photosynthesis Res. 43, 131–141. 10.1007/BF00042970 PubMed DOI
Stirbet A., Lazár D., Kromdijk J. (2018). Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56, 86–104. 10.1007/s11099-018-0770-3 DOI
Strasser R. J., Tsimilli-Michael M., Srivastava A. (2004). Analysis of the Chlorophyll a fluorescence transient, in Chlorophyll a Fluorescence (Berlin: Springer; ), 321–362. 10.1007/978-1-4020-3218-9_12 DOI
Subramanyam R., Jolley C., Thangaraj B., Nellaepalli S., Webber A. N., Fromme P. (2010). Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions. Planta 231, 913–922. 10.1007/s00425-009-1097-x PubMed DOI
Sudhir P.-R., Pogoryelov D., Kovács L., Garab G., Murthy S. D. (2005). The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. BMB Rep. 38, 481–485. 10.5483/BMBRep.2005.38.4.481 PubMed DOI
Sun A., Hasan M. T., Hobba G., Nevalainen H., Te'o J. (2018). Comparative assessment of the Euglena gracilis Var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions. J. Phycol. 54, 529–538. 10.1111/jpy.12758 PubMed DOI
Szabó M., Lepetit B., Goss R., Wilhelm C., Mustárdy L., Garab G. (2008). Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum. Photosynthesis Res. 95, 237–245. 10.1007/s11120-007-9252-3 PubMed DOI
Takenaka S., Kondo T., Nazeri S., Tamura Y., Tokunaga M., Tsuyama S., et al. . (1997). Accumulation of trehalose as a compatible solute under osmotic stress in Euglena gracilis Z. J. Eukaryot. Microbiol. 44, 609–613. 10.1111/j.1550-7408.1997.tb05967.x DOI
Tiwari B., Bose A., Ghosh B. (1998). Photosynthesis in rice under a salt stress. Photosynthetica 34, 303–306. 10.1023/A:1006857027398 PubMed DOI
Tóth T. N., Rai N., Solymosi K., Zsiros O., Schröder W. P., Garab G., et al. . (2016). Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim. Biophys. Acta 1857, 1479–1489. 10.1016/j.bbabio.2016.04.287 PubMed DOI
Tschiersch H., Ohmann E., Doege M. (2002). Modification of the thylakoid structure of Euglena gracilis by norflurazon-treatment: consequences for fluorescence quenching. Environ. Exp. Bot. 47, 259–270. 10.1016/S0098-8472(01)00132-0 DOI
Ünnep R., Paul S., Zsiros O., Kovács L., Székely N. K., Steinbach G., et al. . (2020). Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching. Open Biol. 10:200144. 10.1098/rsob.200144 PubMed DOI PMC
Ünnep R., Zsiros O., Solymosi K., Kovacs L., Lambrev P. H., Toth T., et al. . (2014). The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta 1837, 1572–1580. 10.1016/j.bbabio.2014.01.017 PubMed DOI
Velasco J., Gutiérrez-Cánovas C., Botella-Cruz M., Sánchez-Fernández D., Arribas P., Carbonell J. A., et al. . (2019). Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 374, 20180011. 10.1098/rstb.2018.0011 PubMed DOI PMC
Verma K., Mohanty P. (2000). Changes of the photosynthetic apparatus in Spirulina cyanobacterium by sodium stress. Z. Naturforsch. Sect. C 55, 16–22. 10.1515/znc-2000-1-205 PubMed DOI
Walters R. G., Horton P. (1995). Acclimation of Arabidopsis thaliana to the light environment: changes in photosynthetic function. Planta 197, 306–312. 10.1007/BF00202652 PubMed DOI
Wang Y., Seppänen-Laakso T., Rischer H., Wiebe M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 13, e0195329. 10.1371/journal.pone.0195329 PubMed DOI PMC
Wingler A., Lea P. J., Quick W. P., Leegood R. C. (2000). Photorespiration: metabolic pathways and their role in stress protection. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1517–1529. 10.1098/rstb.2000.0712 PubMed DOI PMC
Wright S., Jeffrey S., Mantoura R. (2005). Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris: Unesco Pub.
Yancey P. H. (1994). Compatible and counteracting solutes, in Cellular and Molecular Physiology of Cell Volume Regulation, ed. Strange K.. (Boca Raton: CRC Press; ), 81–109. 10.1201/9780367812140-7 DOI
Zakery-Asl M. A., Bolandnazar S., Oustan S. (2014). Effect of salinity and nitrogen on growth, sodium, potassium accumulation, and osmotic adjustment of halophyte Suaeda aegyptiaca (Hasselq.) Zoh. Arch. Agron. Soil Sci. 60, 785–792. 10.1080/03650340.2013.841889 DOI
Zhu J.-K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71. 10.1016/S1360-1385(00)01838-0 PubMed DOI
Zimorski V., Rauch C., van Hellemond J. J., Tielens A. G., Martin W. F. (2017). The Mitochondrion of Euglena gracilis, in Euglena: Biochemistry, Cell and Molecular Biology (Berlin: Springer; ), 19–37. 10.1007/978-3-319-54910-1_2 PubMed DOI
Zsiros O., Nagy G., Patai R., Solymosi K., Gasser U., Polgár T. F., et al. . (2020). Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. Front. Plant Sci. 11:1006. 10.3389/fpls.2020.01006 PubMed DOI PMC