Environment-Monitoring IoT Devices Powered by a TEG Which Converts Thermal Flux between Air and Near-Surface Soil into Electrical Energy

. 2021 Dec 03 ; 21 (23) : . [epub] 20211203

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34884107

Energy harvesting has an essential role in the development of reliable devices for environmental wireless sensor networks (EWSN) in the Internet of Things (IoT), without considering the need to replace discharged batteries. Thermoelectric energy is a renewable energy source that can be exploited in order to efficiently charge a battery. The paper presents a simulation of an environment monitoring device powered by a thermoelectric generator (TEG) that harvests energy from the temperature difference between air and soil. The simulation represents a mathematical description of an EWSN, which consists of a sensor model powered by a DC/DC boost converter via a TEG and a load, which simulates data transmission, a control algorithm and data collection. The results section provides a detailed description of the harvested energy parameters and properties and their possibilities for use. The harvested energy allows supplying the load with an average power of 129.04 μW and maximum power of 752.27 μW. The first part of the results section examines the process of temperature differences and the daily amount of harvested energy. The second part of the results section provides a comprehensive analysis of various settings for the EWSN device's operational period and sleep consumption. The study investigates the device's number of operational cycles, quantity of energy used, discharge time, failures and overheads.

Zobrazit více v PubMed

Ramya R., Saravanakumar G., Ravi S. Artificial Intelligence and Evolutionary Computations in Engineering Systems. Springer; New Delhi, India: 2016. Energy harvesting in wireless sensor networks; pp. 841–853.

Rokonuzzaman M., Mishu M.K., Amin N., Nadarajah M., Roy R.B., Rahman K.S., Buhari A.M., Binzaid S., Shakeri M., Pasupuleti J. Self-Sustained Autonomous Wireless Sensor Network with Integrated Solar Photovoltaic System for Internet of Smart Home-Building (IoSHB) Applications. Micromachines. 2021;12:653. doi: 10.3390/mi12060653. PubMed DOI PMC

Chandragandhi S., Udayakumar E., Srihari K. Smart Sensors for Industrial Internet of Things. Springer; Berlin/Heidelberg, Germany: 2021. A Novel Approach on Renewable Energy Harvesting Using Internet of Things (IoT) pp. 271–285.

Prauzek M., Kromer P., Rodway J., Musilek P. Differential evolution of fuzzy controller for environmentally-powered wireless sensors. Appl. Soft Comput. J. 2016;48:193–206. doi: 10.1016/j.asoc.2016.06.040. DOI

Prauzek M., Konecny J., Borova M., Janosova K., Hlavica J., Musilek P. Energy harvesting sources, storage devices and system topologies for environmental wireless sensor networks: A review. Sensors. 2018;18:2446. doi: 10.3390/s18082446. PubMed DOI PMC

Musilek P., Prauzek M., Krömer P., Rodway J., Bartoň T. Smart Sensors Networks. Elsevier; Amsterdam, The Netherlands: 2017. Intelligent energy management for environmental monitoring systems; pp. 67–94.

Li Y., Hamed E.A., Zhang X., Luna D., Lin J.S., Liang X., Lee I. Feasibility of harvesting solar energy for self-powered environmental wireless sensor nodes. Electronics. 2020;9:2058. doi: 10.3390/electronics9122058. DOI

Jiao P., Borchani W., Hasni H., Lajnef N. Enhancement of quasi-static strain energy harvesters using non-uniform cross-section post-buckled beams. Smart Mater. Struct. 2017;26:085045. doi: 10.1088/1361-665X/aa746e. DOI

Shaikh F.K., Zeadally S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016;55:1041–1054. doi: 10.1016/j.rser.2015.11.010. DOI

Shad R., Steingart D., Frechette L., Wright P., Rabaey J. Power Sources for Wireless Sensor Networks. In: Karl H., Wolisz A., Willig A., editors. Wireless Sensor Networks. Springer; Berlin/Heidelberg, Germany: 2004. pp. 1–17.

Akhtar F., Rehmani M.H. Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renew. Sustain. Energy Rev. 2015;45:769–784. doi: 10.1016/j.rser.2015.02.021. DOI

Zulkepli N., Yunas J., Mohamed M.A., Hamzah A.A. Review of Thermoelectric Generators at Low Operating Temperatures: Working Principles and Materials. Micromachines. 2021;12:734. doi: 10.3390/mi12070734. PubMed DOI PMC

Nguyen N.Q., Pochiraju K.V. Behavior of thermoelectric generators exposed to transient heat sources. Appl. Therm. Eng. 2013;51:1–9. doi: 10.1016/j.applthermaleng.2012.08.050. DOI

Jaziri N., Boughamoura A., Müller J., Mezghani B., Tounsi F., Ismail M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020;6:264–287. doi: 10.1016/j.egyr.2019.12.011. DOI

Cui H., Guan Y., Chen H., Deng W. A Novel Advancing Signal Processing Method Based on Coupled Multi-Stable Stochastic Resonance for Fault Detection. Appl. Sci. 2021;11:5385. doi: 10.3390/app11125385. DOI

Pullwitt S., Kulau U., Hartung R., Wolf L.C. A feasibility study on energy harvesting from soil temperature differences; Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks; Shenzhen, China. 4 November 2018; pp. 1–6.

Sullivan O., Mukhopadhyay S., Kumar S. ASME International Mechanical Engineering Congress and Exposition. Volume 45257. American Society of Mechanical Engineers; Houston, TX, USA: 2012. Thermoelectric Generators Embedded in Microelectronic Chip; pp. 961–968.

Jin T., Gao S., Xia H., Ding H. Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type. J. Adv. Res. 2021;32:15–26. doi: 10.1016/j.jare.2021.04.008. PubMed DOI PMC

Jin T., Xia H. Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type. J. Ambient. Intell. Humaniz. Comput. 2021:1–14. doi: 10.1007/s12652-021-03516-y. DOI

Datta U., Dessouky S., Papagiannakis A. Harvesting thermoelectric energy from asphalt pavements. Transp. Res. Rec. 2017;2628:12–22. doi: 10.3141/2628-02. DOI

Tahami A., Gholikhani M., Dessouky S. International Conference on Transportation and Development 2020. American Society of Civil Engineers; Reston, VA, USA: 2020. A Novel Thermoelectric Approach to Energy Harvesting from Road Pavement; pp. 174–181.

Lan S., Yang Z., Chen R., Stobart R. A dynamic model for thermoelectric generator applied to vehicle waste heat recovery. Appl. Energy. 2018;210:327–338. doi: 10.1016/j.apenergy.2017.11.004. DOI

Wang N., Gao C., Ding C., Jia H.Z., Sui G.R., Gao X.M. A thermal management system to reuse thermal waste released by high-power light-emitting diodes. IEEE Trans. Electron Devices. 2019;66:4790–4797. doi: 10.1109/TED.2019.2938712. DOI

Priya V., Rajendran M.K., Kansal S., Chowdary G., Dutta A. A human body heat driven high throughput thermal energy harvesting single stage regulator for wearable biomedical IoT nodes. IEEE Internet Things J. 2018;5:4989–5001.

Praveena B., Sowmiya A., Logeshwari P., Kowshalya G., Sonia B., Kavipriya R. Thermo electric generator module in driving the vehicle and monitoring using IoT; Proceedings of the 2018 2nd International Conference on Inventive Systems and Control (ICISC); Coimbatore, India. 19–20 January 2018; Coimbatore, India: IEEE; 2018. pp. 822–825.

Seyoum B.B., Rossi M., Brunelli D. Energy neutral wireless bolt for safety critical fastening. Sensors. 2017;17:2211. doi: 10.3390/s17102211. PubMed DOI PMC

Ikeda N., Shigeta R., Shiomi J., Kawahara Y. Soil-Monitoring Sensor Powered by Temperature Difference between Air and Shallow Underground Soil. Proc. ACM Interact. Mobile Wear. Ubiquitous Technol. 2020;4:1–22. doi: 10.1145/3380995. DOI

Huang Y., Xu D., Kan J., Li W. Study on field experiments of forest soil thermoelectric power generation devices. PLoS ONE. 2019;14:e0221019. doi: 10.1371/journal.pone.0221019. PubMed DOI PMC

Wang H., Li W., Xu D., Kan J. A hybrid microenergy storage system for power supply of forest wireless sensor nodes. Electronics. 2019;8:1409. doi: 10.3390/electronics8121409. DOI

Yao C.J., Zhang H.L., Zhang Q. Recent progress in thermoelectric materials based on conjugated polymers. Polymers. 2019;11:107. doi: 10.3390/polym11010107. PubMed DOI PMC

da Rosa A. Chapter 5—Thermoelectricity. In: da Rosa A., editor. Fundamentals of Renewable Energy Processes. 3rd ed. Academic Press; Boston, MA, USA: 2013. pp. 149–212. DOI

Shen B., Hendry R., Cancheevaram J., Watkins C., Mantini M., Venkatasubramanian R. DC-DC converter suitable for thermoelectric generator; Proceedings of the ICT 2005, 24th International Conference on Thermoelectrics; Clemson, SC, USA. 19–23 June 2005; pp. 529–531. DOI

Richelli A., Colalongo L., Tonoli S., Kovacs-Vajna Z.M. A 0.2–1.2 V DC/DC boost converter for power harvesting applications. IEEE Trans. Power Electron. 2009;24:1541–1546. doi: 10.1109/TPEL.2009.2013224. DOI

Tran-Dinh T., Pham H.M., Dao B.P., Hoang-Thi H., Pham-Nguyen L., Lee S.G., Le H.P. Low-Power PMIC with Two Hybrid Converters for TEG Application; Proceedings of the 2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS); Ha Long, Vietnam. 8–10 December 2020; Ha Long, Vietnam: IEEE; 2020. pp. 15–18.

Jury W.A., Horton R. Soil Physics. John Wiley & Sons; Hoboken, NJ, USA: 2004.

Czech Hydrometeorological Institute. 2021. [(accessed on 1 November 2021)]. Available online: https://www.chmi.cz/

Pryor R.W. Multiphysics Modeling Using COMSOL®: A First Principles Approach. 1st ed. Jones & Bartlett Learning; Burlington, MA, USA: 2009.

Pryor R. MLI Physics Collection. David Pallai Mercury Learning and Information; Dulles, VA, USA: 2018.

Demir M.E., Dincer I. Development of a hybrid solar thermal system with TEG and PEM electrolyzer for hydrogen and power production. Int. J. Hydrogen Energy. 2017;42:30044–30056. doi: 10.1016/j.ijhydene.2017.09.001. DOI

TEC1-12706—Thermoelectric Cooler, 05-03-2021. [(accessed on 1 November 2021)]. Available online: https://peltiermodules.com/peltier.datasheet/TEC1-12706.pdf.

LTC3109—Auto-Polarity, Ultralow Voltage Step-Up Converterand Power Manager, 21-02-2021. [(accessed on 1 November 2021)]. Available online: https://www.analog.com/en/products/ltc3109.html.

KW-5R5C105-R—Farnell, 20-05-2021. [(accessed on 1 November 2021)]. Available online: https://cz.farnell.com/eaton-bussmann-series/kw-5r5c105-r/cap-1f-5-5v-super-radial/dp/2302170.

NXP KL25Z MCU, 16-01-2021. [(accessed on 1 November 2021)]. Available online: https://www.nxp.com/design/development-boards/freedom-development-boards/mcu-boards/freedom-development-platform-for-kinetis-kl14-kl15-kl24-kl25-mcus:FRDM-KL25Z.

Bosch BME688 Sensor, 22-07-2021. [(accessed on 1 November 2021)]. Available online: https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors/bme688/

24CW1280 EEPROM, 15-04-2021. [(accessed on 1 November 2021)]. Available online: https://www.microchip.com/wwwproducts/en/24CW1280.

Semtech SX1261 LoRa Transceiver, 09-08-2021. [(accessed on 1 November 2021)]. Available online: https://www.semtech.com/products/wireless-rf/lora-core/sx1261.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace