Environment-Monitoring IoT Devices Powered by a TEG Which Converts Thermal Flux between Air and Near-Surface Soil into Electrical Energy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34884107
PubMed Central
PMC8662441
DOI
10.3390/s21238098
PII: s21238098
Knihovny.cz E-zdroje
- Klíčová slova
- DC/DC boost converter, IoT, LoRaWAN, WSN, energy harvesting, thermoelectric generator,
- Publikační typ
- časopisecké články MeSH
Energy harvesting has an essential role in the development of reliable devices for environmental wireless sensor networks (EWSN) in the Internet of Things (IoT), without considering the need to replace discharged batteries. Thermoelectric energy is a renewable energy source that can be exploited in order to efficiently charge a battery. The paper presents a simulation of an environment monitoring device powered by a thermoelectric generator (TEG) that harvests energy from the temperature difference between air and soil. The simulation represents a mathematical description of an EWSN, which consists of a sensor model powered by a DC/DC boost converter via a TEG and a load, which simulates data transmission, a control algorithm and data collection. The results section provides a detailed description of the harvested energy parameters and properties and their possibilities for use. The harvested energy allows supplying the load with an average power of 129.04 μW and maximum power of 752.27 μW. The first part of the results section examines the process of temperature differences and the daily amount of harvested energy. The second part of the results section provides a comprehensive analysis of various settings for the EWSN device's operational period and sleep consumption. The study investigates the device's number of operational cycles, quantity of energy used, discharge time, failures and overheads.
Brose CZ Spol s r o 742 21 Koprivnice Czech Republic
Fraunhofer Institute for Machine Tools and Forming Technology IWU 09126 Chemnitz Germany
Zobrazit více v PubMed
Ramya R., Saravanakumar G., Ravi S. Artificial Intelligence and Evolutionary Computations in Engineering Systems. Springer; New Delhi, India: 2016. Energy harvesting in wireless sensor networks; pp. 841–853.
Rokonuzzaman M., Mishu M.K., Amin N., Nadarajah M., Roy R.B., Rahman K.S., Buhari A.M., Binzaid S., Shakeri M., Pasupuleti J. Self-Sustained Autonomous Wireless Sensor Network with Integrated Solar Photovoltaic System for Internet of Smart Home-Building (IoSHB) Applications. Micromachines. 2021;12:653. doi: 10.3390/mi12060653. PubMed DOI PMC
Chandragandhi S., Udayakumar E., Srihari K. Smart Sensors for Industrial Internet of Things. Springer; Berlin/Heidelberg, Germany: 2021. A Novel Approach on Renewable Energy Harvesting Using Internet of Things (IoT) pp. 271–285.
Prauzek M., Kromer P., Rodway J., Musilek P. Differential evolution of fuzzy controller for environmentally-powered wireless sensors. Appl. Soft Comput. J. 2016;48:193–206. doi: 10.1016/j.asoc.2016.06.040. DOI
Prauzek M., Konecny J., Borova M., Janosova K., Hlavica J., Musilek P. Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors. 2018;18:2446. doi: 10.3390/s18082446. PubMed DOI PMC
Musilek P., Prauzek M., Krömer P., Rodway J., Bartoň T. Smart Sensors Networks. Elsevier; Amsterdam, The Netherlands: 2017. Intelligent energy management for environmental monitoring systems; pp. 67–94.
Li Y., Hamed E.A., Zhang X., Luna D., Lin J.S., Liang X., Lee I. Feasibility of harvesting solar energy for self-powered environmental wireless sensor nodes. Electronics. 2020;9:2058. doi: 10.3390/electronics9122058. DOI
Jiao P., Borchani W., Hasni H., Lajnef N. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams. Smart Mater. Struct. 2017;26:085045. doi: 10.1088/1361-665X/aa746e. DOI
Shaikh F.K., Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016;55:1041–1054. doi: 10.1016/j.rser.2015.11.010. DOI
Shad R., Steingart D., Frechette L., Wright P., Rabaey J. Power Sources for Wireless Sensor Networks. In: Karl H., Wolisz A., Willig A., editors. Wireless Sensor Networks. Springer; Berlin/Heidelberg, Germany: 2004. pp. 1–17.
Akhtar F., Rehmani M.H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renew. Sustain. Energy Rev. 2015;45:769–784. doi: 10.1016/j.rser.2015.02.021. DOI
Zulkepli N., Yunas J., Mohamed M.A., Hamzah A.A. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines. 2021;12:734. doi: 10.3390/mi12070734. PubMed DOI PMC
Nguyen N.Q., Pochiraju K.V. Behavior of thermoelectric generators exposed to transient heat sources. Appl. Therm. Eng. 2013;51:1–9. doi: 10.1016/j.applthermaleng.2012.08.050. DOI
Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020;6:264–287. doi: 10.1016/j.egyr.2019.12.011. DOI
Cui H., Guan Y., Chen H., Deng W. A Novel Advancing Signal Processing Method Based on Coupled Multi-Stable Stochastic Resonance for Fault Detection. Appl. Sci. 2021;11:5385. doi: 10.3390/app11125385. DOI
Pullwitt S., Kulau U., Hartung R., Wolf L.C. A feasibility study on energy harvesting from soil temperature differences; Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks; Shenzhen, China. 4 November 2018; pp. 1–6.
Sullivan O., Mukhopadhyay S., Kumar S. ASME International Mechanical Engineering Congress and Exposition. Volume 45257. American Society of Mechanical Engineers; Houston, TX, USA: 2012. Thermoelectric Generators Embedded in Microelectronic Chip; pp. 961–968.
Jin T., Gao S., Xia H., Ding H. Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type. J. Adv. Res. 2021;32:15–26. doi: 10.1016/j.jare.2021.04.008. PubMed DOI PMC
Jin T., Xia H. Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type. J. Ambient. Intell. Humaniz. Comput. 2021:1–14. doi: 10.1007/s12652-021-03516-y. DOI
Datta U., Dessouky S., Papagiannakis A. Harvesting thermoelectric energy from asphalt pavements. Transp. Res. Rec. 2017;2628:12–22. doi: 10.3141/2628-02. DOI
Tahami A., Gholikhani M., Dessouky S. International Conference on Transportation and Development 2020. American Society of Civil Engineers; Reston, VA, USA: 2020. A Novel Thermoelectric Approach to Energy Harvesting from Road Pavement; pp. 174–181.
Lan S., Yang Z., Chen R., Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl. Energy. 2018;210:327–338. doi: 10.1016/j.apenergy.2017.11.004. DOI
Wang N., Gao C., Ding C., Jia H.Z., Sui G.R., Gao X.M. A thermal management system to reuse thermal waste released by high-power light-emitting diodes. IEEE Trans. Electron Devices. 2019;66:4790–4797. doi: 10.1109/TED.2019.2938712. DOI
Priya V., Rajendran M.K., Kansal S., Chowdary G., Dutta A. A human body heat driven high throughput thermal energy harvesting single stage regulator for wearable biomedical IoT nodes. IEEE Internet Things J. 2018;5:4989–5001.
Praveena B., Sowmiya A., Logeshwari P., Kowshalya G., Sonia B., Kavipriya R. Thermo electric generator module in driving the vehicle and monitoring using IoT; Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC); Coimbatore, India. 19–20 January 2018; Coimbatore, India: IEEE; 2018. pp. 822–825.
Seyoum B.B., Rossi M., Brunelli D. Energy neutral wireless bolt for safety critical fastening. Sensors. 2017;17:2211. doi: 10.3390/s17102211. PubMed DOI PMC
Ikeda N., Shigeta R., Shiomi J., Kawahara Y. Soil-Monitoring Sensor Powered by Temperature Difference between Air and Shallow Underground Soil. Proc. ACM Interact. Mobile Wear. Ubiquitous Technol. 2020;4:1–22. doi: 10.1145/3380995. DOI
Huang Y., Xu D., Kan J., Li W. Study on field experiments of forest soil thermoelectric power generation devices. PLoS ONE. 2019;14:e0221019. doi: 10.1371/journal.pone.0221019. PubMed DOI PMC
Wang H., Li W., Xu D., Kan J. A hybrid microenergy storage system for power supply of forest wireless sensor nodes. Electronics. 2019;8:1409. doi: 10.3390/electronics8121409. DOI
Yao C.J., Zhang H.L., Zhang Q. Recent progress in thermoelectric materials based on conjugated polymers. Polymers. 2019;11:107. doi: 10.3390/polym11010107. PubMed DOI PMC
da Rosa A. Chapter 5—Thermoelectricity. In: da Rosa A., editor. Fundamentals of Renewable Energy Processes. 3rd ed. Academic Press; Boston, MA, USA: 2013. pp. 149–212. DOI
Shen B., Hendry R., Cancheevaram J., Watkins C., Mantini M., Venkatasubramanian R. DC-DC converter suitable for thermoelectric generator; Proceedings of the ICT 2005, 24th International Conference on Thermoelectrics; Clemson, SC, USA. 19–23 June 2005; pp. 529–531. DOI
Richelli A., Colalongo L., Tonoli S., Kovacs-Vajna Z.M. A 0.2–1.2 V DC/DC boost converter for power harvesting applications. IEEE Trans. Power Electron. 2009;24:1541–1546. doi: 10.1109/TPEL.2009.2013224. DOI
Tran-Dinh T., Pham H.M., Dao B.P., Hoang-Thi H., Pham-Nguyen L., Lee S.G., Le H.P. Low-Power PMIC with Two Hybrid Converters for TEG Application; Proceedings of the 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS); Ha Long, Vietnam. 8–10 December 2020; Ha Long, Vietnam: IEEE; 2020. pp. 15–18.
Jury W.A., Horton R. Soil Physics. John Wiley & Sons; Hoboken, NJ, USA: 2004.
Czech Hydrometeorological Institute. 2021. [(accessed on 1 November 2021)]. Available online: https://www.chmi.cz/
Pryor R.W. Multiphysics Modeling Using COMSOL®: A First Principles Approach. 1st ed. Jones & Bartlett Learning; Burlington, MA, USA: 2009.
Pryor R. MLI Physics Collection. David Pallai Mercury Learning and Information; Dulles, VA, USA: 2018.
Demir M.E., Dincer I. Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production. Int. J. Hydrogen Energy. 2017;42:30044–30056. doi: 10.1016/j.ijhydene.2017.09.001. DOI
TEC1-12706—Thermoelectric Cooler, 05-03-2021. [(accessed on 1 November 2021)]. Available online: https://peltiermodules.com/peltier.datasheet/TEC1-12706.pdf.
LTC3109—Auto-Polarity, Ultralow Voltage Step-Up Converterand Power Manager, 21-02-2021. [(accessed on 1 November 2021)]. Available online: https://www.analog.com/en/products/ltc3109.html.
KW-5R5C105-R—Farnell, 20-05-2021. [(accessed on 1 November 2021)]. Available online: https://cz.farnell.com/eaton-bussmann-series/kw-5r5c105-r/cap-1f-5-5v-super-radial/dp/2302170.
NXP KL25Z MCU, 16-01-2021. [(accessed on 1 November 2021)]. Available online: https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-kl14-kl15-kl24-kl25-mcus:FRDM-KL25Z.
Bosch BME688 Sensor, 22-07-2021. [(accessed on 1 November 2021)]. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/
24CW1280 EEPROM, 15-04-2021. [(accessed on 1 November 2021)]. Available online: https://www.microchip.com/wwwproducts/en/24CW1280.
Semtech SX1261 LoRa Transceiver, 09-08-2021. [(accessed on 1 November 2021)]. Available online: https://www.semtech.com/products/wireless-rf/lora-core/sx1261.
IoT Sensor Challenges for Geothermal Energy Installations Monitoring: A Survey