Powering Agriculture IoT Sensors Using Natural Temperature Differences Between Air and Soil: Measurement and Evaluation

. 2024 Nov 30 ; 24 (23) : . [epub] 20241130

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39686222

Grantová podpora
SP2024/02 Student Grant System, VSB- 342 TU Ostrava
CZ.10.03.01/00/22_003/0000048 Operational Programme Just Transition

As the need to monitor agriculture parameters intensifies, the development of new sensor nodes for data collection is crucial. These sensor types naturally require power for operation, but conventional battery-based power solutions have certain limitations. This study investigates the potential of harnessing the natural temperature gradient between soil and air to power wireless sensor nodes deployed in environments such as agricultural areas or remote off-grid locations where the use of batteries as a power source is impractical. We evaluated existing devices that exploit similar energy sources and applied the results to develop a state-of-the-art device for extensive testing over a 12-month period. Our main objective was to precisely measure the temperature on a thermoelectric generator (TEG) (a Peltier cell, in particular) and assess the device's energy yield. The device harvested 7852.2 J of electrical energy during the testing period. The experiment highlights the viability of using environmental temperature differences to power wireless sensor nodes in off-grid and battery-constrained applications. The results indicate significant potential for the device as a sustainable energy solution in agricultural monitoring scenarios.

Zobrazit více v PubMed

Kour V.P., Arora S. Recent Developments of the Internet of Things in Agriculture. IEEE Access. 2020;8:129924–129957. doi: 10.1109/ACCESS.2020.3009298. DOI

Kjellby R.A., Cenkeramaddi L.R., Froytlog A., Lozano B.B., Soumya J., Bhange M. Long-range & Self-powered IoT Devices for Agriculture & Aquaponics Based on Multi-hop Topology; Proceedings of the 2019 IEEE 5th World Forum Internet Things (WF-IoT); Limerick, Ireland. 15–18 April 2019; pp. 545–549. DOI

Friha O., Ferrag M.A., Shu L., Maglaras L., Wang X. Internet of Things for the Future of Smart Agriculture. IEEE CAA J. Autom. Sin. 2021;8:718–752. doi: 10.1109/JAS.2021.1003925. DOI

Prauzek M., Konecny J., Borova M., Janosova K., Hlavica J., Musilek P. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks. Sensors. 2018;18:2446. doi: 10.3390/s18082446. PubMed DOI PMC

Kucova T., Prauzek M., Konecny J., Andriukaitis D., Zilys M., Martinek R. Thermoelectric energy harvesting for internet of things devices using machine learning. CAAI Trans. Intell. Technol. 2023;8:680–700. doi: 10.1049/cit2.12259. DOI

Ahmed R., Draskovic S., Thiele L. Stochastic Guarantees for Adaptive Energy Harvesting Systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2022;41:3614–3625. doi: 10.1109/TCAD.2022.3198519. DOI

Liu H., Fu H., Sun L., Lee C., Yeatman E.M. Hybrid energy harvesting technology. Renew. Sustain. Energy Rev. 2021;137:110473. doi: 10.1016/j.rser.2020.110473. DOI

Ajani T.S., Imoize A.L., Atayero A.A. An Overview of Machine Learning within Embedded and Mobile Devices–Optimizations and Applications. Sensors. 2021;21:4412. doi: 10.3390/s21134412. PubMed DOI PMC

Prauzek M., Konecny J., Paterova T. An Analysis of Double Q -Learning-Based Energy Management Strategies for TEG-Powered IoT Devices. IEEE Internet Things J. 2023;10:18919–18929. doi: 10.1109/JIOT.2023.3283599. DOI

Chen Y., Zhang N., Zhang Y., Chen X., Wu W., Shen X. Energy Efficient Dynamic Offloading in Mobile Edge Computing for Internet of Things. IEEE Trans. Cloud Comput. 2021;9:1050–1060. doi: 10.1109/TCC.2019.2898657. DOI

Pham Q.V., Fang F., Ha V.N., Piran M.J., Le M., Le L.B., Hwang W.J., Ding Z. A Survey of Multi-Access Edge Computing in 5G and Beyond. IEEE Access. 2020;8:116974–117017. doi: 10.1109/ACCESS.2020.3001277. DOI

Baskaran P., Rajasekar M. Recent trends and future perspectives of thermoelectric materials and their applications. RSC Adv. 2024;14:21706–21744. doi: 10.1039/D4RA03625E. PubMed DOI PMC

Pullwitt S., Kulau U., Hartung R., Wolf L.C. A Feasibility Study on Energy Harvesting from Soil Temperature Differences; Proceedings of the 7th International Workshop on Real-World Embedded Wireless Systems and Networks; Shenzhen, China. 4 November 2018; pp. 1–6. DOI

Pullwitt S., Wolf L. Utilizing Natural Thermal Gradients as Micro Energy Sources for Wireless Sensor Networks; Proceedings of the 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT); Pafos, Cyprus. 19–21 June 2023; pp. 95–102. DOI

Massaguer E., Massaguer A., Balló E., Cózar I.R., Pujol T., Montoro L., Comamala M. Electrical Generation of a Ground-Level Solar Thermoelectric Generator. Energies. 2020;13:3407. doi: 10.3390/en13133407. DOI

Ikeda N., Shigeta R., Shiomi J., Kawahara Y. Soil-Monitoring Sensor Powered by Temperature Difference between Air and Shallow Underground Soil. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2020;4:1–22. doi: 10.1145/3380995. PubMed DOI

Huang Y., Xu D., Kan J., Li W., Madan D. Study on field experiments of forest soil thermoelectric power generation devices. PLoS ONE. 2019;14:e0221019. doi: 10.1371/journal.pone.0221019. PubMed DOI PMC

Carvalhaes-Dias P., Cabot A., Dias J.S. Evaluation of the Thermoelectric Energy Harvesting Potential at Different Latitudes Using Solar Flat Panels Systems with Buried Heat Sink. Appl. Sci. 2018;8:2641. doi: 10.3390/app8122641. DOI

Seyoum B.B., Rossi M., Brunelli D. Energy Neutral Wireless Bolt for Safety Critical Fastening. Sensors. 2017;17:2211. doi: 10.3390/s17102211. PubMed DOI PMC

Kim Y.J., Gu H.M., Kim C.S., Choi H., Lee G., Kim S., Yi K.K., Lee S.G., Cho B.J. High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator. Energy. 2018;162:526–533. doi: 10.1016/j.energy.2018.08.064. DOI

Datta U., Dessouky S., Papagiannakis A.T. Harvesting Thermoelectric Energy from Asphalt Pavements. Transp. Res. Rec. J. Transp. Res. Board. 2017;2628:12–22. doi: 10.3141/2628-02. DOI

Catalan L., Araiz M., Aranguren P., Padilla G.D., Hernandez P.A., Perez N.M., de la Noceda C.G., Albert J.F., Astrain D. Prospects of Autonomous Volcanic Monitoring Stations. Sensors. 2020;20:3547. doi: 10.3390/s20123547. PubMed DOI PMC

Shittu S., Li G., Zhao X., Ma X. Review of thermoelectric geometry and structure optimization for performance enhancement. Appl. Energy. 2020;268:115075. doi: 10.1016/j.apenergy.2020.115075. DOI

Tang J., Ni H., Peng R.L., Wang N., Zuo L. A review on energy conversion using hybrid photovoltaic and thermoelectric systems. J. Power Sources. 2023;562:232785. doi: 10.1016/j.jpowsour.2023.232785. DOI

ČSN EN 13601: Copper and Copper Alloys—Copper Rod, Bar and Wire for General Electrical Purposes. Czech Standards Institute: Brno, Czech Republic, 2024. [(accessed on 28 November 2024)]. Available online: https://csnonline.agentura-cas.cz/ (In Czech)

Prauzek M. Temperature and Energy Output Data from a TEG Energy Harvesting Prototype. IEEE; Piscataway, NJ, USA: 2024. DOI

LTC3109—Auto-Polarity, Ultralow Voltage Step-Up Converter and Power Manager, 2010. [(accessed on 28 November 2024)]. Available online: https://www.analog.com/media/en/technical-documentation/data-sheets/3109fb.pdf.

Paterova T., Prauzek M., Konecny J., Ozana S., Zmij P., Stankus M., Weise D., Pierer A. Environment-monitoring IoT devices powered by a TEG which converts thermal flux between air and near-surface soil into electrical energy. Sensors. 2021;21:8098. doi: 10.3390/s21238098. PubMed DOI PMC

Rajab H., Al-Amaireh H., Bouguera T., Cinkler T. Evaluation of energy consumption of LPWAN technologies. EURASIP J. Wirel. Commun. Netw. 2023;2023:118. doi: 10.1186/s13638-023-02322-8. DOI

Lauer F., Schöffel M., Rheinländer C.C., Wehn N. Internet of Things—ICIOT 2022, Proceedings of the 7th International Conference, Held as Part of the Services Conference Federation, SCF 2022, Honolulu, HI, USA, 10–14 December 2022. Springer; Cham, Switzerland: 2023. Exploration of Thermoelectric Energy Harvesting for Secure, TLS-Based Industrial IoT Nodes; pp. 92–107. DOI

Bouguera T., Diouris J.F., Chaillout J.J., Jaouadi R., Andrieux G. Energy Consumption Model for Sensor Nodes Based on LoRa and LoRaWAN. Sensors. 2018;18:2104. doi: 10.3390/s18072104. PubMed DOI PMC

Orfei F., Mezzetti C.B., Cottone F. Vibrations powered LoRa sensor; Proceedings of the 2016 IEEE Sensors; Orlando, FL, USA. 30 October–3 November 2016; pp. 1–3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...