• This record comes from PubMed

Salt Stress Induces Paramylon Accumulation and Fine-Tuning of the Macro-Organization of Thylakoid Membranes in Euglena gracilis Cells

. 2021 ; 12 () : 725699. [epub] 20211116

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The effects of salt stress condition on the growth, morphology, photosynthetic performance, and paramylon content were examined in the mixotrophic, unicellular, flagellate Euglena gracilis. We found that salt stress negatively influenced cell growth, accompanied by a decrease in chlorophyll (Chl) content. Circular dichroism (CD) spectroscopy revealed the changes in the macro-organization of pigment-protein complexes due to salt treatment, while the small-angle neutron scattering (SANS) investigations suggested a reduction in the thylakoid stacking, an effect confirmed by the transmission electron microscopy (TEM). At the same time, the analysis of the thylakoid membrane complexes using native-polyacrylamide gel electrophoresis (PAGE) revealed no significant change in the composition of supercomplexes of the photosynthetic apparatus. Salt stress did not substantially affect the photosynthetic activity, as reflected by the fact that Chl fluorescence yield, electron transport rate (ETR), and energy transfer between the photosystems did not change considerably in the salt-grown cells. We have observed notable increases in the carotenoid-to-Chl ratio and the accumulation of paramylon in the salt-treated cells. We propose that the accumulation of storage polysaccharides and changes in the pigment composition and thylakoid membrane organization help the adaptation of E. gracilis cells to salt stress and contribute to the maintenance of cellular processes under stress conditions.

See more in PubMed

Ahmad I., Hellebust J. A. (1984). Osmoregulation in the extremely euryhaline marine micro-alga Chlorella autotrophica. Plant Physiol. 74, 1010–1015. 10.1104/pp.74.4.1010 PubMed DOI PMC

Azizullah A., Richter P., Häder D.-P. (2012). Responses of morphological, physiological, and biochemical parameters in Euglena gracilis to 7-days exposure to two commonly used fertilizers dap and urea. J. Appl. Phycol. 24, 21–33. 10.1007/s10811-010-9641-4 DOI

Barsanti L., Gualtieri P. (2019). Paramylon, a potent immunomodulator from WZSL mutant of Euglena gracilis. Molecules 24, 3114. 10.3390/molecules24173114 PubMed DOI PMC

Barsanti L., Vismara R., Passarelli V., Gualtieri P. (2001). Paramylon (β-1, 3-glucan) content in wild type and WZSL mutant of Euglena gracilis. Effects of growth conditions. J. Appl. Phycol. 13, 59–65. 10.1023/A:1008105416065 DOI

Barzda V., Garab G., Gulbinas V., Valkunas L. (1996). Evidence for long-range excitation energy migration in macroaggregates of the chlorophyll a/b light-harvesting antenna complexes. Biochim. Biophys. Acta 1273, 231–236. 10.1016/0005-2728(95)00147-6 DOI

Ben-Amotz A., Avron M. (1973). The role of glycerol in the osmotic regulation of the halophilic alga Dunaliella parva. Plant Physiol. 51, 875–878. 10.1104/pp.51.5.875 PubMed DOI PMC

Block M. A., Albrieux C. (2018). Purification of chloroplasts and chloroplast subfractions: envelope, thylakoids, and stroma—from spinach, Pea, and Arabidopsis thaliana, in Plastids (Berlin: Springer; ), 123–135. 10.1007/978-1-4939-8654-5_8 PubMed DOI

Brandt P., Wilhelm C. (1990). The light-harvesting system of Euglena gracilis during the cell cycle. Planta 180, 293–296. 10.1007/BF00194010 PubMed DOI

Devars S., Torres-Márquez M. E., González-Halphen D., Uribe A., Moreno-Sánchez R. (1992). Cyanide-sensitive and cyanide-resistant respiration of dark-grown Euglena gracilis. Plant Sci. 82, 37–46. 10.1016/0168-9452(92)90006-8 DOI

Doege M., Ohmann E., Tschiersch H. (2000). Chlorophyll fluorescence quenching in the alga Euglena gracilis. Photosynthesis Res. 63, 159–170. 10.1023/A:1006356421477 PubMed DOI

Domonkos I., Kis M., Gombos Z., Ughy B. (2013). Carotenoids, versatile components of oxygenic photosynthesis. Prog. Lipid Res. 52, 539–561. 10.1016/j.plipres.2013.07.001 PubMed DOI

El-Katony T. M., El-Adl M. F. (2020). Salt response of the freshwater microalga Scenedesmus obliquus (Turp.) kutz is modulated by the algal growth phase. J. Oceanol. Limnol. 38, 802–815. 10.1007/s00343-019-9067-z DOI

Elloumi W., Jebali A., Maalej A., Chamkha M., Sayadi S. (2020). Effect of mild salinity stress on the growth, fatty acid and carotenoid compositions, and biological activities of the thermal freshwater microalgae Scenedesmus Sp. Biomolecules 10, 1515. 10.3390/biom10111515 PubMed DOI PMC

Forieri I., Hildebrandt U., Rostás M. (2016). Salinity stress effects on direct and indirect defence metabolites in maize. Environ. Exp. Bot. 122, 68–77. 10.1016/j.envexpbot.2015.09.007 DOI

Fu W., Paglia G., Magnúsdóttir M., Steinarsdóttir E. A., Gudmundsson S., Palsson B. Ø., et al. . (2014). Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Factories 13, 1–9. 10.1186/1475-2859-13-3 PubMed DOI PMC

Garab G., Leegood R. C., Walker D. A., Sutherland J. C., Hind G. (1988). Reversible changes in macroorganization of the light-harvesting chlorophyll a/b pigment-protein complex detected by circular dichroism. Biochemistry 27, 2430–2434. 10.1021/bi00407a028 PubMed DOI

Genty B., Briantais J.-M., Baker N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92. 10.1016/S0304-4165(89)80016-9 DOI

Ghazaryan A., Akhtar P., Garab G., Lambrev P. H., Büchel C. (2016). Involvement of the Lhcx protein Fcp6 of the diatom Cyclotella meneghiniana in the macro-organisation and structural flexibility of thylakoid membranes. Biochim. Biophys. Acta 1857, 1373–1379. 10.1016/j.bbabio.2016.04.288 PubMed DOI

Gibbs S. P. (1960). The fine structure of Euglena gracilis with special reference to the chloroplasts and pyrenoids. J. Ultrastruct. Res. 4, 127–148. 10.1016/S0022-5320(60)90049-6 DOI

Gilmour D., Hipkins M., Webber A., Baker N., Boney A. (1985). The effect of ionic stress on photosynthesis in Dunaliella tertiolecta. Planta 163, 250–256. 10.1007/BF00393515 PubMed DOI

Gissibl A., Sun A., Care A., Nevalainen H., Sunna A. (2019). Bioproducts from Euglena gracilis: synthesis and applications. Front. Bioeng. Biotechnol. 7, 108. 10.3389/fbioe.2019.00108 PubMed DOI PMC

González-Moreno S., Gómez-Barrera J., Perales H., Moreno-Sánchez R. (1997). Multiple effects of salinity on photosynthesis of the protist Euglena gracilis. Physiol. Plant. 101, 777–786. 10.1111/j.1399-3054.1997.tb01063.x DOI

Goss R., Jakob T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106, 103–122. 10.1007/s11120-010-9536-x PubMed DOI

He Y., Yu C., Zhou L., Chen Y., Liu A., Jin J., et al. . (2014). Rubisco decrease is involved in chloroplast protrusion and rubisco-containing body formation in soybean (Glycine Max.) under salt stress. Plant Physiol. Biochem. 74, 118–124. 10.1016/j.plaphy.2013.11.008 PubMed DOI

Hutner S., Zahalsky A., Aaronson S., Baker H., Frank O. (1966). Culture media for Euglena gracilis. Methods Cell Biol. 2, 217–228. 10.1016/S0091-679X(08)62140-8 DOI

Inui H., Miyatake K., Nakano Y., Kitaoka S. (1982). Wax ester fermentation in Euglena gracilis. FEBS Lett. 150, 89–93. 10.1016/0014-5793(82)81310-0 PubMed DOI PMC

Jacoby R. P., Taylor N. L., Millar A. H. (2011). The role of mitochondrial respiration in salinity tolerance. Trends Plant Sci. 16, 614–623. 10.1016/j.tplants.2011.08.002 PubMed DOI

Järvi S., Suorsa M., Paakkarinen V., Aro E.-M. (2011). Optimized native gel systems for separation of thylakoid protein complexes: novel super-and mega-complexes. Biochem. J. 439, 207–214. 10.1042/BJ20102155 PubMed DOI

Ji X., Cheng J., Gong D., Zhao X., Qi Y., Su Y., et al. . (2018). The effect of NaCl stress on photosynthetic efficiency and lipid production in freshwater microalga—Scenedesmus obliquus XJ002. Sci. Total Environ. 633, 593–599. 10.1016/j.scitotenv.2018.03.240 PubMed DOI

Joset F., Jeanjean R., Hagemann M. (1996). Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. Physiol. Plant. 96, 738–744. 10.1111/j.1399-3054.1996.tb00251.x DOI

Keller D., Bustamante C. (1986). Theory of the interaction of light with large inhomogeneous molecular aggregates. II. Psi-type circular dichroism. J. Chem. Phys. 84, 2972–2980. 10.1063/1.450277 PubMed DOI

Khatiwada B., Sunna A., Nevalainen H. (2020). Molecular tools and applications of Euglena gracilis: from biorefineries to bioremediation. Biotechnol. Bioeng. 117, 3952–3967. 10.1002/bit.27516 PubMed DOI

Kim M. H., Ulibarri L., Keller D., Maestre M. F., Bustamante C. (1986). The psi-type circular dichroism of large molecular aggregates. III. Calculations. J. Chem. Phys. 84, 2981–2989. 10.1063/1.450279 PubMed DOI

Klughammer C., Schreiber U. (1994). Saturation pulse method for assessment of energy conversion in PSI. Planta 192, 261–268. 10.1007/BF01089043 DOI

Kodru S., Malavath T., Devadasu E., Nellaepalli S., Stirbet A., Subramanyam R. (2015). The slow S to M rise of chlorophyll a fluorescence reflects transition from state 2 to state 1 in the green alga Chlamydomonas reinhardtii. Photosynthesis Res. 125, 219–231. 10.1007/s11120-015-0084-2 PubMed DOI

Krajčovič J., Vesteg M., Schwartzbach S. D. (2015). Euglenoid flagellates: a multifaceted biotechnology platform. J. Biotechnol. 202, 135–145. 10.1016/j.jbiotec.2014.11.035 PubMed DOI

Kramer D. M., Johnson G., Kiirats O., Edwards G. E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Res. 79, 209–218. 10.1023/B:PRES.0000015391.99477.0d PubMed DOI

Kramer H., Westerhuis W., Amesz J. (1985). Low temperature spectroscopy of intact algae. Physiol. Veg. 23, 535–543.

Kuwabara T., Murata N. (1982). Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol. 23, 533–539. 10.1093/oxfordjournals.pcp.a076378 DOI

Lambrev P. H., Akhtar P. (2019). Macroorganisation and flexibility of thylakoid membranes. Biochem. J. 476, 2981–3018. 10.1042/BCJ20190080 PubMed DOI

Lavaud J., Rousseau B., Etienne A.-L. (2003). Enrichment of the light-harvesting complex in diadinoxanthin and implications for the nonphotochemical fluorescence quenching in diatoms. Biochemistry 42, 5802–5808. 10.1021/bi027112i PubMed DOI

Lefort-Tran M., Pouphile M., Freyssinet G., Pineau B. (1980). Structural and functional significance of the chloroplast envelope of Euglena: immunocytological and freeze fracture study. J. Ultrastruct. Res. 73, 44–63. 10.1016/0022-5320(80)90115-X PubMed DOI

León R., Galván F. (1994). Halotolerance studies on Chlamydomonas reinhardtii: glycerol excretion by free and immobilized cells. J. Appl. Phycol. 6, 13–20. 10.1007/BF02185898 DOI

Lichtenthaler H. K., Wellburn A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11, 591–592. 10.1042/bst0110591 DOI

Liu Z., Yan H., Wang K., Kuang T., Zhang J., Gui L., et al. . (2004). Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428, 287–292. 10.1038/nature02373 PubMed DOI

Murata K., Suzaki T. (1998). High-salt solutions prevent reactivation of euglenoid movement in detergent-treated cell models of Euglena gracilis. Protoplasma 203, 125–129. 10.1007/BF01279468 DOI

Murata N., Mohanty P., Hayashi H., Papageorgiou G. (1992). Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen-evolving complex. FEBS Lett. 296, 187–189. 10.1016/0014-5793(92)80376-R PubMed DOI

Nagy G., Kovács L., Ünnep R., Zsiros O., Almásy L., Rosta L., et al. . (2013). Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering. Eur. Phys. J. E 36, 1–12. 10.1140/epje/i2013-13069-0 PubMed DOI

Nagy G., Posselt D., Kovács L., Holm J. K., Szabó M., Ughy B., et al. . (2011). Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering. Biochem. J. 436, 225–230. 10.1042/BJ20110180 PubMed DOI

Nagy G., Szabó M., Ünnep R., Káli G., Miloslavina Y., Lambrev P.H., et al. . (2012). Modulation of the multilamellar membrane organization and of the chiral macrodomains in the diatom Phaeodactylum tricornutum revealed by small-angle neutron scattering and circular dichroism spectroscopy. Photosynthesis Res. 111, 71–79. 10.1007/s11120-011-9693-6 PubMed DOI

Nakashima A., Suzuki K., Asayama Y., Konno M., Saito K., Yamazaki N., et al. . (2017). Oral Administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice. Biochem. Biophys. Res. Commun. 494, 379–383. 10.1016/j.bbrc.2017.09.167 PubMed DOI

Nakashima A., Yamada K., Iwata O., Sugimoto R., Atsuji K., Ogawa T., et al. . (2018). β-glucan in foods and its physiological functions. J. Nutr. Sci. Vitaminol. 64, 8–17. 10.3177/jnsv.64.8 PubMed DOI

Neelam S., Subramanyam R. (2013). Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. J. Photochem. Photobiol. B: Biol. 124, 63–70. 10.1016/j.jphotobiol.2013.04.007 PubMed DOI

Okouchi R., Yamamoto K., Ota T., Seki K., Imai M., Ota R., et al. . (2019). Simultaneous intake of Euglena gracilis and vegetables exerts synergistic anti-obesity and anti-inflammatory effects by modulating the gut microbiota in diet-induced obese mice. Nutrients 11:204. 10.3390/nu11010204 PubMed DOI PMC

O'neill E. C., Trick M., Hill L., Rejzek M., Dusi R. G., Hamilton C. J., et al. . (2015). The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry. Mol. Biosyst. 11, 2808–2820. 10.1039/C5MB00319A PubMed DOI

Parida A., Das A., Mittra B. (2003). Effects of NaCl stress on the structure, pigment complex composition, and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts. Photosynthetica 41:191. 10.1023/B:PHOT.0000011951.37231.69 DOI

Peng C., Lee J.-W., Sichani H. T., Ng J. C. (2015). Toxic effects of individual and combined effects of BTEX on Euglena gracilis. J. Hazard. Mater. 284, 10–18. 10.1016/j.jhazmat.2014.10.024 PubMed DOI

Porchia A. C., Fiol D. F., Salerno G. L. (1999). Differential synthesis of sucrose and trehalose in Euglena gracilis cells during growth and salt stress. Plant Sci. 149, 43–49. 10.1016/S0168-9452(99)00142-9 DOI

Richter P., Börnig A., Streb C., Ntefidou M., Lebert M., Häder D.-P. (2003). Effects of increased salinity on gravitaxis in Euglena gracilis. J. Plant Physiol. 160, 651–656. 10.1078/0176-1617-00828 PubMed DOI

Schagger H., Cramer W., Vonjagow G. (1994). Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal. Biochem. 217, 220–230. 10.1006/abio.1994.1112 PubMed DOI

Srivastava A., Strasser R. J. (1995). Polyphasic rise of chlorophyll a fluorescence in herbicide-resistant D1 mutants of Chlamydomonas reinhardtii. Photosynthesis Res. 43, 131–141. 10.1007/BF00042970 PubMed DOI

Stirbet A., Lazár D., Kromdijk J. (2018). Chlorophyll a fluorescence induction: can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 56, 86–104. 10.1007/s11099-018-0770-3 DOI

Strasser R. J., Tsimilli-Michael M., Srivastava A. (2004). Analysis of the Chlorophyll a fluorescence transient, in Chlorophyll a Fluorescence (Berlin: Springer; ), 321–362. 10.1007/978-1-4020-3218-9_12 DOI

Subramanyam R., Jolley C., Thangaraj B., Nellaepalli S., Webber A. N., Fromme P. (2010). Structural and functional changes of PSI-LHCI supercomplexes of Chlamydomonas reinhardtii cells grown under high salt conditions. Planta 231, 913–922. 10.1007/s00425-009-1097-x PubMed DOI

Sudhir P.-R., Pogoryelov D., Kovács L., Garab G., Murthy S. D. (2005). The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. BMB Rep. 38, 481–485. 10.5483/BMBRep.2005.38.4.481 PubMed DOI

Sun A., Hasan M. T., Hobba G., Nevalainen H., Te'o J. (2018). Comparative assessment of the Euglena gracilis Var. saccharophila variant strain as a producer of the β-1,3-glucan paramylon under varying light conditions. J. Phycol. 54, 529–538. 10.1111/jpy.12758 PubMed DOI

Szabó M., Lepetit B., Goss R., Wilhelm C., Mustárdy L., Garab G. (2008). Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum. Photosynthesis Res. 95, 237–245. 10.1007/s11120-007-9252-3 PubMed DOI

Takenaka S., Kondo T., Nazeri S., Tamura Y., Tokunaga M., Tsuyama S., et al. . (1997). Accumulation of trehalose as a compatible solute under osmotic stress in Euglena gracilis Z. J. Eukaryot. Microbiol. 44, 609–613. 10.1111/j.1550-7408.1997.tb05967.x DOI

Tiwari B., Bose A., Ghosh B. (1998). Photosynthesis in rice under a salt stress. Photosynthetica 34, 303–306. 10.1023/A:1006857027398 PubMed DOI

Tóth T. N., Rai N., Solymosi K., Zsiros O., Schröder W. P., Garab G., et al. . (2016). Fingerprinting the macro-organisation of pigment–protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Biochim. Biophys. Acta 1857, 1479–1489. 10.1016/j.bbabio.2016.04.287 PubMed DOI

Tschiersch H., Ohmann E., Doege M. (2002). Modification of the thylakoid structure of Euglena gracilis by norflurazon-treatment: consequences for fluorescence quenching. Environ. Exp. Bot. 47, 259–270. 10.1016/S0098-8472(01)00132-0 DOI

Ünnep R., Paul S., Zsiros O., Kovács L., Székely N. K., Steinbach G., et al. . (2020). Thylakoid membrane reorganizations revealed by small-angle neutron scattering of Monstera deliciosa leaves associated with non-photochemical quenching. Open Biol. 10:200144. 10.1098/rsob.200144 PubMed DOI PMC

Ünnep R., Zsiros O., Solymosi K., Kovacs L., Lambrev P. H., Toth T., et al. . (2014). The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering. Biochim. Biophys. Acta 1837, 1572–1580. 10.1016/j.bbabio.2014.01.017 PubMed DOI

Velasco J., Gutiérrez-Cánovas C., Botella-Cruz M., Sánchez-Fernández D., Arribas P., Carbonell J. A., et al. . (2019). Effects of salinity changes on aquatic organisms in a multiple stressor context. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 374, 20180011. 10.1098/rstb.2018.0011 PubMed DOI PMC

Verma K., Mohanty P. (2000). Changes of the photosynthetic apparatus in Spirulina cyanobacterium by sodium stress. Z. Naturforsch. Sect. C 55, 16–22. 10.1515/znc-2000-1-205 PubMed DOI

Walters R. G., Horton P. (1995). Acclimation of Arabidopsis thaliana to the light environment: changes in photosynthetic function. Planta 197, 306–312. 10.1007/BF00202652 PubMed DOI

Wang Y., Seppänen-Laakso T., Rischer H., Wiebe M. G. (2018). Euglena gracilis growth and cell composition under different temperature, light and trophic conditions. PLoS ONE 13, e0195329. 10.1371/journal.pone.0195329 PubMed DOI PMC

Wingler A., Lea P. J., Quick W. P., Leegood R. C. (2000). Photorespiration: metabolic pathways and their role in stress protection. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 355, 1517–1529. 10.1098/rstb.2000.0712 PubMed DOI PMC

Wright S., Jeffrey S., Mantoura R. (2005). Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Paris: Unesco Pub.

Yancey P. H. (1994). Compatible and counteracting solutes, in Cellular and Molecular Physiology of Cell Volume Regulation, ed. Strange K.. (Boca Raton: CRC Press; ), 81–109. 10.1201/9780367812140-7 DOI

Zakery-Asl M. A., Bolandnazar S., Oustan S. (2014). Effect of salinity and nitrogen on growth, sodium, potassium accumulation, and osmotic adjustment of halophyte Suaeda aegyptiaca (Hasselq.) Zoh. Arch. Agron. Soil Sci. 60, 785–792. 10.1080/03650340.2013.841889 DOI

Zhu J.-K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71. 10.1016/S1360-1385(00)01838-0 PubMed DOI

Zimorski V., Rauch C., van Hellemond J. J., Tielens A. G., Martin W. F. (2017). The Mitochondrion of Euglena gracilis, in Euglena: Biochemistry, Cell and Molecular Biology (Berlin: Springer; ), 19–37. 10.1007/978-3-319-54910-1_2 PubMed DOI

Zsiros O., Nagy G., Patai R., Solymosi K., Gasser U., Polgár T. F., et al. . (2020). Similarities and differences in the effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. Front. Plant Sci. 11:1006. 10.3389/fpls.2020.01006 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...